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Abstract. Existing black-box attacks on deep neural networks (DNNs)
have largely focused on transferability, where an adversarial instance gen-
erated for a locally trained model can “transfer” to attack other learning
models. In this paper, we propose novel Gradient Estimation black-box
attacks for adversaries with query access to the target model’s class prob-
abilities, which do not rely on transferability. We also propose strategies
to decouple the number of queries required to generate each adversar-
ial sample from the dimensionality of the input. An iterative variant of
our attack achieves close to 100% attack success rates for both targeted
and untargeted attacks on DNNs. We carry out a thorough comparative
evaluation of black-box attacks and show that Gradient Estimation at-
tacks achieve attack success rates similar to state-of-the-art white-box
attacks on the MNIST and CIFAR-10 datasets. We also apply the Gra-
dient Estimation attacks successfully against real-world classifiers hosted
by Clarifai. Further, we evaluate black-box attacks against state-of-the-
art defenses based on adversarial training and show that the Gradient
Estimation attacks are very effective even against these defenses.

Keywords: deep neural networks, image classification, adversarial ex-
amples, black-box attacks

1 Introduction

The ubiquity of machine learning provides adversaries with both opportuni-
ties and incentives to develop strategic approaches to fool learning systems and
achieve their malicious goals. Many attack strategies devised so far to gener-
ate adversarial examples that cause learning systems to drastically change their
predictions with perturbations imperceptible to humans have been in the white-
box setting, where adversaries are assumed to have access to the target model
[31,8,3,20]. However, in many realistic settings, adversaries may only have black-
box access to the model; i.e., they have no knowledge of the details of the learning
system, such as its parameters, but may have query access to the model’s predic-
tions on input samples, including class probabilities. This is the case in a number
of popular commercial AI offerings from IBM [33], Google [9] and Clarifai [5].

⋆ Work done while at University of California, Berkeley



2 A.N. Bhagoji, W. He, B. Li and D. Song

White-box    Query-reduced

MNIST

CIFAR-10

Single-step

White-box

Iterative

Finite Diff.   Finite Diff.   Query-reduced

Fig. 1. Targeted adversarial examples for MNIST and CIFAR-10. The ‘7’ from
MNIST is classified as a ‘3’ while the dog from CIFAR-10 is classified as a bird by all
attacks. ‘Finite Diff.’ and ‘Query-reduced’ refer to Gradient Estimation attacks with
and without query reduction respectively. Perturbations generated using Single-step
attacks are far smaller than those for Iterative attacks.

With access to model predictions, the loss of the target model for a given input
can be found, but without access to the entire model, the gradients required to
carry out white-box attacks cannot be accessed.

Most existing black-box attacks on Deep Neural Networks (DNNs) have fo-
cused on transferability based attacks [24,19,25], where adversarial examples
crafted for a local surrogate model (trained on a representative dataset) can be
used to attack the target model to which the adversary has no direct access. In
this paper, we design powerful new black-box attacks using limited query access
to target models which achieve attack success rates and distortion levels close to
that of white-box attacks 4. These attacks do not need access to a representative
dataset or the training of a local model. Our contributions are as follows:

New black-box attacks. We propose novel Gradient Estimation attacks on
DNNs, where the adversary is only assumed to have query access to the target
model. In these attacks, the adversary adds perturbations proportional to the
estimated gradient, instead of the true gradient as in white-box attacks [8,16].
Our attacks achieve close to 100% attack success in both the targeted and un-
targeted attack settings, matching white-box success on state-of-the-art models
on the MNIST [17] and CIFAR-10 [15] datasets. We also experimented with
Simultaneous Perturbation Stochastic Approximation (SPSA) [29] and Particle
Swarm Optimization (PSO) [14] as alternative methods to carry out query-based
black-box attacks but found Gradient Estimation to work the best.

Query-reduction strategies. Since the direct Gradient Estimation attack re-
quires a number of queries on the order of the dimension of the input (784 for
MNIST and 3072 for CIFAR-10), we explore strategies for reducing the num-
ber of queries to the target model. We propose two strategies: random feature
grouping and principal component analysis (PCA) based query reduction. The
use of these is supported by the notion of directional derivatives for differen-
tiable functions. We find that attack success rates close to 90% for untargeted
Single-step attacks and 100% for Iterative attacks in both targeted and untar-

4 The code to reproduce our results is at https://github.com/sunblaze-ucb/

blackbox-attacks

https://github.com/sunblaze-ucb/blackbox-attacks
https://github.com/sunblaze-ucb/blackbox-attacks
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geted cases are achievable with drastic query reduction to just 200 to 800 queries
per sample for Single-step attacks and around 8,000 queries for Iterative attacks.
Figure 1 displays some successful targeted adversarial examples generated using
our attacks.
Attacking real-world systems and state-of-the-art defenses. To demon-
strate the effectiveness of our Gradient Estimation attacks in the real world,
we also carry out a practical black-box attack (Figure 3) using these methods
against the Not Safe For Work (NSFW) classification and Content Moderation
models developed by Clarifai [5], which we choose due to their socially relevant
application. These models have begun to be deployed for real-world moderation
[18], which makes such black-box attacks especially pernicious. The Gradient
Estimation attack achieves a 95.2% attack success rate on the set of images we
chose with around 200 queries per image, taking roughly a minute per image.
These black-box attacks help us understand the extent of the threat posed to
deployed systems by query-based attacks as the attack was carried out with no
knowledge of the training set.

In addition, we also evaluate the effectiveness of these attacks on DNNs made
more robust using adversarial training [31,8] and its variants ensemble [32] and
iterative adversarial training [21]. We find that although standard and ensemble
adversarial training confer some robustness against Single-step attacks, they are
vulnerable to Iterative Gradient Estimation attacks, with attack success rates in
excess of 70%.
Comparative evaluation of black-box attacks. We carry out a thorough
empirical comparison of black-box attacks on both the MNIST and CIFAR-
10 datasets. We show that our Gradient Estimation attacks outperform the
other query-based black-box attacks we tested in terms of attack success rate.
In the supplementary material, we also show that black-box attacks requiring
zero queries to the learning model, including the addition of perturbations that
are either random or proportional to the difference of means of the original and
targeted classes, as well as transferability based attacks do not perform as well
as query-based attacks.

1.1 Related Work

Existing black-box attacks are mostly based on transferability [31,24,25], where
an adversarial example generated for a local model is used to attack a target
model. Query-based attacks were first proposed for convex-inducing two-class
classifiers by Nelson et al. [23]. Xu et al. [35] use genetic algorithms to craft
adversarial examples for malware data, while Dang et al. [6] apply hill climbing
algorithms. These methods are prohibitively expensive for non-categorical and
high-dimensional data such as images. We now discuss attacks that carry out
direct query-based black-box attacks on DNNs. Narodytska & Kasiviswanathan
[22] propose a greedy local search for high-impact pixels in input saliency maps
to generate adversarial examples. Their method uses 500 queries per iteration
and runs the greedy local search for around 150 iterations for each image, re-
sulting in a total of 75,000 queries per image, which is much higher than any of
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our attacks. Our methods achieve higher targeted and untargeted attack success
rates on both MNIST and CIFAR-10 compared to their method. In indepen-
dent work, Chen et al. [4] propose a black-box attack method named ZOO,
which also uses the method of finite differences to estimate the derivative of a
function. However, while we propose attacks that compute an adversarial pertur-
bation, approximating FGSM and iterative FGS; ZOO approximates the Adam
optimizer, while performing coordinate descent on a logit based loss [3]. While
they achieve similar attack success rates and distortion levels, they use around
1.5×106 and 5.1×105 queries per image for MNIST and CIFAR-10 respectively,
which is 192× and 67× greater than our Gradient Estimation attacks with query
reduction. This leads to the runtime of their attack being up to 160× as long
as ours. Neither of these works demonstrates the effectiveness of their attacks
on real-world systems or on state-of-the-art defenses. In concurrent work, Ilyas
et al. [13] study the use of natural evolution strategies with Gaussian noise to
obtain gradient estimates, which is equivalent to the SPSA method. We find
that the Gradient Estimation method achieves higher attack success rates at
lower distortion levels compared to SPSA. Further, Ilyas et al. do not analyze
the effectiveness of their attack on state-of-the-art defenses. Brendel et al. [2]
use the target model’s output class to modify a starting image which is mis-
classified, by following the decision boundaries to gradually make it closer to
a benign image. Since their attacks use only the output class, they take up to
1.2× 106 queries to converge to an adversarial example. For similarly sized im-
ages, they use 10× more queries for misclassification at the same distortion rate.
More detailed comparisons are given in the supplementary material.

2 Query based black-box attacks: Gradient Estimation

Deployed learning systems often provide feedback for input samples provided by
the user. Given query feedback, different adaptive, query-based algorithms can be
applied by adversaries to understand the system and iteratively generate effective
adversarial examples to attack it. We explored a number of methods using query
feedback to carry out black-box attacks including Particle Swarm Optimization
[14] and Simultaneous Perturbation Stochastic Approximation [29] (Section 2.4)
but found these were not as effective as white-box attacks at finding adversarial
examples. Given the fact that many white-box attacks for generating adversarial
examples are based on gradient information, we tried directly estimating the
gradient to carry out black-box attacks, and found it to be very effective in a
range of conditions. In other words, the adversary can approximate white-box
Single-step and Iterative Fast Gradient Sign (FGS) attacks [8,16] using estimates
of the losses that are needed to carry out those attacks. We first propose a
Gradient Estimation black-box attack based on the method of finite differences
[30]. The drawback of a naive implementation of the finite difference method,
however, is that it requires O(d) queries per input, where d is the dimension of
the input. This leads us to explore methods such as random grouping of features
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and feature combination using components obtained from Principal Component
Analysis (PCA) to reduce the number of queries.

2.1 Notation and threat model

A classifier f(·; θ) : X → Y is a function mapping from the domain X to the set of
classification outputs Y (e.g. Y = {0, 1} in the case of binary classification). The
number of possible classification outputs is then |Y|. θ is the set of parameters
associated with a classifier. H denotes the constraint set which an adversarial
example must lie in. ℓf (x, y) is used to represent the loss function for the classifier
f with respect to inputs x ∈ X and their true labels y ∈ Y. The outputs of the
penultimate layer of a neural network f , representing the output of the network
computed over all preceding layers, are known as the logits. We represent the
logits as a vector φf (x) ∈ R

|Y|. The final layer of a neural network f used for
classification is usually a softmax layer represented as a vector of probabilities

pf (x) = [pf1 (x), . . . , p
f

|Y|(x)], with
∑|Y|

i=1 p
f
i (x) = 1 and p

f
i (x) =

e
φ
f
i
(x)

∑|Y|
j=1 e

φ
f
j
(x)

.

Threat model and justification. We assume that the adversary can obtain the
vector of output probabilities for any input x. The set of queries the adversary
can make is then Qf = {pf (x), ∀x}. For untargeted attacks, the adversary
only needs access to the output probabilities for the two most likely classes. A
compelling reason for assuming this threat model for the adversary is that many
existing cloud-based ML services allow users to query trained models [33,5,9].
The results of these queries are confidence scores which can be used to carry out
Gradient Estimation attacks. These trained models are often deployed by the
clients of these ML as a service (MLaaS) providers [18]. Thus, an adversary can
pose as a user for a MLaaS provider and create adversarial examples using our
attack, which can then be used against any client of that provider.

2.2 Gradient Estimation attacks using Finite Differences

In this section, we focus on the method of finite differences to carry out Gradient
Estimation based attacks. All the analysis is presented for untargeted attacks,
but can be easily extended to targeted attacks (see supplementary material).
White-box attacks such as the FGS attack use the gradient of an appropriately
defined loss to create adversarial examples. If the loss function is ℓf (x, y), then
a white-box FGS adversarial example will be xFGS

adv
= x+ ǫ · sign(∇xℓf (x, y)).

In a black-box setting, however, the adversary does not have access to the
gradient of the loss and needs to estimate it. One way to do this is the method
of Finite Differences [30]. Let the function whose gradient is being estimated
using be g(x) where x ∈ R

d. The elements of x are represented as xi, where
i ∈ [1, . . . , d]. The canonical basis vectors are represented as ei, where ei is 1
only in the ith coordinate and 0 everywhere else. Then, a two-sided estimation
of the gradient of g with respect to x is

FDx(g(x), δ) =

[

g(x+ δe1)− g(x− δe1)

2δ
, · · ·

g(x+ δed)− g(x− δed)

2δ

]

, (1)
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where δ is a free parameter that controls the accuracy of the estimation. A
one-sided approximation can also be used, but will be less accurate [34]. If the
gradient of the function g exists, then limδ→0 FDx(g(x), δ) = ∇xg(x). The Finite
Differences method is useful for a black-box adversary aiming to approximate a
gradient based attack, since the gradient can be directly estimated with access
to only the function values.
Estimating the logit loss. To illustrate how the method of Finite Differences
can be used to construct adversarial examples, we focus on a loss function based
on logits which was found to work well for white-box attacks by [3]. Attacks using
the cross-entropy loss [7] are described in the supplementary material. The logit
loss is given by ℓ(x, y) = φ(x+δ)y −max{φ(x+δ)i : i 6= y}, where y represents
the ground truth label for the benign sample x and φ(·) are the logits.

An adversary can compute the logit values up to an additive constant by tak-
ing the logarithm of the softmax probabilities, which are assumed to be available
in this threat model. Since the loss function is equal to the difference of logits,
the additive constant is canceled out. Then, the finite differences method can be
used to estimate the difference between the logit values for the original class y,
and the second most likely class y′, i.e., the one given by y′ = argmaxi 6=y φ(x)i.
The untargeted adversarial sample generated for this loss in the white-box case
is xadv = x+ ǫ · sign(∇x(φ(x)y′ −φ(x)y)). In the case of a black-box adversary
with query access to the softmax probabilities, the adversarial example is

xadv = x+ ǫ · sign(FDx(φ(x)y′ − φ(x)y, δ)). (2)

This attack is denoted as FD-logit and the corresponding one based on the cross-
entropy loss is denoted FD-xent.
Iterative attacks with estimated gradients. The iterative variant of the
FGS attack [16] is a powerful attack that often achieves much higher attack
success rates in the white-box setting than the simple single-step gradient based
attacks. Thus, it stands to reason that a version of the iterative attack with esti-
mated gradients will also perform better than the single-step attacks described
until now. An iterative attack with t+ 1 iterations using the logit loss is:

xt+1
adv

= xt
adv + α · sign

(

FD
x
t
adv

(

φ(xt
adv)y′ − φ(xt

adv)y, δ
)

)

, (3)

where α is the step size and H the constraint set for the adversarial example.
This attack is denoted as IFD-logit (IFD-xent with the cross-entropy loss).

2.3 Query reduction techniques

A drawback of the Finite Differences technique is that the number of queries
needed per adversarial sample is exactly 2d for a two-sided approximation which
could be too large for high-dimensional inputs. So, we examine two techniques
to reduce the number of queries the adversary has to make. Both techniques
involve estimating the gradient for groups of features, instead of estimating it
using a single feature at a time. The justification for the use of feature group-
ing comes from the relation between gradients and directional derivatives [12]
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Algorithm 1 Gradient estimation with query reduction using random features

Input: x, k, δ, g(·)
Output: Estimated gradient ∇̂xg(x) of g(·) at x

1: Initialize empty vector ∇̂xg(x) of dimension d
2: for i← 1 to ⌈ d

k
⌉ − 1 do

3: Choose a set of random k indices Si out of [1, . . . , d]/{∪i−1
j=1Sj}

4: Initialize v such that vj = 1 iff j ∈ Si

5: For all j ∈ Si, set ∇̂xg(x)j = g(x+δv)−g(x−δv)
2δk

, which is the two-sided approxi-
mation of the directional derivative along v

6: end for

7: Initialize v such that vj = 1 iff j ∈ [1, . . . , d]/{∪
⌈ d
k
⌉−1

j=1 Sj}

8: For all j ∈ [1, . . . , d]/{∪
⌈ d
k
⌉−1

j=1 Sj}, set ∇̂xg(x)j = g(x+δv)−g(x−δv)
2δk

for differentiable functions. The directional derivative of a function g is defined

as ∇vg(x) = limh→0
g(x+hv)−g(x)

h
. It is a generalization of a partial derivative.

For differentiable functions, ∇vg(x) = ∇xg(x) · v, which implies that the di-
rectional derivative is just the projection of the gradient along the direction v.
Thus, estimating the gradient by grouping features is equivalent to estimating
an approximation of the gradient constructed by projecting it along appropri-
ately chosen directions. The estimated gradient ∇̂xg(x) of any function g can
be computed using the techniques below, and then plugged in to Eqs. 2 and 3
instead of the Finite Differences term to generate an adversarial example. Next,
we introduce the techniques applied to group the features for estimation.
Query reduction based on random grouping. The simplest way to group
features is to choose, without replacement, a random set of features. The gradient
can then be simultaneously estimated for all these features. If the size of the set
chosen is k, then the number of queries the adversary has to make is ⌈ d

k
⌉. When

k = 1, this reduces to the Finite Differences method from Section 2.2. In each
iteration of Algorithm 1, there is a set of indices S according to which v is
determined, with vi = 1 if and only if i ∈ S. Thus, the directional derivative

being estimated is
∑

i∈S
∂g(x)
∂xi

, which is an average of partial derivatives.
Query reduction using PCA components. A more principled way to re-
duce the number of queries the adversary has to make to estimate the gra-
dient is to compute directional derivatives along the principal components as
determined by principal component analysis (PCA) [28], which requires the ad-
versary to have access to a set of data which is represetative of the training
data. If U is the d × d matrix whose columns are the principal components
ui, where i ∈ [d], then the approximation of the gradient in the PCA basis is

(∇xg(x))
k =

∑k
i=1

(

∇xg(x)
T ui

‖ui‖

)

ui

‖ui‖
, where the term on the left represents

an approximation of the true gradient by the sum of its projection along the
top k principal components. Since in the black-box setting the true gradient is
inaccessible, the weights of the representation in the PCA basis are estimated
using directional derivatives along the principal components. The supplementary
material contains a detailed description of this method.
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Iterative attacks with query reduction. Performing an iterative attack with
the gradient estimated using Finite Differences could be expensive for an adver-
sary, needing 2td queries to the target model, for t iterations with the two-sided
Finite Differences estimation of the gradient. To lower the number of queries
needed, the adversary can use either of the query reduction techniques described
above to reduce the number of queries to 2tk ( k < d). These attacks using the
cross-entropy loss are denoted as IGE-QR (RG-k, logit) for the random grouping
technique and IGE-QR (PCA-k, logit) for the PCA-based technique.

2.4 Other query-based black-box attacks

Other black-box optimization techniques we considered for generating adversar-
ial examples were Particle Swarm Optimization (PSO) [14],5 a commonly used
evolutionary optimization strategy and SPSA method [29]. PSO is a heuristic
gradient-free optimization technique which initiates a number of candidate so-
lutions called ‘particles’ which then move around the search space to find better
solutions, previously used to find adversarial examples to fool face recognition
systems [27]. SPSA is a special case of natural evolution strategies (NES) [26],
where the distribution over the parameters is assumed to be a factored Gaussian.
It is similar to the method of Finite Differences, but it estimates the gradient of
the loss along a random direction r at each step, instead of along the canonical
basis vectors. While each step of SPSA only requires 2 queries to the target
model, a large number of steps are nevertheless required to generate adversarial
examples. A single step of SPSA does not reliably produce adversarial examples.

3 Experimental results

In this section, we compare various black-box attacks in both targeted and un-
targeted settings to Gradient Estimation attacks as well as comparing them to
white-box attacks. We also describe how we carried out a successful targeted
attack on a real-world system, Clarifai, in Section 3.5.

3.1 Evaluation setup

We evaluate our attacks on state-of-the-art neural networks on the MNIST [17]
and CIFAR-10 [15] datasets. All models were run on a GPU with a batch size
of 100. The details are as follows: i) MNIST. Each pixel of the MNIST image
data is scaled to [0, 1]. We trained two different CNNs on the MNIST dataset,
denoted Model A and Model B [32]. Model A has 2 convolutional layers followed
by a fully connected layer while Model B has only 3 convolutional layers. Both
models have a test accuracy of 99.2%; ii) CIFAR-10. Each pixel of the CIFAR-
10 image data is in [0, 255]. We choose two model architectures for this dataset,
which are both ResNet variants. Resnet-32 [11] is a 32-layer ResNet achieving

5 Using freely available code from http://pythonhosted.org/pyswarm/

http://pythonhosted.org/pyswarm/
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92.4% test accuracy while Resnet-28-10 [36] is a 28-layer ResNet with 10 times
width expansion with 94.4% test accuracy. Further architecture details are in
the supplementary material.

Attack Parameters. We focus on attacks that use the logit-based loss (logit)
as it has better performance but also use the cross-entropy loss (xent) for com-
parison. In all attacks, the adversary’s perturbation is constrained using the L∞

distance. For the MNIST dataset, we vary the adversary’s perturbation budget
ǫ from 0 to 0.4, since at a perturbation budget of 0.5, any image can be made
solid gray while for the CIFAR-10 dataset, we vary it from 0 to 28. We use the
Finite Difference parameter δ = 1.0 for FD-xent and IFD-xent for both datasets,
while using δ = 0.01 for FD-logit and IFD-logit. A larger value of δ is needed for
xent loss based attacks to work well since the probability values used in the xent

loss are not as sensitive to changes as the logit loss. For all Iterative attacks,
including white-box attacks, we use α = 0.01 and t = 40 for MNIST and α = 1.0
and t = 10 for CIFAR-10. We find these choices work well while maintaining low
runtimes for the Gradient Estimation attacks. For the query reduction methods,
we use a random group size of 8 for both datasets and the number of principal
components to be 100 for MNIST and CIFAR-10. For SPSA, we use around 4000
iterations for both datasets with a step size of 10−3 for MNIST and 2× 10−2 for
CIFAR-10. The effect of various hyperparameters on attack success is examined
in the supplementary material.

3.2 Metrics

We now define the standard metrics we use to determine attack performance.

Attack success rate. The main metric, the attack success rate, is the fraction
of samples that meets the adversary’s goal: f(xadv) 6= y for untargeted attacks
and f(xadv) = T for targeted attacks with target T [31,32].

Average distortion. We also evaluate the average distortion for adversarial
examples using average L2 distance between the benign and adversarial ones as in
[10]: ∆(Xadv,X) = 1

N

∑N
i=1 ‖(Xadv)i−(X)i‖2 where N is the number of samples.

This metric allows us to compare the average distortion for attacks which achieve
similar attack success rates, and therefore infer which one is stealthier.

Number of queries. Query based black-box attacks make queries to the target
model, and this metric may affect the cost of mounting the attack. This is an
important consideration when attacking real-world systems which have costs
associated with the number of queries made.

For MNIST, Single-step attacks are carried out on the test set of 10,000 sam-
ples, while Iterative attacks are carried out on 1,000 randomly chosen samples
from the test set. For CIFAR-10, we choose 1,000 random samples from the test
set for both Single-step and Iterative attacks. In our evaluation of targeted at-
tacks, we choose target T for each sample uniformly at random from the set of
classification outputs, except the true class y of that sample.
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Table 1. Targeted black-box attacks: attack success rates. The number in paren-
theses () for each entry is ∆(X,Xadv), the average L2 distortion over all examples used
in the attack. The number in brackets [] beside the Single-step and Iterative descriptors
gives the number of queries needed for each type of attack. The per-pixel perturbation
limits are ǫ = 0.3 for MNIST (Top) and ǫ = 8 for CIFAR-10 (Bottom).

Dataset White-box Gradient Estimation, FD (ours) Gradient Estimation, Query Reduction (ours)

MNIST Single-step Iterative Single-step [1568] Iterative [62720] Single-step [∼ 200] Iterative [8000]
Models FGS (logit) IFGS (logit) FD-logit IFD-logit PCA-100 RG-8 PCA-100 RG-8

A 30.1 (6.1) 99.6 (2.7) 29.9 (6.1) 99.7 (2.7) 23.2 (5.9) 15.9 (5.9) 96.2 (3.3) 73.8 (2.5)
B 29.6 (6.2) 98.7 (2.4) 29.3 (6.3) 98.7 (2.4) 29.0 (6.3) 17.8 (6.3) 93.9 (2.9) 73.7 (2.6)

CIFAR-10 Single-step Iterative Single-step [6144] Iterative [61440] Single-step [∼ 800] Iterative [∼ 8000]
Models FGS (logit) IFGS (logit) FD-logit IFD-logit PCA-400 RG-8 PCA-400 RG-8

Resnet-32 23.5 (436.0) 100.0 (89.5) 23.0 (437.0) 100.0 (89.5) 21.0 (438.2) 19.0 (438.1) 81.0 (222.8) 97.0 (126.1)
Resnet-28-10 27.6 (436.5) 100.0 (99.0) 28.0 (436.1) 100.0 (98.3) 23.0 (433.7) 20.0 (433.7) 72.0 (253.1) 94.0 (132.4)

3.3 Effectiveness of targeted Gradient Estimation attacks

We find that Targeted Gradient Estimation attacks match white-box attack
success, even with query reduction. The Iterative Gradient Estimation attack
using Finite Differences and the logit loss (IFD-logit) achieves close to 100%
targeted attack success rates on both MNIST and CIFAR-10 models (Table 1).
The Single-step attack FD-logit achieves about 20 to 30% attack success rates,
matching the performance of Single-step white-box attacks such as FGS-logit.
The average distortion for samples generated using gradient estimation methods
is similar to that of white-box attacks. Further, the Iterative Gradient Estimation
attacks with query reduction achieve high targeted attack success rates as well.
For example, using the random grouping method with a group size of 8 (RG-8)
for query reduction and using just around 8000 queries per sample, attack success
rates of 97% and 94% are achieved for Resnet-32 and Resnet-28-10 respectively.

3.4 Comparing untargeted black-box attacks

Single-step Gradient Estimation attacks match white-box attack suc-

cess. The Gradient Estimation attack with Finite Differences (FD-logit) is the
most successful untargeted Single-step black-box attack for MNIST and CIFAR-
10 models as can be seen in Figure 2. We also compare against black-box attacks
that make zero queries to the target model; these are the Difference-of-Means,
Random Perturbation and Transfer attacks. The Transfer attack is based on the
well-known phenomenon of transferability [31,24]. Further details and experi-
mental results for these attacks are in the supplementary material.

The FD-logit attack significantly outperforms transferability-based attacks
and closely tracks white-box FGS with a logit loss (WB FGS-logit) on MNIST
and CIFAR-10. The Gradient Estimation attack with PCA based query reduc-
tion (GE-QR (PCA-k, logit)) is also effective, with performance close to that of
FD-logit with k = 100 for MNIST (Fig. 2a) and k = 400 for CIFAR-10 (Fig.
2b). While random grouping is not as effective as the PCA based method for
Single-step attacks, we find it is as effective for Iterative attacks.
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Fig. 2. Effectiveness of untargeted Single-step black-box attacks on Model A

(MNIST) and Resnet-32 (CIFAR-10). The y-axis for both figures plots the attack
success as the perturbation magnitude ǫ is increased. The most successful black-box
attack in both cases is the Gradient Estimation attack using Finite Differences with
the logit loss (FD-logit), which matches white-box FGS logit-based attack success (WB

FGS-logit). The Gradient Estimation attack with query reduction using PCA (GE-QR

(PCA-k, logit)) performs well for both datasets.

Iterative Gradient Estimation attacks outperform other query-based

black-box attacks. A comparative evaluation of all the query-based black-
box attacks we experimented with for both MNIST and CIFAR-10 datasets is
given in Table 2. For adversarial examples generated iteratively, the Iterative
Gradient Estimation attack with Finite Differences (IFD-logit) achieves 100%
attack success rate on both datasets. White-box Iterative FGS also achieves
100% attack success rates with distortions of 2.1 for MNIST and 66.1 for CIFAR-
10. The attack that achieves the best trade-off between speed and attack success
is IGE-QR (RG-k, logit), achieving close to 100% success rates on both datasets
with just around 8000 queries. We found PSO to be prohibitively slow (with a
swarm size of 100) for a large dataset and outperformed even by the Single-step
FD-logit attack, in spite of trying a large range of parameters. While the SPSA
method is quite effective, it is outperformed by Iterative Gradient Estimation,
with and without query reduction in terms of attack success rate for both MNIST
and CIFAR-10. Also, IGE-QR (RG-k, logit) achieves a higher attack success rate
with lower distortion for MNIST. In practice, we found the convergence of SPSA
to be much more sensitive to the choice of both δ (gradient estimation step size)
and α (loss minimization step size).

3.5 Attacks on Clarifai, a real-world system

Since the only requirement for carrying out the Gradient Estimation based at-
tacks is query-based access to the target model, a number of deployed public
systems that provide classification as a service can be used to evaluate our meth-
ods. We choose Clarifai [5], as it has models trained to classify image datasets
for a variety of practical applications, and it provides black-box access to its
models and returns confidence scores upon querying. In particular, Clarifai has
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Table 2. Comparison of attack success (AS) and distortion (dist.) for untargeted
query-based black-box attack methods. All attacks for MNIST use an L∞ con-
straint of ǫ = 0.3 while those for CIFAR-10 use ǫ = 8. The logit loss is used for all
methods expect PSO, which uses the class probabilities

Attack Type MNIST (Model A) CIFAR-10 (Resnet-32)

Query-based attack AS (Dist.) Queries Avg. Time (s) AS (Dist.) Queries Avg. Time (s)

Finite Diff. 92.9 (6.1) 1568 8.8× 10−2 86.0 (410.3) 6144 3.3
Gradient Estimation (RG-8) 61.5 (6.0) 196 1.1× 10−2 66.8 (402.7) 768 0.43

Iter. Finite Diff. 100.0 (2.1) 62720 3.5 100.0 (65.7) 61440 32.1
Iter. Gradient Estimation (RG-8) 98.4 (1.9) 8000 0.43 99.0 (80.5) 7680 4.2

Particle Swarm Optimization 84.1 (5.3) 10000 21.2 89.2 (262.3) 7700 67.3
SPSA 96.7 (3.9) 8000 1.25 88.0 (44.4) 7680 8.7

models used for the detection of Not Safe For Work (NSFW) content, as well as
for Content Moderation. These are important applications where the presence
of adversarial examples presents a real danger: an attacker, using query access
to the model, could generate an adversarial examples which will no longer be
classified as inappropriate. For example, an adversary could upload violent im-
ages, adversarially modified, such that they are marked incorrectly as ‘safe’ by
the Content Moderation model.

We evaluate our attack using the Gradient Estimation method on Clarifai’s
NSFW and Content Moderation models. When we query the API with an image,
it returns the confidence scores associated with each category (summing to 1). We
use the random grouping query reduction technique and take the logarithm of the
confidence scores in order to use the logit loss. This method achieves 95.2% attack
success rate against the NSFW model on our sample set of 21 images. An example
of an attack against the Content Moderation model is given in Figure 3 where the
original image (left) depicts a white drug and a syringe. The Content Moderation
model classifies it as ‘drug’ with confidence 1.0. The adversarial image (right)
was generated with 197 queries, with an L∞ constraint of ǫ = 16. While this
image can clearly be classified by a human as containing drugs, the target model
classifies it as ‘safe’ with confidence 0.67. More successful attack images and the
methodology followed to choose them are included in the supplementary material
and at https://sunblaze-ucb.github.io/blackbox-attacks/.

4 Attacking state-of-the-art defenses

In this section, we evaluate black-box attacks on defenses based on adversar-
ial training and its variants. We focus on adversarial training based defenses as
they aim to directly improve the robustness of DNNs, and are among the most
effective defenses demonstrated so far in the literature [1]. These defenses make
DNNs more robust by adding a loss term dependent on adversarial examples
during training to count for adversarial examples. During training, the adver-
sarial examples are computed with respect to the current state of the network
using an appropriate method such as FGSM (standard) [8] and Iterative FGSM

https://sunblaze-ucb.github.io/blackbox-attacks/
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Fig. 3. Sample adversarial images of Gradient Estimation attacks on Clarifai’s Content
Moderation model. Left: original image, classified as ‘drug’ with a confidence of 1.0.
Right: adversarial example with ǫ = 16, classified as ‘safe’ with a confidence of 0.67.

(iterative) [21]. Adversarial examples from other DNNs may also be included in
the training set, leading to ensemble adversarial training [32].
Adversarially trained model setup. We train variants of Model A with the 3
adversarial training strategies described above using adversarial samples based
on an L∞ constraint of 0.3. Model Aadv-0.3 is trained with FGS samples, while
Model Aadv-iter-0.3 is trained with Iterative FGS samples using t = 40 and α =
0.01. For the model with ensemble training, Model Aadv-ens-0.3 is trained with
pre-generated FGS samples for Models A and two other DNN models as well as
FGS samples. The source of the samples is chosen randomly for each minibatch
during training. These models all achieve test accuracies of greater than 99%.
For CIFAR-10, we train variants of Resnet-32 using adversarial samples with an
L∞ constraint of 8. Resnet-32 adv-8 is trained with FGS samples with the same
constraint, and Resnet-32 ens-adv-8 is trained with pre-generated FGS samples
from Resnet-32 and Std.-CNN as well as FGS samples. These have test accuracies
of around 92%. Resnet-32 adv-iter-8 is trained with iterative FGS samples using
t = 10 and α = 1.0 and has only 79.1% test accuracy.

4.1 Experimental results

In this section, we focus on untargeted attacks on adversarially trained models,
so the results in this section can be compared to those for undefended models in
Table 2. Results for targeted attacks can be found in the supplementary material.
In all cases, we find that Single-step Gradient Estimation attacks match the
success rate of their white-box counterparts even with query reduction. Further
discussion of these is contained in the supplementary material.
Adversarially trained models are not robust to Gradient Estimation

attacks. Our experiments show that Iterative black-box attacks continue to
work well even against adversarially trained networks (Table 3). For example,
the Iterative Gradient Estimation attack using Finite Differences with a logit
loss (IFD-logit) achieves attack success rates of 76.5% and 96.4% against Models

Aadv-0.3 and Aadv-ens-0.3 respectively. This attack works well for CIFAR-10 models
as well, achieving attack success rates of 100% against both Resnet-32 adv-8 and
Resnet-32 adv-ens-8. This reduces slightly to 98% and 91% respectively when query
reduction using random grouping is used. For both datasets, IFD-logit matches
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Table 3. Untargeted black-box attacks for models with adversarial training: at-
tack success rates and average distortion ∆(X,Xadv). Top: MNIST, ǫ = 0.3. Bottom:
CIFAR-10, ǫ = 8.

Dataset White-box Gradient Estimation (FD) Gradient Estimation (Query Reduction)

MNIST Single-step Iterative Single-step [1568] Iterative [62720] Single-step [∼ 200] Iterative [8000]
Models FGS (logit) IFGS (logit) FD-logit IFD-logit PCA-100 RG-8 PCA-100 RG-8

Aadv-0.3 2.9 (6.0) 78.5 (3.1) 2.8 (5.9) 76.5 (3.1) 4.1 (5.8) 2.0 (5.3) 50.7 (4.2) 27.5 (2.4)
Aadv-ens-0.3 6.2 (6.2) 96.2 (2.7) 6.2 (6.3) 96.4 (2.7) 5.4 (6.2) 3.7 (6.4) 51.0 (3.9) 32.0 (2.1)
Aadv-iter-0.3 7.3 (7.5) 11.0 (3.6) 7.5 (7.2) 11.6 (3.5) 3.5 (4.0) 1.6 (4.2) 9.0 (2.8) 3.0 (1.4)

CIFAR-10 Single-step Iterative Single-step [6144] Iterative [61440] Single-step [∼ 800] Iterative [∼ 8000]
Models FGS (logit) IFGS (logit) FD-logit IFD-logit PCA-400 RG-8 PCA-400 RG-8

Resnet-32 adv-8 8.9 (438.8) 100.0 (73.7) 8.5 (401.9) 100.0 (73.8) 8.0 (402.1) 7.7 (401.8) 97.0 (151.3) 98.0 (92.9)
Resnet-32 adv-ens-8 13.3 (437.9) 100.0 (85.3) 12.2 (399.8) 100.0 (85.2) 15.4 (396.1) 13.8 (395.9) 82.7 (178.7) 90.8 (106.6)
Resnet-32 adv-iter-8 50.4 (346.6) 57.3 (252.4) 47.5 (331.1) 54.6 (196.3) 47.5 (344.1) 38.4 (341.4) 51.3 (256.6) 42.4 (153.3)

white-box attack performance. For MNIST, using PCA for query reduction, a
51% attack success rate is achieved for both Models Aadv-0.3 and Aadv-ens-0.3.

Model Aadv-iter-0.3 is robust even against iterative attacks, with the highest
black-box attack success rate achieved being 11.6%—marginally higher than the
white-box attack success rate. On CIFAR-10, the iteratively trained model has
poor performance on both benign and adversarial examples. The IFD-logit attack
achieves an untargeted attack success rate of 55% on this model, which is lower
than on the other adversarially trained models, but still significant. This is in
line with Madry et al.’s observation [21] that iterative adversarial training needs
models with large capacity for it to be effective. This highlights a limitation of
this defense, since it is not clear what model capacity is needed, and the models
we use already have a large number of parameters.

5 Possible Countermeasures and Conclusion

The Gradient Estimation attacks depend on model output probabilities to gen-
erate adversarial examples, so possible countermeasures can modify these to re-
duce their effectiveness. These modifications would, however, impact legitimate
users as well. To validate this idea, we experimented with undefended models
and rounded off the output probabilities to two decimal places. This successfully
reduced the effectiveness of all Gradient Estimation attacks using the same pa-
rameters, with even the iterative variants achieving only as high as 28.0% attack
success rates. We plan to explore query-efficient attacks that work in spite of
these countermeasures in future work.

Overall, in this paper, we conduct a systematic analysis of black-box attacks
on state-of-the-art classifiers and defenses. We propose Gradient Estimation at-
tacks which achieve high attack success rates comparable with even white-box
attacks. We apply random grouping and PCA-based methods to reduce the
number of queries required while maintaning the effectiveness of the Gradient
Estimation attack. We also apply our attacks against a real-world classifier and
state-of-the-art defenses. All of our results show that Gradient Estimation at-
tacks are very effective in a variety of settings, making the development of better
defenses against black-box attacks an urgent task.
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