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Abstract. Camera equipped drones are nowadays being used to explore large

scenes and reconstruct detailed 3D maps. When free space in the scene is ap-

proximately known, an offline planner can generate optimal plans to efficiently

explore the scene. However, for exploring unknown scenes, the planner must pre-

dict and maximize usefulness of where to go on the fly. Traditionally, this has

been achieved using handcrafted utility functions. We propose to learn a better

utility function that predicts the usefulness of future viewpoints. Our learned util-

ity function is based on a 3D convolutional neural network. This network takes as

input a novel volumetric scene representation that implicitly captures previously

visited viewpoints and generalizes to new scenes. We evaluate our method on sev-

eral large 3D models of urban scenes using simulated depth cameras. We show

that our method outperforms existing utility measures in terms of reconstruction

performance and is robust to sensor noise.
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1 Introduction

Quadrotors, drones, and other robotic cameras are becoming increasingly powerful, in-

expensive and are being used for a range of tasks in computer vision and robotics appli-

cations such as autonomous navigation, mapping, 3D reconstruction, reconnaissance,

and grasping and manipulation. For these applications, modeling the surrounding space

and determining which areas are occupied is of key importance.

Recently, several approaches for robotic scanning of indoor [37] and outdoor [31,20]

scenes have been proposed. Such approaches need to reason about whether voxels

are free, occupied, or unknown space to ensure safety of the robot and to achieve

good coverage w.r.t. their objective function (e.g. coverage of the 3D surfaces [31]).

Model-based approaches require approximate information about free space and oc-

cupied space, which is typically acquired or input manually. This prevents such ap-

proaches from being fully autonomous or deployed in entirely unknown scenes [35].

Model-free approaches can be applied in unknown environments [19,27,24,8]. Irrespec-

tive of the type of approach used, all algorithms require a utility function that predicts

how useful a new measurement (i.e. depth image) would be. Based on this utility func-

tion a planner reasons about the sequence of viewpoints to include in the motion plan.
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This utility function is often a hand-crafted heuristic and hence it is difficult to incor-

porate prior information about the expected distributions of 3D geometry in certain

scenes.

We propose to devise a better utility function using a data-driven approach. The

desired target values for our utility function stem from an oracle with access to ground

truth data. Our learned utility function implicitly captures knowledge about building

and geometry distributions from approporiate training data and is capable of predicting

the utility of new viewpoints given only the current occupancy map. To this end we train

a 3D ConvNet on a novel multi-scale voxel representation of an underlying occupancy

map, which encodes the current model of the environment. We then demonstrate that

the learned utility function can be utilized to efficiently explore unknown environments.

The input to our network relies only on occupancy and hence abstracts away the

capture method (i.e. stereo, IR depth camera, etc.). While our training data consists

of perfect simulated depth images we demonstrate in our experiments that our learned

model can be used with imperfect sensor data at test time, such as simulated noisy depth

cameras or stereo data. The approach is not limited to environments with a fixed extent

and generalizes to new scenes that are substantially different from ones in the training

data. Our approach outperforms existing methods, that use heuristic-based utility func-

tions [35,24,8] and is more than 10× faster to compute than the methods from [24,8].

2 Related work

Exploration and mapping are well studied problems. We first discuss theoretical results

and then describe approaches in the active vision domain and finally work in 3D vision.

Submodular sensor placement: In the case of a priori known environments and a given

set of measurement locations, much work is dedicated to submodular objective func-

tions for coverage [11,29]. Submodularity is a mathematical property enabling approxi-

mation guarantees on the solution using greedy methods. While work exists on dynamic

environments where the utility of future measurements can change upon performing a

measurement [16,22], these methods are usually difficult to scale to large state and ob-

servation spaces, which we considered in this paper as they are common in computer

vision applications.

Next-best-view and exploration: In the next-best-view setting, the set of measure-

ment locations is often fixed a priori as in the submodular coverage work described

above. The work in this area is usually concerned with defining good heuristic util-

ity functions and approximating the coverage task to make it computationally feasi-

ble [3,27,36,12,10]. A number of heuristics is explicitly compared in [24,8], and a sub-

set of these is computed and used as a feature vector by Choudhury et al. [4] to imitate

an approximately optimal strategy with ground-truth access.

Based on an a priori fixed set of camera poses and a binary input mask of already

visited poses Devrim et al. [9] use reinforcement learning to regress a scalar parameter

used in the selection algorithm for the next view. In contrast to our work the approach is

concerned with a priori known, fixed environments and camera poses making it suitable

for inspection planning.
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In active vision, a large body of work is concerned with exploration through only

partially known scenes. Frontier-based algorithms [38] are used for autonomous map-

ping and exploration of the environment using stereo [13], RGB-D, or monocular cam-

eras [32]. Heng et al. [19] propose a method which alternates between exploration and

optimizing coverage for 3D reconstruction.

All of the approaches discussed above either define or are based on heuristics to

decide on the utility of the next measurement or require prior knowledge of environ-

ment and possible camera poses. Instead of hand-crafting a utility function our work

is concerned with learning such a function that can outperform existing hand-crafted

functions and is computationally cheaper to evaluate. Additionally, our approach does

not need a priori knowledge of the map.

3D convolutional neural networks: A large body of work in computer vision is con-

cerned with processing of 3D input and output data using convolutional neural net-

works. In some cases this data stems from RGB-D images such as in Song et al. [33]

where the goal is to detect objects. In other contexts, volumetric input in the form of

binary occupancy labels or signed distance functions are used for diverse tasks such as

shape classification and semantic voxel labeling [6,30], surface completion [7], hand

pose estimation [14], or feature learning [40]. These works are concerned with passive

tasks on uniform input grids of fixed dimensions, containing the object or surface of

interest. This prevents reasoning across large distances or requires one to reduce the

level of detail of the input.

Different representations of occupancy grids have been proposed to mitigate the

trade-off of large uniform input dimensions and level of detail [30]. However, in the

context of our work the occupancy map is often not very sparse as it is generated by

casting rays into a tri-state map and updating continuous values which results in very

few homogeneous regions which would benefit from the formulation by Riegler et al.

[30]. Also related to our work are approaches to multi-view reconstruction [5] where

the output is predicted based on a sequence of input images. In contrast to our work Liu

et al. [28] reconstruct small objects in a fixed size volume whereas we are concerned

with large city scenes containing several buildings.

3 Problem Setting and Overview

Our work is concerned with the automatic exploration of an a priori unknown 3D world

with the ultimate goal of reconstructing the surfaces of the scene in an efficient man-

ner. In this setting, illustrated in Fig. 1, an algorithm has to make decisions about the

next viewpoint based only on the current map information. In Fig. 1 the camera is sur-

rounded by some space, already known to be free (white) and part of the surface has

been observed (blue). The next viewpoint is restricted to the known free space, whereas

moving into unknown space (light green) could lead to collisions. The main difficulty

stems from the fact that the algorithm needs to predict how much unknown surface

can be discovered from a new viewpoint. Much work has been dedicated to developing

and studying various heuristics to compute a score that quantifies the expected value of

possible viewpoints [24,8].
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Fig. 1: The exploration task (here depicted in 2D for clarity) is to discover occupied

surface voxels (shown here in blue). Voxels are initially unknown (shown here in light

green) and get discovered by taking a measurement, e.g., shooting rays from the cam-

era into the scene. Voxels that are not surface voxels will be discovered as free voxels

(shown here in white). Each possible viewpoint has a corresponding utility value de-

pending on how much it contributes to our knowledge of the surface (shown here in

dark green). To decide which viewpoint we should go to next, an ideal utility score

function would tell us the expected utility of viewpoints before performing them. This

function can then be used in a planing algorithm to visit a sequence of viewpoints with

the highest expected utility.

We propose a data-driven approach where we use supervised learning to find a util-

ity function that imitates an oracle. The oracle has access to the ground truth map and

can compute the true utility score. For this task we introduce a map representation

consisting of multi-scale sub-volumes extracted around the camera’s position. For all

possible viewpoints this data is fed into a 3D ConvNet at training time together with the

oracle’s score as a target value. Intuitively, the model learns to predict the likelihood of

seeing additional surface voxels for any given pose, given the current occupancy map.

However, we do not explicitly model this likelihood but instead provide only the ora-

cle’s score to the learner. We experimentally show that our formulation generalizes well

to new scenes with different object shape and distribution and can handle input resulting

from noisy sensor measurements.

We follow related work [24,8,9] and evaluate our method on simulated but high-

fidelity environments. This allows for evaluation of the utility function and reduces the

influence of environmental factors and specific robotic platforms. Our environments

contain realistic models of urban areas in terms of size and distribution of buildings.

Furthermore it is important to note that our technique only takes occupancy information

as input and does not directly interface with raw sensor data. In addition we test our

approach on real data from outdoor and indoor scenes to demonstrate that our method

is not limited to synthetic environments.

4 Predicting View Utility

We first formally define our task and the desired utility function and then introduce our

method for learning and evaluating this function.
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4.1 World model

We model the world as a uniform voxel grid V with resolution r. A map M is a tuple

M = (Mo,Mu) of functions Mo : V → [0, 1], Mu : V → [0, 1] that map each voxel

v ∈ V to an occupancy value Mo(v) describing the fraction of the voxel’s volume that

is occupied and an associated uncertainty value Mu(v), i.e. 1 for total uncertainty and

0 for no uncertainty. Maps change over time so we denote the map at time t as Mt.

After moving to a viewpoint p the camera acquires a new measurement in the form

of a depth image and the map M is updated. We denote the updated map as M |p. The

uncertainty is updated according to

Mu|p(v) = exp(−η)Mu(v) , (1)

where η ∈ R>0 describes the amount of information added by a single measurement.

This is a simple but effective measure providing a diminishing information gain of

repeated measurements. Note that Mu|p(v) ≤ Mu(v) so uncertainty decreases with

additional measurements. As is typical in occupancy mapping [34,23] we update the

voxel occupancies Mo(v) according to a beam-based inverse sensor model. Please see

Sec. 4.4 for details on initialization of the map.

4.2 Oracle utility function

To select viewpoints, we need a utility function that assigns scores to all possible view-

points at any time. We first introduce an oracle utility function with access to the ground

truth (set of true surface voxels) during evaluation. It returns the desired true utility mea-

sure. We will then learn to imitate the oracle without access to ground truth.

We characterize a good viewpoint as one that discovers a large amount of surface

voxels. Let ObsSurf(M) be the total number of observed surface voxels in map M
weighted by their associated certainty value:

ObsSurf(M) =
∑

v∈Surf

(1−Mu(v)) , (2)

where Surf ⊆ V is the set of ground truth surface voxels, i.e. all voxels that intersect the

surface. Note that ObsSurf(M) increases monotonically with additional measurements

because the certainty of voxels can only increase according to Eq. (1).

The decrease in uncertainty of surface voxels with a new measurement defines the

oracle’s utility score. We express this score as a function of the current map M and the

camera pose p:

s(M,p) = ObsSurf(M |p)− ObsSurf(M)

=
∑

v∈Surf

(−Mu|p(v) +Mu(v)) =
∑

v∈Surf

(1− exp(−η))Mu(v) ≥ 0 . (3)

4.3 Learning the utility function

Computing the utility score introduced in Eq. 3 for any viewpoint requires access to the

ground truth map. Our goal is to predict s(M,p) without access to this data so we can

formulate a regression problem that computes score values given occupancy maps as

input.
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Multi-scale map representation We propose to make predictions directly based on

the occupancy map, rather than based on a temporal sequence of raw inputs. This oc-

cupancy map encodes our knowledge of already observed surfaces and free space and

ultimately can be used to build up a map for both navigation and 3D reconstruction.

For use in a 3D ConvNet the map has to be represented with fixed dimensionalities.

Here a trade-off between memory consumption, computational cost, reach and reso-

lution arises. For example, extracting a small high resolution grid around the camera

would constrain information to a small spatial extent whereas a grid with large spatial

extent would either lead to rapid increase in memory consumption and computational

cost or would lead to drastic reduction in resolution.

Fig. 2: Local multi-scale representation of an occupancy map. For clarity of presentation

we shows the 2D case for a grid of size 2× 2. The occupancy map is sampled with 3D

grids at multiple scales centered around the camera position. Sample points on different

scales are shown in orange and their extent in gray.

To mitigate this issue we introduce a multi-scale representation by sampling the

occupancy map at multiple scales as depicted in Fig. 2. For each scale l ∈ {1, . . . , L}
we extract values on a 3D grid of size Dx ×Dy ×Dz and resolution 2lr (orange points

in Fig. 2). On scale l the map values are given by averaging the 2l closest voxels (gray

rectangles in Fig. 2). This can be done efficiently by representing the map as an octree.

The 3D grids are translated and rotated according to the measurement pose p and we

use tri-linear interpolation of the map values to compute the values on the grid. This

representation allows us to capture both coarse parts of the map that are far away from

the camera but still keep finer detail in its direct surroundings. Furthermore, it provides

an efficient data representation of fixed size, suitable for training of a 3D ConvNet. We

denote the multi-scale representation by x(M,p) ∈ R
Dx×Dy×Dz×2L. Note that the

factor 2 stems from extracting the occupancy and the uncertainty value on each scale.

ConvNet Architecture We now describe our proposed model architecture used to learn

the desired utility function f : R
Dx×Dy×Dz×2L → R. The general architecture is

shown in Fig. 3 and consists of a number Nc of convolutional blocks followed by two
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fully connected layers with ReLu activations. Each convolutional block contains a series

of Nu units where a unit is made up of a 3D convolution, followed by Batch-Norm,

followed by ReLu activation. Each 3D convolution increases the number of feature

maps by Nf . After each block the spatial dimensions are downscaled by a factor of

2 using 3D max-pooling. The first fully connected layer has Nh1 hidden units and the

second one has Nh2 hidden units. Note that we do not separate the input data at different

scales so that the network can learn to combine data on different scales. More details

on the exact architecture are provided in Sec. 5.1 and an evaluation of different variants

is provided in Supplementary Material.

4x4x2x64
8x8x4x32

16x16x8x6

2048 128 32

Fig. 3: Our architecture for an input size of 16 × 16 × 8 with L = 3 scales resulting

in 2L = 6 channels. The model consists of blocks (made up of multiple units each

performing 3D convolution, batch-norm and ReLu) followed by downscaling using 3D

max-pooling. This pattern is performed until we arrive at a data volume with spatial di-

mension 4×4×2. This is reshaped into a single vector followed by two fully connected

layers with ReLu activation and a final linear layer predicting a scalar score value.

We use a weight-regularized L2 loss

L(X,Y ; θ) =
N∑

i=1

‖f(Xi)− Yi‖
2
2 + λ ‖θ‖

2
2 , (4)

where θ are the model parameters, λ is the regularization factor and (Xi, Yi) for i ∈
{1, . . . , N} are the samples of input and target from our dataset.

4.4 3D Scene Exploration

To evaluate the effectiveness of our utility function, we implement a next-best-view

(NBV) planning approach, to sequentially explore a 3D scene. Here we provide details

of our world model and our methods for execution of episodes for the data generation

phase and at test time.

We assume exploration of the world occurs in episodes. To initialize a new episode,

the camera pose at time t0 is chosen randomly in free space such that no collision

occurs and the camera can move to each neighboring viewpoint without collision. A

collision occurs if a bounding box of size (1m, 1m, 1m) centered at the camera pose

intersects with any occupied or unknown voxel. Initially, all voxels v ∈ V are initialized

to be unknown, i.e. Mu
t0
(v) = 1,Mo

t0
(v) = vo,prior ∀v ∈ V , where vo,prior is a prior

assumption on the occupancy and we use vo,prior = 0.5 throughout this work. To enable
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initial movement of the camera we clear (i.e. set to free space) a bounding box of (6m)3

around the initial camera position.

At each time step t, we evaluate each potential viewpoint with our utility function,

and move to the viewpoint p∗(t) that gives the best expected reward according to:

p
∗(t) = argmax

p∈P (t)u(Mt,p) , (5)

where P (t) is the set of potential viewpoints and u(·) is the utility function in use.

At the start of each episode the set of potential viewpoints only contains the initial

viewpoint. At each time step the set P (t) is extended by those neighbors of the current

viewpoint that do not lead to a collision. We ignore potential viewpoints if they have

already been observed twice. Each viewpoint has 9 neighbors, 6 of them being positive

and negative translations of 2.5m along each axis of the camera frame, 2 rotations of

25◦, clock-wise and counter-clockwise along the yaw axis, and a full turnaround of

180◦ along the yaw axis. We keep pitch and roll angles fixed throughout.

After moving to a new viewpoint, the camera takes a measurement in the form of

a depth image and the map is updated (see Supplementary Material for details on the

camera parameters and the map update). Note that we use ground truth depth when

generating training data but later demonstrate that we can use noisy depth images and

even stereo depth at test time.

Note that we assume that the utility function is submodular. While this is true for

the oracle utility it is not necessarily the case for other utility functions (i.e. our learned

model). Nevertheless, this assumption allows us to perform lazy evaluations of the util-

ity function [26] (see Supplementary Material for details).

4.5 Dataset

To learn the utility function f(x), approximating the oracle (see Eq. 3) we require

labeled training data. Our data should capture large urban environments with a vari-

ety of structures typical for human-made environments. To this end we chose models

from the 3D Street View dataset [39]. These models feature realistic building distribu-

tions and geometries from different cities. Additionally, we chose a large scene from

a photo-realistic game engine (https://www.unrealengine.com) containing

small buildings in a suburban environment, including trees, smaller vegetation and

power lines. All environments are shown in Fig. 4. Note that we only use data from

Washington2 to train our model. While Washington1 and Paris are similar in terms of

building height the building distribution and geometry is clearly different. A particular

challenge is posed by the SanFrancisco scene which includes tall buildings never seen

before in Washington2. Similarly, the buildings and vegetation in the Neighborhood

scene are unlike anything seen in the training data.

We generate samples by running episodes with r = 0.4m until time te = 200 and

selecting the best viewpoint p according to the oracle’s score at each time step. For

each step t we store tuples of input x(M,p) and target value from the oracle s(M,p)
for each neighboring viewpoint.

Note that we record samples for each possible neighbor of the current viewpoint

(instead of only the best selected viewpoint). This is necessary as our predictor will

https://www.unrealengine.com
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Fig. 4: Normal rendering of environments. From left to right: Washington2, Washing-

ton1, Paris, SanFrancisco, Neighborhood.

have to provide approximate scores for arbitrary viewpoints at test time. We record a

total of approximately 1, 000, 000 samples and perform a 80/20 split into training and

validation set. To encourage future comparison we will release our code for generating

the data and evaluation.

5 Experiments

We describe our ConvNet architecture and then show different evaluations of our method.

5.1 ConvNet architectures and training

We evaluated different ConvNet variants by varying Nc, Nu and Nf . We also tried

modifications such as using residual units [17,18]. We report these results in the sup-

plementary material. Here we report results on the best performing model with input

size 16 × 16 × 8 (Nc = 2, Nu = 4, Nf = 8, L = 3, Nh1 = 128, Nh2 = 32),

denoted as Ours in the rest of the section. Training of the model is done with ADAM

using a mini-batch size of 128, regularization λ = 10−4, α = 10−4 and the values

suggested by Kingma et al. [25] for the other parameters. Dropout with a rate of 0.5
is used after fully-connected layers during training. Network parameters are initialized

according to Glorot et al. [15] (corrected for ReLu activations). We use early stopping

when over-fitting on test data is observed.

5.2 Evaluation

Our evaluation consists of three parts. First we evaluate our model on datasets gener-

ated as described in Sec. 4.5 and report spearman’s rho to show the rank correlation

of predicted scores and ground truth scores. Following this, we compare our models

with previously proposed utility functions from [35,24,8]. We use the open-source im-

plementation provided by [24,8] and report results on their best performing methods

on our scenes, ProximityCount and AverageEntropy. We also compare with a frontier-

based function measuring the number of unobserved voxels visible from a viewpoint as

in [19,2]. For this comparison we use simulated noise-free depth images for all meth-

ods. Finally, we evaluate our models with depth images perturbed by noise and depth

images produced by stereo matching in a photo-realistic rendering engine.

To demonstrate the generalization capability of our models we use four test scenes

(column 2-5 in Fig. 4) that show different building distribution and geometry than the

scene used to collect training data. We also perform the experiments on the training

scenes where the exploration remains difficult due to random start poses and possible

ambiguity in the incomplete occupancy maps.
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To compute score and efficiency values, we run 50 episodes with r = 0.4m until

te = 200 for each method and compute the sample mean and standard deviation at

each time step. To enable a fair comparison, we select a random start position for each

episode in advance and use the same start positions for each method.

In order to report a single metric of performance for comparison we compute the

area under the curve of observed surface versus time (see plots in Fig. 5):

eff =

te∑

t=0

ObsSurf(Mt) . (6)

We call this metric Efficiency as it gives a higher score to a method that discovers surface

early on.

5.3 Model performance on different datasets

Here we evaluate the performance of our model on data collected from different scenes

as described in Sec. 4.5. The model was trained on the training set of Washington2 and

we report Spearman’s rho as well as the loss value from Eq. (4) in Tab. 1.

Evaluation on different datasets

Washington2

train

Washington2

test
Washington1 Paris SanFrancisco Neighborhood

Spearman’s rho 0.88 0.87 0.83 0.69 0.73 0.48

Loss value 0.25 0.28 0.43 0.63 0.60 0.93

Table 1: Spearman’s rho and loss values for our model on the different datasets. Despite

the different building distribution and geometry of the test scenes (i.e. all scenes but

Washington2) compared to training data Spearman’s rho value shows a high rank cor-

relation with the oracle score. This is even the case for the Neighborhood scene which

features building shapes and trees unlike any in the training data.

The Spearman’s rho shows a clear rank correlation even for the Neighborhood scene

which features building distribution and geometry significantly different from Wash-

ington2 which was used to generate training data. Interestingly, the model shows a

high rank correlation for the SanFrancisco scene which features tall buildings and thus

requires our model to generalize to different occupancy map distributions at high view-

points.

5.4 Comparison with baselines

In Table 2 we compare the performance of our models against related hand-crafted

utility functions [35,24,8]. Our method consistently outperforms the existing functions

in terms of the efficiency measure, and as shown in Table 3, is faster to compute than

other methods.
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Fig. 5: Results on all test scenes. Top row: Visualization of the underlying mesh model.

Row 2-4: Reconstructed 3D models at different time steps. Shown are only occupied

voxels and the color coding indicates the voxel position along the z-axis. Bottom row:

Plot of observed surface voxels vs. time for all methods, the oracle with access to ground

truth and the baseline methods. Our method performs the best and approaches the ora-

cle’s performance. Best viewed in color and zoomed in. Larger versions in Supplemen-

tary Material.

We also show plots of observed surface voxels vs. time for our model, the oracle

with access to ground truth and baseline methods in Fig. 5. Note that the scenes shown

have not been used to generate any training data. The results show that our method

performs better compared to the baseline methods at all time steps. Additionally the

behavior of our method is consistent over all scenes while the performance of the base-

lines varies from scene to scene. The progression of reconstructed 3D models is shown

by the renderings of the occupancy map at different times.

5.5 Noisy input sensor

While all our training is done on simulated data using ground truth depth images our

intermediate state representation as an occupancy map makes our models robust to the

noise characteristics of the input sensor. Here we evaluate the performance of our mod-

els at test time with depth images perturbed by noise of different magnitude. Addition-
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Evaluation on different scenes

Washington2 Washington1 Paris SanFrancisco Neighborhood

Frontier 0.40 0.29 0.57 0.09 0.27

AverageEntropy [24] 0.26 0.36 0.32 0.30 0.50

ProximityCount [24] 0.52 0.47 0.37 0.23 0.60

Ours 0.91 0.88 0.87 0.77 0.74

Oracle (GT access) 1.00 1.00 1.00 1.00 1.00

Table 2: Comparison of Efficiency metric. Our method achieves a higher value than the

other utility functions on all scenes showing that our learned models can generalize to

other scenes. Note that the model is trained only on data recorded from Washington2.

Efficiency values are normalized with respect to the oracle for easier comparison.

Computation time per step

Frontier ProximityCount AverageEntropy Ours

Time in s 0.61 5.89 8.35 0.57

Table 3: Comparison of computation time per step. Our method is as fast as a sim-

ple raycast in the Frontier method and more than 10× faster than ProximityCount and

AverageEntropy.

ally we test our models with depth images computed from a virtual stereo camera. To

this end we utilize a photorealistic game engine to synthesize RGB stereo pairs and

compute depth maps with semi-global matching.

Episodes were run with noisy depth images and the viewpoint sequence was recorded.

We replayed the same viewpoint sequences and used ground truth depth images to build

up an occupancy map and measure the efficiency. Resulting Efficiency values are listed

in Table 4. One can see that our method is robust to different noise levels. More im-

portantly, even with depth images from the virtual stereo camera, resulting in realistic

perturbations of the depth images (see Supplementary Material), our method does not

degrade.

Evaluation using noisy depth images (normalized)

Noise none low medium high very high stereo

eff 1.00 0.99 1.01 0.99 1.02 0.99

Table 4: Comparison of our method using noisy depth images. Efficiency values are

normalized to the noise-free case. For the noise cases 40% of pixels in each depth image

were dropped and each remaining pixel was perturbed by normal noise (σ = 0.1m for

low, σ = 0.2m for medium, σ = 0.5m for high, σ = 1.0m for very high). In the case

of stereo matching we used a photo realistic rendering engine to generate stereo images

with a baseline of 0.5m. A disparity and depth image was computed using semi global

matching [21]. Note that all values have a standard deviation of ≅ 0.03.
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5.6 Additional results on real data

To show that our method is general and also works with real scenes we conducted

additional experiments on high-fidelity 3D reconstructions of buildings and on the 2D-

3D-S indoor dataset [1] that was acquired with a Matterport3 camera. Result are shown

in Tab. 5, Fig. 6 and Fig. 7. For the outdoor case we trained our model on the church

(Fig. 6a) and evaluated on the historic building (Fig. 6.c). Despite the differences of

both buildings in terms of geometry and scale (the historic building is about 2x smaller

in each dimension) our model is able to generalize. For the indoor case we trained on

Area1 and evaluated on Area5b of the 2D-3D-S indoor dataset [1]. Both experiments

demonstrate that our method also works with real detailed scenes.

Fig. 6: Shown are example explorations on real outdoor data – (a) Picture of church

scene. (b) Occupancy map of the church scene (training data) (200 steps). (c) Picture

of historic building scene. (d) Occupancy map of the historic building scene (evalua-

tion) (100 steps). (e) Performance plot for the historic building scene. Color coding of

observed voxels: High uncertainty (red) and low uncertainty (cyan).

6 Discussion and Conclusions

We presented an approach for efficient exploration of unknown 3D environments by

predicting the utility of new views using a 3D ConvNet. We input a novel multi-scale

voxel representation of an underlying occupancy map, which represents the current

model of the environment. Pairs of input and target utility score are obtained from an

oracle that has access to ground truth information. Importantly, our model is able to

generalize to scenes other than the training data and the underlying occupancy map

enables robustness to noisy sensor input such as depth images from a stereo camera.

Experiments indicate that our approach improves upon previous methods in terms of

reconstruction efficiency.

3 https://matterport.com/

https://matterport.com/
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Fig. 7: Shown are example explorations on real indoor data – (a) Occupancy map of

S3Dis Area5b (400 steps). (b) Performance plot for S3Dis Area5b (training on Area1).

Color coding of observed voxels: High uncertainty (red) and low uncertainty (cyan).

Evaluation on additional real data

Frontier ProximityCount [24] Ours Oracle (GT access)

Outdoor 0.46 0.58 0.90 1.00

Indoor 0.44 0.52 0.78 1.00

Table 5: Comparison of Efficiency metric on the additional real data. Our method

achieves a higher value than the other utility functions on both ourdoor and indoor

scenes. Note that in both cases the model was trained on data recorded from a single

scene that was different from the evaluation scene. Efficiency values are normalized

with respect to the oracle for easier comparison.

Limitations of our method include dependence on the surface voxel distribution in

the training data. In future work, it would be interesting to see how the method performs

on vastly different geometries such as rock formations and other natural landscapes.

Similarly, our model is bound to the map resolution and mapping parameters used in

the training data.

Another limitation is the underlying assumption on a static scene. A dynamic object

such as a human walking in front of the camera would lead to occupied voxels that do

not correspond to a static object. While these voxels can change their state from occu-

pied to free after additional observations if the human walked away the intermediate

occupancy map can lead to utility predictions that are not desired. A possible solution

to address this problem is to identify and segment dynamic objects in the depth maps

before integrating them into the occupancy map.

Our work suggests several directions for future work. We used our learned utility

function to implement a greedy next-best-view algorithm; however, our utility function

could be used to develop more sophisticated policies that look multiple steps ahead.

In addition, our approach could be extended to be used in a generative way to predict

future states of the 3D occupancy map or to predict 2D depth maps for unobserved

views. This could be used for model completion or hole-filling which has numerous

applications in computer vision and robotics.
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