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Abstract. RNNs and their variants have been widely adopted for im-
age captioning. In RNNs, the production of a caption is driven by a
sequence of latent states. Existing captioning models usually represent
latent states as vectors, taking this practice for granted. We rethink
this choice and study an alternative formulation, namely using two-
dimensional maps to encode latent states. This is motivated by the cu-
riosity about a question: how the spatial structures in the latent states af-
fect the resultant captions? Our study on MSCOCO and Flickr30k leads
to two significant observations. First, the formulation with 2D states is
generally more effective in captioning, consistently achieving higher per-
formance with comparable parameter sizes. Second, 2D states preserve
spatial locality. Taking advantage of this, we visually reveal the internal
dynamics in the process of caption generation, as well as the connections
between input visual domain and output linguistic domain.

1 Introduction

Image captioning, a task of generating short descriptions for given images,
has received increasing attention in recent years. Latest works on this task [1–4]
mostly adopt the encoder-decoder paradigm, where a recurrent neural network
(RNN) or one of its variants, e.g. GRU [5] and LSTM [6], is used for generating
the captions. Specifically, the RNN maintains a series of latent states. At each
step, it takes the visual features together with the preceding word as input,
updates the latent state, then estimates the conditional probability of the next
word. Here, the latent states serve as pivots that connect between the visual and
the linguistic domains.

Following the standard practice in language models [5, 7], existing caption-
ing models usually formulate the latent states as vectors and the connections
between them as fully-connected transforms. Whereas this is a natural choice
for purely linguistic tasks, it becomes a question when the visual domain comes
into play, e.g. in the task of image captioning.

Along with the rise of deep learning, convolutional neural networks (CNN)
have become the dominant models for many computer vision tasks [8, 9]. Con-
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volution has a distinctive property, namely spatial locality, i.e. each output ele-
ment corresponds to a local region in the input. This property allows the spatial
structures to be maintained by the feature maps across layers. The significance
of spatial locality for vision tasks have been repeatedly demonstrated in previous
work [8, 10–13].

Image captioning is a task that needs to bridge both the linguistic and the
visual domains. Thus for this task, it is important to capture and preserve prop-
erties of the visual content in the latent states. This motivates us to explore
an alternative formulation for image captioning, namely representing the latent
states with 2D maps and connecting them via convolutions. As opposed to the
standard formulation, this variant is capable of preserving spatial locality, and
therefore it may strengthen the role of visual structures in the process of caption
generation.

We compared both formulations, namely the standard one with vector states
and the alternative one that uses 2D states, which we refer to as RNN-2DS.
Our study shows: (1) The spatial structures significantly impact the captioning
process. Editing the latent states, e.g. suppressing certain regions in the states,
can lead to substantially different captions. (2) Preserving the spatial struc-
tures in the latent states is beneficial for captioning. On two public datasets,
MSCOCO [14] and Flickr30k [15], RNN-2DS achieves notable performance gain
consistently across different settings. In particular, a simple RNN-2DS without
gating functions already outperforms more sophisticated networks with vector
states, e.g. LSTM. Using 2D states in combination with more advanced cells,
e.g. GRU, can further boost the performance. (3) Using 2D states makes the
captioning process amenable to visual interpretation. Specifically, we take ad-
vantage of the spatial locality and develop a simple yet effective way to identify
the connections between latent states and visual regions. This enables us to vi-
sualize the dynamics of the states as a caption is being generated, as well as the
connections between the visual domain and the linguistic domain.

In summary, our contributions mainly lie in three aspects. First, we rethink
the form of latent states in image captioning models, for which existing work
simply follows the standard practice and adopts the vectorized representations.
To our best knowledge, this is the first study that systematically explores two
dimensional states in the context of image captioning. Second, our study chal-
lenges the prevalent practice, which reveals the significance of spatial locality in
image captioning and suggests that the formulation with 2D states and convo-
lution is more effective. Third, leveraging the spatial locality of the alternative
formulation, we develop a simple method that can visualize the dynamics of the
latent states in the decoding process.

2 Related Work

Image Captioning. Image captioning has been an active research topic in
computer vision. Early techniques mainly rely on detection results. Kulkarni et
al [16] proposed to first detect visual concepts including objects and visual rela-
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tionships [17], and then generate captions by filling sentence templates. Farhadi
et al [18] proposed to generate captions for a given image by retrieving from
training captions based on detected concepts.

In recent years, the methods based on neural networks are gaining ground.
Particularly, the encoder-decoder paradigm [1], which uses a CNN [19] to encode
visual features and then uses an LSTM net [6] to decode them into a caption, was
shown to outperform classical techniques and has been widely adopted. Along
with this direction, many variants have been proposed [2, 20–22], where Xu et
al [2] proposed to use a dynamic attention map to guide the decoding process.
And Yao et al [22] additionally incorporate visual attributes detected from the
images, obtaining further improvement. While achieving significant progress, all
these methods rely on vectors to encode visual features and to represent latent
states.

Multi-dimensional RNN. Existing works that aim at extending RNN to more
dimensions roughly fall into three categories:

(1) RNNs are applied on multi-dimensional grids, e.g. the 2D grid of pixels,
via recurrent connections along different dimensions [23, 24]. Such extensions
have been used in image generation [25] and CAPTCHA recognition [26].

(2) Latent states of RNN cells are stacked across multiple steps to form
feature maps. This formulation is usually used to capture temporal statistics,
e.g. those in language processing [27, 28] and audio processing [29]. For both
categories above, the latent states are still represented by 1D vectors. Hence,
they are essentially different from this work.

(3) Latent states themselves are represented as multi-dimensional arrays. The
RNN-2DS studied in this paper belongs to the third category, where latent states
are represented as 2D feature maps. The idea of extending RNN with 2D states
has been explored in various vision problems, such as rainfall prediction [30],
super-resolution [11], instance segmentation [12], and action recognition [13]. It
is worth noting that all these works focused on tackling visual tasks, where both
the inputs and the outputs are in 2D forms. To our best knowledge, this is the
first work that studies recurrent networks with 2D states in image captioning.
A key contribution of this work is that it reveals the significance of 2D states in
connecting the visual and the linguistic domains.

Interpretation. There are studies to analyze recurrent networks. Karpathy
et al [31] try to interpret the latent states of conventional LSTM models for
natural language understanding. Similar studies have been conducted by Ding
et al [32] for neural machine translation. However, these studies focused on
linguistic analysis, while our study tries to identify the connections between
linguistic and visual domains by leveraging the spatial locality of the 2D states.

Our visualization method on 2D latent states also differs from the attention
module [2] fundamentally, in both theory and implementation. (1) Attention is
a mechanism specifically designed to guide the focus of a model, while the 2D
states are a form of representation. (2) Attention is usually implemented as a
sub-network. In our work, the 2D states by themselves do not introduce any
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attention mechanism. The visualization method is mainly for the purpose of
interpretation, which helps us better understand the internal dynamics of the
decoding process. To our best knowledge, this is accomplished for the first time
for image captioning.

3 Formulations

To begin with, we review the encoder-decoder framework [1] which represents
latent states as 1D vectors. Subsequently, we reformulate the latent states as
multi-channel 2D feature maps for this framework. These formulations are the
basis for our comparative study.

3.1 Encoder-Decoder for Image Captioning

The encoder-decoder framework generates a caption for a given image in
two stages, namely encoding and decoding. Specifically, given an image I, it first
encodes the image into a feature vector v, with a Convolutional Neural Network
(CNN), such as VGGNet [19] or ResNet [8]. The feature vector v is then fed
to a Recurrent Neural Network (RNN) and decoded into a sequence of words
(w1, . . . , wT ). For decoding, the RNN implements a recurrent process driven by
latent states, which generates the caption through multiple steps, each yielding
a word. Specifically, it maintains a set of latent states, represented by a vector
ht that would be updated along the way. The computational procedure can be
expressed by the formulas below:

h0 = 0, ht = g(ht−1,xt, I), (1)

pt|1:t−1 = Softmax(Wpht), (2)

wt ∼ pt|1:t−1. (3)

The procedure can be explained as follows. First, the latent state h0 is initialized
to be zeros. At the t-th step, ht is updated by an RNN cell g, which takes
three inputs: the previous state ht−1, the word produced at the preceding step
(represented by an embedded vector xt), and the visual feature v. Here, the cell
function g can take a simple form:

g(h,x,v) = tanh (Whh+Wxx+Wvv) . (4)

More sophisticated cells, such as GRU [5] and LSTM [6], are also increasingly
adopted in practice. To produce the word wt, the latent state ht will be trans-
formed into a probability vector pt|1:t−1 via a fully-connected linear transform
Wpht followed by a softmax function. Here, pt|1:t−1 can be considered as the
probabilities of wt conditioned on previous states.

Despite the differences in their architectures, all existing RNN-based cap-
tioning models represent latent states as vectors without explicitly preserving
the spatial structures. In what follows, we will discuss the alternative choice that
represents latent states as 2D multi-channel feature maps.
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Fig. 1: The overall structure of the encoder-decoder framework with RNN-2DS. Given
an image I, a CNN first turns it into a multi-channel feature map V that preserves
high-level spatial structures. V will then be fed to an RNN-2DS, where the latent state
Ht is also represented by multi-channel maps and the state transition is via convolution.
At each step, the 2D states are transformed into a 1D vectors and then decoded into
conditional probabilities of words.

3.2 From 1D to 2D

From a technical standpoint, a natural way to maintain spatial structures in
latent states is to formulate them as 2D maps and employ convolutions for state
transitions, which we refer to as RNN-2DS.

Specifically, as shown in Figure 1, the visual feature V, the latent state Ht,
and the word embedding Xt are all represented as 3D tensors of size C×H×W .
Such a tensor can be considered as a multi-channel map, which comprises C

channels, each of size H×W . Unlike the normal setting where the visual feature
is derived from the activation of a fully-connected layer, V here is derived from
the activation of a convolutional layer that preserves spatial structures. And Xt

is the 2D word embedding for wt−1, of size C ×H ×W . To reduce the number
of parameters, we use a lookup table of smaller size Cx ×Hx ×Wx to fetch the
raw word embedding, which will be enlarged to C×H×W by two convolutional
layers 3. With these representations, state updating can then be formulated using
convolutions. For example, Eq.(4) can be converted into the following form:

Ht = relu (Kh ⊛Ht−1 +Kx ⊛Xt +Kv ⊛V) . (5)

Here, ⊛ denotes the convolution operator, and Kh, Kx, and Kv are convolution
kernels of size C × C × Hk × Wk. It is worth stressing that the modification
presented above is very flexible and can easily incorporate more sophisticated
cells. For example, the original updating formulas of GRU are

rt = σ(Wrhht−1 +Wrxxt +Wrvv),

zt = σ(Wzhht−1 +Wzxxt +Wzvv),

h̃t = tanh(rt ◦ (Whhht−1) +Whxxt +Whvv),

ht = zt ◦ ht−1 + (1− zt) ◦ h̃t, (6)

3 In our experiments, the raw word embedding is of size 4 × 15 × 15, and is scaled
up to match the size of latent states via two convolutional layers respectively with
kernel sizes 32× 4× 5× 5 and C × 32× 5× 5.



6 B.Dai, D.Ye, and D.Lin

where σ is the sigmoid function, and ◦ is the element-wise multiplication oper-
ator. In a similar way, we can convert them to the 2D form as

Rt = σ(Krh ⊛Ht−1 +Krx ⊛Xt +Krv ⊛V),

Zt = σ(Kzh ⊛Ht−1 +Kzx ⊛Xt +Kzv ⊛V),

H̃t = relu(Rt ◦ (Khh ⊛Ht−1) +Khx ⊛Xt +Khv ⊛V),

Ht = Zt ◦Ht−1 + (1− Zt) ◦ H̃t. (7)

Given the latent states Ht, the word wt can be generated as follows. First,
we compress Ht (of size C ×H ×W ) into a C-dimensional vector ht by mean
pooling across spatial dimensions. Then, we transform ht into a probability
vector pt|1:t−1 and draw wt therefrom, following Eq.(2) and (3). Note that the
pooling operation could be replaced with more sophisticated modules, such as
an attention module, to summarize the information from all locations for word
prediction. We choose the pooling operation as it adds zero extra parameters,
which makes the comparison between 1D and 2D states fair.

Since this reformulation is generic, besides the encoder-decoder framework,
it can be readily extended to other captioning models that adopt RNNs as the
language module, e.g. Att2in [3] and Review Net [33].

4 Qualitative Studies on 2D States

Thanks to the preserved spatial locality, the use of 2D states makes the
framework amenable to some qualitative analysis. Taking advantage of this, we
present three studies in this section: (1) We manipulate the 2D states and in-
vestigate how it impacts the generated captions. The results of this study would
corroborate the statement that 2D states help to preserve spatial structures.
(2) Leveraging the spatial locality, we identify the associations between the ac-
tivations of latent states and certain subregions of the input image. Based on
the dynamic associations between state activations and the corresponding sub-
regions, we can visually reveal the internal dynamics of the decoding process.
(3) Through latent states we also interpret the connections between the visual
and the linguistic domains.

4.1 State Manipulation

We study how the spatial structures of the 2D latent states influence the
resultant captions by controlling the accessible parts of the latent states.

As discussed in Sec. 3.2, the prediction at t-th step is based on ht, which is
pooled from Ht across H and W . In other words, ht summarizes the information
from the entire area of Ht. In this experiment, we replace the original region
(1, 1, H,W ) with a subregion between the corners (x1, y1) and (x2, y2) to get a
modified summarizing vector h′

t as

h′
t =

1

(y2 − y1 + 1)(x2 − x1 + 1)

y2∑

i=y1

x2∑

j=x1

Ht|(i,j). (8)
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a dog and a dog sitting on a 

table

a bed with a backpack and a 

pair of shoes

a dog laying on a bed with a 

bag on it

a wooden bench sitting on 

top of a lush green field

an old brick niche of a 

brick building

a wooden bench in front 

of a brick building

a man standing in front of 

a lush green field

a zebra is standing in 

front of a building

a man standing next to a 

zebra in a field

a cat that is laying down 

on a couch

a paperback copy novel 

you knows great

a cat laying on top of a book

a stop sign sitting on top 

of a lush green field

a truck driving down a 

highway

a truck driving down a 

road next to a stop sign

a scenic view of a mountain 

range on a mountaintop

a cow standing on a dirt 

road

a cow standing on top of a 

rocky hillside

Fig. 2: This figure lists several images with generated captions relying on various parts
of RNN-2DS’s states. The accessible part is marked with blue color in each case.

Here, h′
t only captures a subregion of the image, on which the probabilities for

the word wt is computed. We expect that this caption only partially reflects the
visual semantics.

Figure 2 shows several images together with the captions generated using
different subregions of the 2D states. Take the bottom-left image in Figure 2 for
an instance, when using only the upper half of the latent states, the decoder
generates a caption focusing on the cat, which indeed appears in the upper half
of the image. Similarly, using only the lower half of the latent states results in
a caption that talks about the book located in the lower half of the image. In
other words, depending on a specific subregion of the latent states, a decoder
with 2D states tends to generate a caption that conveys the visual content of
the corresponding area in the input image. This observation suggests that the
2D latent states do preserve the spatial structures of the input image.

Manipulating latent states differs essentially from the passive data-driven
attention module [2] commonly adopted in captioning models. It is a controllable
operation, and does not require a specific module to achieve such functionality.
With this operation, we can extend a captioning model with 2D states to allow
active management of the focus, which, for example, can be used to generate
multiple complementary sentences for an image. While the attention module can
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Fig. 3: This figure shows our procedure of finding the activated region of a latent channel
at the t-th step.

be considered as an automatic manipulation on latent states, the combination
of 2D states and the attention mechanism worths exploring in the future work.

4.2 Revealing Decoding Dynamics

This study intends to analyze internal dynamics of the decoding process,
i.e. how the latent states evolve in a series of decoding steps. We believe that it
can help us better understand how a caption is generated based on the visual
content. The spatial locality of the 2D states allows us to study this in an efficient
and effective way.

We use activated regions to align the activations of the latent states at differ-
ent decoding steps with the subregions in the input image. Specifically, we treat
the channels of 2D states as the basic units in our study, which are 2D maps of
activation values. Given a state channel c at the t-th decoding step, we resize it
to the size of the input image I via bicubic interpolation. The pixel locations in I

whose corresponding interpolated activations are above a certain threshold 4 are
considered to be activated. The collection of all such pixel locations is referred
to as the activated region for the state channel c at the t-th decoding step, as
shown in Figure 3.

With activated regions computed respectively at different decoding steps for
one state channel, we may visually reveal the internal dynamics of the decoding
process at that channel. Figure 4 shows several images and their generated cap-
tions, along with the activated regions of some channels following the decoding
processes. These channels are selected as they are associated with nouns in the
generated captions, which we will introduce in the next section. Via this study
we found that (1) The activated regions of channels often capture salient visual
entities in the image, and also reflect the surrounding context occasionally. (2)
During a decoding process, different channels have different dynamics. For a
channel associated with a noun, the activated regions of its associated channel
become significant as the decoding process approaches the point where the noun
is produced, and the channel becomes deactivated afterwards.

The revealed dynamics can help us better understand the decoding process,
which also point out some directions for future study. For instance, in Figure
4, the visual semantics are distributed to different channels, and the decoder
moves its focus from one channel to another. The mechanism that triggers such
movements remains needed to be explored.

4 See released code for more details.
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073-Boy       a     young    boy      is   playing  tennis    on a     court

335-Zebra     a      man      is      in       a     field   with      a zebra     

217-TV        a      cat      on      a       tv playing  with      a       tv

066-Cat       a      cat      on      a       tv playing  with      a       tv

450-Bench     a     bench  sitting    in      the   middle    of       a    forest

150-Plane     a     large passenger plane   flying  through    a cloudy    sky    

Fig. 4: This figure shows the changes of several channels, in terms of the activated
regions, during the decoding processes. On the last two cases, changes of two channels
in the same decoding process are shown and compared. (Best viewed in high resolution)

4.3 Connecting Visual and Linguistic Domains

Here we investigate how the visual domain is connected to the linguistic
domain. As the latent states serve as pivots that connect both domains, we try
to use the activations of the latent states to identify the detailed connections.

First, we find the associations between the latent states and the words. Sim-
ilar to Sec. 4.2, we use state channels as the basic units here, so that we can
use the activated regions which connect the latent states to the input image.
In Sec. 4.2, we have observed that a channel associated with a certain word is
likely to remain active until the word is produced, and its activation level will
drop significantly afterwards thus preventing that word from being generated
again. Hence, one way to judge whether a channel is associated with a word is
to estimate the difference in its level of activations before and after the word
is generated. The channel that yields maximum difference can be considered as
the one associated with the word 5.

Words and Associated Channels. For each word in the vocabulary, we
could find its associated channel as described above, and study the corresponding

5 See released code for more details.
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Channel 060 - Bird

Channel 066 - Dog

Channel 272 - Hydrant

Channel 239 - Donut

Channel 150 - Plane

Channel 144 - Giraffe

Channel 073 - Man

Channel 450 - Bench

Channel 335 - Zebra

Channel 321 - Vase

Channel 424 - Sandwich

Channel 436 - Umbrella

Channel 066 - Cat

Channel 354 – Elephant

Channel 066 - Cow

Channel 405 - Woman

Fig. 5: Sample words and their associated channels in RNN-2DS-(512, 7, 7). For each
word, 5 activated regions of its associated channel on images that contain this word in
the generated captions are shown. The activated regions are chosen at the steps where
the words are produced. (Best viewed in high resolution)

activated regions, as shown in Figure 5. We found that (1) Only nouns have
strong associations with the state channels, which is consistent with the fact
that spatial locality is highly-related with the visual entities described as nouns.
(2) Some channels have multiple associated nouns. For example, Channel -066 is
associated with “cat”, “dog”, and “cow”. This is not surprising – since there are
more nouns in the vocabulary than the number of channels, some nouns have
to share channels. Here, it is worth noting that the nouns that share a channel
tend to be visually relevant. This shows that the latent channels can capture
meaningful visual structures. (3) Not all channels have associated words. Some
channels may capture abstract notions instead of visual elements. The study of
such channels is an interesting direction in the future.

Match of Words and Associated Channels. On top of the activated
regions, we could also estimate the match between a word and its associated
channel. Specifically, noticing the activated regions visually look like the atten-
tion maps in [34], we borrow the measurement of attention correctness from [34],
to estimate the match. Attention correctness computes the similarity between a
human-annotated segmentation mask of a word, and the activated region of its
associated channel, at the step the word is produced. The computation is done
by summing up the normalized activations within that mask. On MSCOCO [14],
we evaluated the attention correctness on 80 nouns that have human-annotated
masks. As a result, the averaged attention correctness is 0.316. For reference,
following the same setting except for replacing the activated regions with the
attention maps, AdaptiveAttention [4], a state-of-the-art captioning model, got
a result of 0.213.

Deactivation of Word-Associated Channels. We also verify the match
of the found associations between the state channels and the words alternatively
via an ablation study, where we compare the generated captions with and with-
out the involvement of a certain channel. Specifically, on images that contain
the target word w in the generated captions, we re-run the decoding process,
in which we deactivate the associated channel of w by clipping its value to zero
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Original

Deactivate 

word-associated 

channel

a red and red bird

perched on a branch

a red and green leaf 

filled with lots of fruit

a man standing in front 

of a fence with a bird

a man holding a 

baseball bat over his 

shoulder

a man getting ready 

to board a plane

a man standing next 

to a boarding gate

a vase filled with pink 

and yellow flowers

a bouquet of red 

flowers sitting on a 

table

Fig. 6: This figure lists some images with generated captions before and after some
word-associated channel being deactivated. The word that associates with the deacti-
vated channel is marked in red.

at all steps, then compare the generated captions with previous ones. As shown
in Figure 6, deactivating a word-associated channel leads to the miss of the
corresponding words in the generated captions, even though the input still con-
tains the visual semantics for those words. This ablation study corroborates the
validity of our found associations.

5 Comparison on Captioning Performance

In this section, we compare the encoder-decoder framework with 1D states
and 2D states. Specifically, we run our studies on MSCOCO [14] and Flickr30k [15],
where we at first introduce the settings, followed by the results.

5.1 Settings

MSCOCO [14] contains 122, 585 images. We follow the splits in [35], using
112, 585 images for training, 5, 000 for validation, and the remaining 5, 000 for
testing. Flickr30K [15] contains 31, 783 images in total, and we follow splits in
[35], which has 1, 000 images respectively for validation and testing, and the rest
for training. In both datasets, each image comes with 5 ground-truth captions.
To obtain a vocabulary, we turn words to lowercase and remove those with non-
alphabet characters. Then we replace words that appear less than 6 times with
a special token UNK, resulting in a vocabulary of size 9, 487 for MSCOCO, and
7, 000 for Flickr30k. Following the common convention [35], we truncated all
ground-truth captions to have at most 18 words.

All captioning methods in our experiments are based on the encoder-decoder
paradigm [1]. We use ResNet-152 [8] pretrained on ImageNet [9] as the encoder
in all methods. In particular, we take the output of the layer res5c as the visual
feature V. We use the combination of the cell type and the state shape to refer
to each type of the decoder. e.g. LSTM-1DS-(L) refers to a standard LSTM-
based decoder with latent states of size L, and GRU-2DS-(C,H,W ) refers to an
RNN-2DS decoder with GRU cells as in Eq.(7), whose latent states are of size
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Fig. 7: The results, in terms of different metrics, obtained using RNN-2DS (green)
and LSTM-1DS (red) on the MSCOCO offline test set with similar parameter sizes.
Specifically, RNN-2DS of sizes 10.57M, 13.48M and 21.95M have compared to LSTM-
1DS of sizes 10.65M, 13.52M and 22.14M.

C×H×W . Moreover, all RNN-2DS models adopt a raw word-embedding of size
4× 15× 15, except when a different size is explicitly specified. The convolution
kernels Kh, Kx, and Kv share the same size C × C × 3× 3.

The focus of this paper is the representations of latent states. To ensure fair
comparison, no additional modules including the attention module [2] are added
to the methods. Moreover, no other training strategies are utilized, such as the
scheduled sampling [36], except for the maximum likelihood objective, where we
use the ADAM optimizer [37]. During training, we first fix the CNN encoder
and optimize the decoder with learning rate 0.0004 in the first 20 epochs, and
then jointly optimize both the encoder and decoder, until the performance on
the validation set saturates.

For evaluation, we report the results using metrics including BLEU-4 (B4) [38],
METEOR (MT) [39], ROUGE (RG) [40], CIDER (CD) [41], and SPICE (SP) [42].

5.2 Comparative Results

First, we compared RNN-2DS with LSTM-1DS. The former has 2D states
with the simplest type of cells while the latter has 1D states with sophisticated
LSTM cells. As the capacity of a model is closely related to the number of
parameters, to ensure a fair comparison, each config of RNN-2DS is compared
to an LSTM-1DS config with a similar number of parameters. In this way, the
comparative results will signify the differences in the inherent expressive power
of both formulations.

The resulting curves in terms of different metrics are shown in Figure 7, in
which we can see that RNN-2DS outperforms LSTM-1DS consistently, across
different parameter sizes and under different metrics. These results show that
RNN-2DS, with the states that preserve spatial locality, can capture both visual
and linguistic information more efficiently.

We also compared different types of decoders with similar numbers of pa-
rameters, namely RNN-1DS, GRU-1DS, LSTM-1DS, RNN-2DS, GRU-2DS, and
LSTM-2DS. Table 1 shows the results of these decoders on both datasets, from
which we observe: (1) RNN-2DS outperforms RNN-1DS, GRU-1DS, and LSTM-
1DS, indicating that embedding latent states in 2D forms is more effective. (2)
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Table 1: The results obtained using different decoders on the offline and online test
sets of MSCOCO, and the test set of Flickr30k, where METEOR (MT) [39] is omitted
due to space limitation, and no SPICE (SP) [42] is reported by the online test set of
MSCOCO.

Model #Param
COCO-offline COCO-online Flickr30k

CD B4 RG SP CD B4 RG CD B4 RG SP

RNN-1DS-(595) 13.58M 0.914 0.293 0.520 0.168 0.868 0.286 0.515 0.353 0.195 0.427 0.117
GRU-1DS-(525) 13.53M 0.920 0.295 0.520 0.169 0.889 0.291 0.518 0.360 0.195 0.428 0.117
LSTM-1DS-(500) 13.52M 0.935 0.298 0.523 0.170 0.904 0.295 0.523 0.381 0.202 0.437 0.120

RNN-2DS-(256,7,7) 13.48M 0.977 0.317 0.534 0.181 0.930 0.305 0.527 0.420 0.217 0.442 0.125
GRU-2DS-(256,7,7) 17.02M 1.001 0.323 0.539 0.186 0.962 0.316 0.535 0.438 0.218 0.445 0.131
LSTM-2DS-(256,7,7) 18.79M 0.994 0.319 0.538 0.187 0.958 0.313 0.531 0.427 0.220 0.444 0.132

Table 2: The results obtained on the MSCOCO offline test set using RNN-2DS with
different choices on pooling functions, activation functions, word-embeddings, kernels
and latent states. Except for the first row, each row only lists the choice that is different
from the first row. ”-” means the same.

Pooling Activation Word-Embedding Kernel Latent-State CD B4 MT RG SP

Mean ReLU 4 × 15 × 15 3 × 3 256 × 7 × 7 0.977 0.317 0.254 0.534 0.181

- tanh - - - 0.924 0.302 0.244 0.522 0.174
Max - - - - 0.850 0.279 0.233 0.507 0.166

- - 1 × 15 × 15 - - 0.965 0.313 0.251 0.532 0.180
- - 7 × 15 × 15 - - 0.951 0.309 0.250 0.529 0.179

- - - 1 × 1 - 0.927 0.298 0.247 0.522 0.177
- - - 5 × 5 - 0.951 0.308 0.250 0.529 0.177

- - - - 256 × 5 × 5 0.934 0.300 0.245 0.523 0.173
- - - - 256 × 11 × 11 0.927 0.300 0.246 0.523 0.176

GRU-2DS, which is also based on the proposed formulation but adds several
gate functions, surpasses other decoders and yields the best result. This suggests
that the techniques developed for conventional RNNs including gate functions
and attention modules [2] are very likely to benefit RNNs with 2D states as well.

Figure 8 includes some qualitative samples, in which we can see the captions
generated by LSTM-1DS rely heavily on the language priors, which sometimes
contain the phrases that are not consistent with the visual content but appear
frequently in training captions. On the contrary, the sentences from RNN-2DS
and GRU-2DS are more relevant to the visual content.

5.3 Ablation Study

Table 2 compares the performances obtained with different design choices in
RNN-2DS, including pooling methods, activation functions, and sizes of word
embeddings, kernels and latent states The results show that mean pooling out-
performs max pooling by a significant margin, indicating that information from
all locations is significant. The table also shows the best combination of mod-
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LSTM-1DS

RNN-2DS

a small bird sitting on a 

tree branch

a bird perched on a 

bird feeder

a giraffe standing next 

to a wooden fence

a giraffe laying down on 

a dirt ground 

a person walking down a 

street with an umbrella

a fire hydrant in 

front of a building

a cat sitting on a 

chair in a room

a cat sitting on top of a 

wooden table

GRU-2DS
a bird is sitting on a 

bird feeder

a giraffe laying on the 

ground in front of a building

a fire hydrant is covered 

in snow in the snow

a cat sitting in a bowl 

on a table

LSTM-1DS

RNN-2DS

a man laying on a bed 

with a laptop

a man laying on a bed 

with a book

two hot dogs with 

ketchup on a plate

a hot dog and french

fries on a plate

a cat laying on top of a 

pair of shoes

a black cat laying on top 

of a piece of luggage

a large elephant standing 

next to a baby elephant

an elephant standing 

in a field of grass

GRU-2DS
a man laying in bed 

reading a book

a hot dog and french

fries are on a plate

a black cat laying on top 

of a black suitcase

an elephant standing 

in a field of grass

Fig. 8: This figure shows some qualitative samples of captions generated by different
decoders, where words in red indicate they are inconsistent with the image.

eling choices for RNN-2DS: mean pooling, ReLU, the word embeddings of size
4× 15× 15, the kernel of size 3× 3, and the latent states of size 256× 7× 7.

6 Conclusions and Future Work

In this paper, we studied the impact of embedding latent states as 2D multi-
channel feature maps in the context of image captioning. Compared to the stan-
dard practice that embeds latent states as 1D vectors, 2D states consistently
achieve higher captioning performances across different settings. Such represen-
tations also preserve the spatial locality of the latent states, which helps reveal
the internal dynamics of the decoding process, and interpret the connections be-
tween visual and linguistic domains. We plan to combine the decoder having 2D
states with other modules commonly used in captioning community, including
the attention module [2], for further exploration.
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