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Abstract. Temporal relational reasoning, the ability to link meaningful
transformations of objects or entities over time, is a fundamental prop-
erty of intelligent species. In this paper, we introduce an effective and
interpretable network module, the Temporal Relation Network (TRN),
designed to learn and reason about temporal dependencies between video
frames at multiple time scales. We evaluate TRN-equipped networks on
activity recognition tasks using three recent video datasets - Something-
Something, Jester, and Charades - which fundamentally depend on tem-
poral relational reasoning. Our results demonstrate that the proposed
TRN gives convolutional neural networks a remarkable capacity to dis-
cover temporal relations in videos. Through only sparsely sampled video
frames, TRN-equipped networks can accurately predict human-object
interactions in the Something-Something dataset and identify various
human gestures on the Jester dataset with very competitive perfor-
mance. TRN-equipped networks also outperform two-stream networks
and 3D convolution networks in recognizing daily activities in the Cha-
rades dataset. Further analyses show that the models learn intuitive and
interpretable visual common sense knowledge in videos1.

1 Introduction

The ability to reason about the relations between entities over time is crucial
for intelligent decision-making. Temporal relational reasoning allows intelligent
species to analyze the current situation relative to the past and formulate hy-
potheses on what may happen next. For example (Fig.1), given two observations
of an event, people can easily recognize the temporal relation between two states
of the visual world and deduce what has happened given only two video frames2.

Temporal relational reasoning is critical for activity recognition, forming the
building blocks for describing the steps of an event. A single activity can consist
of several temporal relations at both short-term and long-term timescales. For
example, the activity of sprinting contains the long-term relations of crouching
at the starting blocks, running on track, and finishing at end line, while it also
includes the short-term relations of periodic hands and feet movement.

1 Code and models are available at http://relation.csail.mit.edu/.
2 Answer: a) Poking a stack of cans so it collapses; b) Stack something; c) Tidying up
a closet; d) Thumb up.
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Fig. 1: What takes place between two observations? (see answer below the first
page). Humans can easily infer the temporal relations and transformations be-
tween these observations, but this task remains difficult for neural networks.

Activity recognition has been one of the core topics in computer vision. How-
ever, it remains difficult due to the ambiguity of describing activities at appro-
priate timescales [1]. Many video datasets, such as UCF101 [2], Sport1M [3], and
THUMOS [4], include many activities that can be recognized without reasoning
about the long-term temporal relations: still frames and optical flow are suffi-
cient to identify many of the labeled activities. Indeed, the classical two-stream
Convolutional Neural Network [5] and the recent I3D Network [6], both based on
frames and optical flow, perform activity recognition very well on these datasets.

However, convolutional neural networks still struggle in situations where data
and observations are limited, or where the underlying structure is characterized
by transformations and temporal relations, rather than the appearance of cer-
tain entities [7, 8]. It remains remarkably challenging for convolutional neural
networks to reason about temporal relations and to anticipate what transforma-
tions are happening to the observations.

In this work, we propose a simple and interpretable network module called
Temporal Relation Network (TRN) that enables temporal relational reasoning
in neural networks. This module is inspired by the relational network proposed
in [7], but instead of modeling the spatial relations, TRN aims to describe the
temporal relations between observations in videos. Thus, TRN can learn and
discover possible temporal relations at multiple time scales. TRN is a general
and extensible module that can be used in a plug-and-play fashion with any
existing CNN architecture. We apply TRN-equipped networks on three recent
video datasets (Something-Something [9], Jester [10], and Charades [11]), which
are constructed for recognizing different types of activities such as human-object
interactions and hand gestures, but all depend on temporal relational reasoning.
The TRN-equipped networks achieve very competitive results even given only
discrete RGB frames, bringing significant improvements over baselines.

1.1 Related Work

Convolutional Neural Networks for Activity Recognition. Activity recog-
nition in videos is a core problem in computer vision. With the rise of deep convo-
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lutional neural networks (CNNs) which achieve state-of-the-art performance on
image recognition tasks [12, 13], many works have looked into designing effective
deep convolutional neural networks for activity recognition [3, 5, 14–16, 6]. For
instance, various approaches of fusing RGB frames over the temporal dimension
are explored on the Sport1M dataset [3]. Two stream CNNs with one stream
of static images and the other stream of optical flows are proposed to fuse the
information of object appearance and short-term motions [5]. 3D convolutional
networks [15] use 3D convolution kernels to extract features from a sequence of
dense RGB frames. Temporal Segment Networks sample frames and optical flow
on different time segments to extract information for activity recognition [16]. A
CNN+LSTM model, which uses a CNN to extract frame features and an LSTM
to integrate features over time, is also used to recognize activities in videos [14].
Recently, I3D networks [6] use two stream CNNs with inflated 3D convolutions
on both dense RGB and optical flow sequences to achieve state of the art per-
formance on the Kinetics dataset [17]. There are several important issues with
existing CNNs for action recognition: 1) The dependency on beforehand extrac-
tion of optical flow lowers the efficiency of the recognition system; 2) The 3D
convolutions on sequences of dense frames are computationally expensive, given
the redundancy in consecutive frames; 3) Since sequences of frames fed into the
network are usually limited to 20 to 30 frames, it is difficult for the networks to
learn long-term temporal relations among frames. To address these issues, the
proposed Temporal Relation Network sparsely samples individual frames and
then learns their causal relations, which is much more efficient than sampling
dense frames and convolving them. We show that TRN-equipped networks can
efficiently capture temporal relations at multiple time scales and outperform
dense frame-based networks using only sparsely sampled video frames.

Temporal Information in Activity Recognition. For activity recogni-
tion on many existing video datasets such as UCF101 [2], Sport1M [3], THU-
MOS [4], and Kinetics [17], the appearance of still frames and short-term motion
such as optical flow are the most important information to identify the activ-
ities. Thus, activity recognition networks such as Two Stream network [5] and
the I3D network [6] are tailored to capture these short-term dynamics of dense
frames. Therefore, existing networks don’t need to build temporal relational
reasoning abilities. On the other hand, recently there have been various video
datasets collected via crowd-sourcing, which focus on sequential activity recog-
nition: Something-Something dataset [9] is collected for generic human-object
interaction. It has video classes such as ‘Dropping something into something’
and ‘Pushing something with something’. Jester dataset [10] is another recent
video dataset for gesture recognition. Videos are recorded by crowd-source work-
ers performing 27 kinds of gestures such as ‘Thumbing up’ and ‘Swiping Left’.
Charades dataset is also a high-level human activity dataset that collects videos
by asking crowd workers to perform a series of home activities and then record
themselves [11]. For recognizing the complex activities in these three datasets,
it is crucial to integrate temporal relational reasoning into the networks. Be-
sides, many previous works model the temporal structures of videos for action
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recognition and detection using bag of words, motion atoms, or action gram-
mar [18–22]. Instead of designing temporal structures manually, we use a more
generic structure to learn the temporal relations in end-to-end training.

Relational Reasoning and Intuitive Physics. Recently, relational rea-
soning module has been proposed for visual question answering with super-
human performance [7]. We focus on modeling the multi-scale temporal rela-
tions in videos. In the domain of robot self-supervised learning, many models
have been proposed to learn the intuitive physics among frames. Given an initial
state and a goal state, the inverse dynamics model with reinforcement learning
is used to infer the transformation between the object states [23]. Physical inter-
action and observations are also used to train deep neural networks [24]. Time
contrast networks are used for self-supervised imitation learning of object manip-
ulation from third-person video observation [25]. Our work aims to learn various
temporal relations in videos in a supervised learning setting. The proposed TRN
can be extended to self-supervised learning for robot object manipulation.

Pretending	to	put	something	next	to	something

CNN CNN CNN CNN CNN
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Fig. 2: The illustration of Temporal Relation Networks. Representative frames of
a video (shown above) are sampled and fed into different frame relation modules.
Only a subset of the 2-frame, 3-frame, and 4-frame relations are shown.

2 Temporal Relation Networks

In this section, we introduce the framework of Temporal Relation Networks. It is
simple and can be easily plugged into any existing convolutional neural network
architecture to enable temporal relational reasoning. In later experiments, we
show that TRN-equipped networks discover interpretable visual common sense
knowledge to recognize activities in videos.

2.1 Defining Temporal Relations

Inspired by the relational reasoning module for visual question answering [7], we
define the pairwise temporal relation as a composite function below:

T2(V ) = hφ

(

∑

i<j

gθ(fi, fj)
)

(1)
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where the input is the video V with n selected ordered frames as V = {f1, f2, ..., fn},
where fi is a representation of the ith frame of the video, e.g., the output activa-
tion from some standard CNN. The functions hφ and gθ fuse features of different
ordered frames. Here we simply use multilayer perceptrons (MLP) with param-
eters φ and θ respectively. For efficient computation, rather than adding all the
combination pairs, we uniformly sample frames i and j and sort each pair.

We further extend the composite function of the 2-frame temporal relations
to higher frame relations such as the 3-frame relation function below:

T3(V ) = h
′

φ

(

∑

i<j<k

g
′

θ(fi, fj , fk)
)

(2)

where the sum is again over sets of frames i, j, k that have been uniformly sam-
pled and sorted.

2.2 Multi-Scale Temporal Relations

To capture temporal relations at multiple time scales, we use the following com-
posite function to accumulate frame relations at different scales:

MTN (V ) = T2(V ) + T3(V )...+ TN (V ) (3)

Each relation term Td captures temporal relationships between d ordered frames.

Each Td has its own separate h
(d)
φ and g

(d)
θ . Notice that for any given sample of

d frames for each Td, all the temporal relation functions are end-to-end differ-
entiable, so they can all be trained together with the base CNN used to extract
features for each video frame. The overall framework is illustrated in Fig.2.

2.3 Efficient Training and Testing

When training a multi-scale temporal network, we could sample the sums by
selecting different sets of d frames for each Td term for a video. However, we use
a sampling scheme that reduces computation significantly. First, we uniformly
sample a set of N frames from the N segments of the video, V ∗

N ⊂ V , and we use
V ∗

N to calculate TN (V ). Then, for each d < N , we choose k random subsamples
of d frames V ∗

kd ⊂ V ∗

N . These are used to compute the d-frame relations for each
Td(V ). This allows kN temporal relations to be sampled while run the base CNN
on only N frames, while all the parts are end-to-end trained together.

At testing time, we can combine the TRN-equipped network with a queue to
process streaming video very efficiently. A queue is used to cache the extracted
CNN features of the equidistant frames sampled from the video, then those
features are further combined into different relation tuples which are further
summed up to predict the activity. The CNN feature is extracted from incoming
key frame only once then enqueued, thus TRN-equipped networks is able to run
in real-time on a desktop to processing streaming video from a webcam.
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3 Experiments

We evaluate the TRN-equipped networks on a variety of activity recognition
tasks. For recognizing activities that depend on temporal relational reasoning,
TRN-equipped networks outperform a baseline network without a TRN by a
large margin. We achieve highly competitive results on the Something-Something
dataset for human-interaction recognition [9] and on the Jester dataset for hand
gesture recognition [10]. The TRN-equipped networks also obtain competitive
results on activity classification in the Charades dataset [11], outperforming the
Flow+RGB ensemble models [26, 11] using only sparsely sampled RGB frames.

The statistics of the three datasets Something-Something dataset (Something-
V1 [9] and Something-V2 [27] where the Something-V2 is the 2nd release of the
dataset in early July 2018) [9, 27], Jester dataset [10], and Charades dataset [11]
are listed in Table 1. All three datasets are crowd-sourced, in which the videos are
collected by asking the crowd-source workers to record themselves performing
instructed activities. Unlike the Youtube-type videos in UCF101 and Kinetics,
there is usually a clear start and end of each activity in the crowd-sourced video,
emphasizing the importance of temporal relational reasoning.

Table 1: Statistics of the datasets used in evaluating the TRNs.

Dataset Classes Videos Type

Something-V1 174 108,499 human-object interaction
Something-V2 174 220,847 human-object interaction
Jester 27 148,092 human hand gesture
Charades 157 9,848 daily indoor activity

3.1 Network Architectures and Training

The networks used for extracting image features play an important factor in
visual recognition tasks [28]. Features from deeper networks such as ResNet
[29] usually perform better. Our goal here is to evaluate the effectiveness of
the TRN module for temporal relational reasoning in videos. Thus, we fix the
base network architecture to be the same throughout all the experiments and
compare the performance of the CNN model with and without the proposed
TRN modules.

We adopt Inception with Batch Normalization (BN-Inception) pretrained on
ImageNet used in [30] because of its balance between accuracy and efficiency. We
follow the training strategies of partial BN (freezing all the batch normalization
layers except the first one) and dropout after global pooling as used in [16]. We
keep the network architecture of the MultiScale TRN module and the training
hyper-parameters the same for training models on all the three datasets. We
set k = 3 in the experiments as the number of accumulated relation triples in
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each relation module. gφ is simply a two-layer MLP with 256 units per layer,
while hφ is a one-layer MLP with the unit number matching the class number.
The CNN features for a given frame is the activation from the BN-Inception’s
global average pooling layer (before the final classification layer). Given the BN-
Inception as the base CNN, the training can be finished in less than 24 hours for
100 training epochs on a single Nvidia Titan Xp GPU. In the Multi-Scale TRN,
we include all the TRN modules from 2-frame TRN up to 8-frame TRN (thus
N = 8 in Eq.3), as including higher frame TRNs brings marginal improvement
and lowers the efficiency.

3.2 Results on Something-Something Dataset

Something-Something is a recent video dataset for human-object interaction
recognition. There are 174 classes, some of the ambiguous activity categories
are challenging, such as ‘Tearing Something into two pieces’ versus ‘Tearing
Something just a little bit’, ‘Turn something upside down’ versus ‘Pretending
to turn something upside down’. We can see that the temporal relations and
transformations of objects rather than the appearance of the objects characterize
the activities in the dataset.

The results on the validation set and test set of Something-V1 and Something-
V2 datasets are listed in Table 2a. The baseline is the base network trained on
single frames randomly selected from each video. Networks with TRNs outper-
form the single frame baseline by a large margin. We construct the 2-stream TRN
by simply averaging the predicted probabilities from the the two streams for any
given video). The 2-stream TRN further improves the accuracy on the valida-
tion set of Something-v1 and Something-v2 to 42.01% and 55.52% respectively.
Note that we found that the optical stream with average pooling of frames used
in TSN [16] achieves better score than the one with the proposed temporal rela-
tional pooling so we use 8-frame TSN on optical flow stream, which gets 31.63%
and 46.41% on the validation set of Something-V1 and Something-V2 respec-
tively. We further submit MultiScale TRN and 2-stream TRN predictions on
the test set, the results are shown in Table 2.a

We compare the TRN with TSN [16], to verify the importance of temporal
orders. Instead of concatenating the features of temporal frames, TSN simply
averages the deep features so that the model only captures the co-occurrence
rather than the temporal ordering of patterns in the features. We keep all the
training conditions the same, and vary the number of frames used by two models.
As shown in Table 2b, our models outperform TSNs by a large margin. This
result shows the importance of frame order for temporal relation reasoning. We
also see that additional frames included in the relation bring further significant
improvements to TRN.

3.3 Results on Jester and Charades

We further evaluate the TRN-equipped networks on the Jester dataset, which
is a video dataset for hand gesture recognition with 27 classes. The results on
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Something-V1 Something-V2
Val Test Val Test

Baseline 11.41 - - -
MultiScale TRN 34.44 33.60 48.80/77.64 50.85/79.33
2-Stream TRN 42.01 40.71 55.52/83.06 56.24/83.15

(a)

TRN TSN

2-fr. 22.23 16.72
3-fr. 26.22 17.30
5-fr. 30.39 18.11
7-fr. 31.01 18.48

(b)

Table 2: (a) Results on the validation set and test set of the Something-V1
Dataset (Top1 Accuracy) and Something-V2 Dataset (Both Top1 and Top5 ac-
curacy are reported). (b) Comparison of TRN and TSN as the number of frames
(fr.) varies on the validation set of the Something-V1. TRN outperforms TSN
in a large margin as the number of frames increases, showing the importance of
temporal order.

the validation set of the Jester dataset are listed in Table 3a. The result on the
test set and comparison with the top methods are listed in Table 3b. MultiScale
TRN again achieves competitive performance as close to 95% Top1 accuracy.

Val

Baseline 63.60
2-frame TRN 75.65
3-frame TRN 81.45
4-frame TRN 89.38
5-frame TRN 91.40

MultiScale TRN 95.31

(a)

Test

20BN Jester System 82.34
VideoLSTM 85.86
Guillaume Berger 93.87
Ford’s Gesture System 94.11
Besnet 94.23

MultiScale TRN 94.78

(b)

Table 3: Jester Dataset Results on (a) the validation set and (b) the test set.

We evaluate the MultiScale TRN on the recent Charades dataset for daily
activity recognition. The results are listed in Table 4. Our method outperforms
various methods such as 2-stream networks and C3D [11], and the recent Asyn-
chronous Temporal Field (TempField) method [26].

The qualitative prediction results of the Multi-Scale TRN on the three datasets
are shown in Figure 3. The examples in Figure 3 demonstrate that the TRN
model is capable of correctly identifying actions for which the overall temporal
ordering of frames is essential for a successful prediction. For example, the turn-
ing hand counterclockwise category would assume a different class label when
shown in reverse. Moreover, the successful prediction of categories in which an
individual pretends to carry out an action (e.g. ‘pretending to put something into
something’ as shown in the second row) suggests that the network can capture
temporal relations at multiple scales, where the ordering of several lower-level
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actions contained in short segments conveys crucial semantic information about
the overall activity class.

This outstanding performance shows the effectiveness of the TRN for tem-
poral relational reasoning and its strong generalization ability across different
datasets.

Table 4: Results on Charades Activity Classification.

Approach Random C3D AlexNet IDT 2-Stream TempField Ours

mAP 5.9 10.9 11.3 17.2 14.3 22.4 25.2

a	

1:	Pretending	to	put	sth	into	sth	(0.710).	2:	Failing	to	put	sth	into	sth	because	sth	does	not	fit	(0.265)	

1:	Pouring	sth	into	sth	(0.859).	2:	Pouring	sth	into	sth	unAl	it	overflows	(0.072)	

1:	Rolling	sth	on	a	flat	surface	(0.672).	2:	LeHng	sth	roll	along	a	flat	surface	(0.192)	

1:	Pushing	sth	so	that	it	almost	falls	off	but	doesn't	(0.280).	2:	Pretending	to	take	sth	from	sth	(0.134)	

b	

1:	Thumb	Up	(0.999)				2:	Thumb	Down	(0.001)	 1:	Turning	Hand	Counterclockwise	(0.967)				2:	Turning	Hand	Clockwise	(0.033)	

Pretending	to	put	something	into	something	

Pouring	something	into	something	

Thumb	Up	

Zooming	In	With	Two	Fingers	

1:	Zooming	In	With	Two	Fingers	(0.993)				2:	Zooming	Out	With	Two	Fingers	(0.006)	

Le9ng	something	roll	along	a	flat	surface	

Pushing	something	so	that	it	almost	falls	off	but	doesn't	

Turning	Hand	Counterclockwise	

Rolling	Hand	Backward	

1:	Rolling	Hand	Forward	(0.990)				2:	Rolling	Hand	Backward	(0.01)	

Holding	a	pillow	(0.361)	

Holding	a	blanket	(0.083)	

Holding	a	pillow	(0.501),	(0.401),	(0.225)	

Walking	through	a	doorway	(0.048),	(0.100),	(0.148)	

Holding	a	dish	(0.423)	

Taking	a	dish(es)	from		

					somewhere	(0.154)	

Holding	a	pillow	(0.188)	

Holding	a	blanket	(0.112)	

Walking	through	a	doorway	(0.339),	(0.245),	

Holding	a	dish	(0.109),	Holding	a	book	(0.131)	

Holding	a	pillow	(0.120)	

Walking	through	a	doorway	(0.066)	

Taking	a	pillow	from	somewhere	(0.207)	

Holding	a	pillow	(0.142)	

Holding	a	pillow	(0.151)	

Lying	on	a	bed	(0.084)	

SiHng	on	the	floor	(0.267),	(0.291),	(0.229),	(0.142)	

Watching/Reading/Looking	at	a	book	(0.162),	Holding	a	book	(0.185),	(0.163)	(0.129)	

c	

Lying	on	the	floor	(0.084),	(0.124)	

SiHng	in	a	chair	(0.071),	floor	(0.104)	

Holding	a	pillow	(0.118)		

Taking	a	pillow	from	somewhere	(0.079)	

Holding	a	book	(0.163)	

Closing	a	book	(0.093)	

Someone	is	sneezing	(0.099)	

SiHng	in	a	chair	(0.065)	

Fig. 3: Prediction examples on a) Something-Something, b) Jester, and c) Cha-
rades. For each example drawn from Something-Something and Jester, the top
two predictions with green text indicating a correct prediction and red indicating
an incorrect one. Top 2 predictions are shown above Charades frames.

3.4 Interpreting Visual Common Sense Knowledge inside the TRN

One of the distinct properties of the proposed TRNs compared to previous video
classification networks such as C3D [15] and I3D [6] is that TRN has more
interpretable structure. In this section, we have a more in-depth analysis to
interpret the visual common sense knowledge learned by the TRNs through
solving these temporal reasoning tasks. We explore the following four parts:
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Representative frames of a video voted by the TRN to recognize an

activity. Intuitively, a human observer can capture the essence of an action by
selecting a small collection of representative frames. Does the same hold true for
models trained to recognize the activity? To obtain a sequence of representative
frames for each TRN, we first compute the features of the equidistant frames
from a video, then randomly combine them to generate different frame relation
tuples and pass them into the TRNs. Finally we rank the relation tuples using
the responses of different TRNs. Figure 4 shows the top representative frames
voted by different TRNs to recognize an activity in the same video. We can see
that the TRNs learn the temporal relations that characterize an activity. For
comparatively simple actions, a single frame is sufficient to establish some de-
gree of confidence in the correct action, but is vulnerable to mistakes when a
transformation is present. 2-frame TRN picks up the two frames that best de-
scribe the transformation. Meanwhile, for more difficult activity categories such
as ‘Pretending to poke something’, two frames are not sufficient information for
even a human observer to differentiate. Similarly, the network needs additional
frames in the TRNs to correctly recognize the behavior.

Thus the progression of representative frames and their corresponding class
predictions inform us about how temporal relations may help the model reason
about more complex behavior. One particular example is the last video in Figure
4: The action’s context given by a single frame - a hand close to a book - is enough
to narrow down the top prediction to a qualitatively plausible action, unfolding
something. A similar, two-frame relation marginally increases the probability
the initial prediction, although these two frames would not be sufficient for
even human observers to make the correct prediction. Now, the three frame-
relation begins to highlight a pattern characteristic to Something-Somethings set
of pretending categories: the initial frames closely resemble a certain action, but
the later frames are inconsistent with the completion of that action as if it never
happened. This relation helps the model to adjust its prediction to the correct
class. Finally, the upward motion of the individuals hand in the third frame of
the 4-frame relation further increases the discordance between the anticipated

and observed final state of the scene; a motion resembling the action appeared to
take place with no effect on the object, thus, solidifying confidence in the correct
class prediction.

Temporal Alignment of Videos. The observation that the representative
frames identified by the TRN are consistent across instances of an action cat-
egory suggests that the TRN is well suited for the task of temporally aligning
videos with one another. Here, we wish to synchronize actions across multiple
videos by establishing a correspondence between their frame sequences. Given
several video instances of the same action, we first select the most representa-
tive frames for each video and use their frame indices as “landmark”, temporal
anchor points.Then, we alter the frame rate of video segments between two con-
secutive anchor points such that all of the individual videos arrive at the anchor
points at the same time. Fig.5 shows the samples from the aligned videos. We
can see different stages of an action are captured by the temporal relation. The
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Single-frame	 2-frame	TRN	 3-frame	TRN	 4-frame	TRN	

	1																													3																																	5	0																														5	5	 0																															1																														4																															5	

	1																																2																															4	3																													6	6	 0																																2																														4																																7	

	2																																3																																6	2																													3	2	 2																																	3																													4																																		5	

	0																															4																																7	6																															7	6	 0																														1																															4																																7	

Moving		
sth	down	

Covering	
sth	with	sth	

Pretending	to	
open	sth	without	

actually	opening	it	

Throwing	sth	in	the	
air	and	catching	it	

Moving	sth	down	(0.352)	Moving	sth	down	(0.998)	 Moving	sth	down	(0.999)	 Moving	sth	down	(0.999)	

Unfolding	sth	(0.045)	 Unfolding	sth	(0.164)	 Pretending	to	open	sth	without	actually	opening	it	(0.828)	 Pretending	to	open	sth	without	actually	opening	it	(0.870)	

Uncovering	sth	(0.226)	 Covering	sth	(0.997)	 Covering	sth	(0.998)	 Covering	sth	(0.999)	

Throwing	sth	in	the	air	
and	catching	it	(0.520)	

Throwing	sth	in	the	air	and	catching	it	(0.986)	 Throwing	sth	in	the	air	and	catching	it	(0.999)	 Throwing	sth	in	the	air	and	catching	it	(0.934)	

Fig. 4: The top representative frames determined by single frame baseline net-
work, the 2-frame TRN, 3-frame TRN, and 4-frame TRN. TRNs learn to capture
the essence of an activity only given a limited number of frames. Videos are from
the validation set of the Something-Something dataset

temporal alignment is also an exclusive application of our TRN model, which
cannot be done by previous video networks 3D convNet or two-stream networks.

Importance of temporal order for activity recognition. To verify the
importance of the temporal order of frames for activity recognition, we conduct
an experiment to compare the scenario with input frames in temporal order and
in shuffled order when training the TRNs, as shown in Figure 6a. For training
the shuffled TRNs, we randomly shuffle the frames in the relation modules. The
significant difference on the Something-Something dataset shows the importance
of the temporal order in the activity recognition. More interestingly, we repeat
the same experiment on the UCF101 dataset [2] and observe no difference be-
tween the ordered frames and shuffled frames. That shows activity recognition
for the Youtube-type videos in UCF101 doesn’t necessarily require the temporal
reasoning ability since there are not so many casual relations associated with an
already on-going activity.

To further investigate how temporal ordering influences activity recogni-
tion in TRN, we examine and plot the categories that show the largest dif-
ferences in the class accuracy between ordered and shuffled inputs drawn from
the Something-Something dataset, in Figure 6b. In general, actions with strong
‘directionality and large, one-way movements, such as ‘Moving something down’,
appear to benefit the most from preserving the correct temporal ordering. This
observation aligns with the idea that the disruption of continuous motion and
a potential consequence of shuffling video frames, would likely confuse a human
observer, as it would go against our intuitive notions of physics.

Interestingly, the penalty for shuffling frames of relatively static actions is
less severe if penalizing at all in some cases, with several categories marginally
benefiting from shuffled inputs, as observed with the category ‘putting something
that can’t roll onto a slanted surface so it stays where it is’. Here, simply learning
the coincidence of frames rather than temporal transformations may be sufficient
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a Pushing something right to left Lifting something up completely, then letting it drop down

1 2 3 4 5 1 2 3 4 5

Zooming in with full hand Pushing hand away

1 2 3 4 5 1 2 3 4 5

b

Fig. 5: Temporal alignment of videos from the (a) Something-Something and (b)
Jester datasets using the most representative frames as temporal anchor points.
For each action, 4 different videos are aligned using 5 temporal anchor points.

for the model to differentiate between similar activities and make the correct
prediction. Particularly in challenging ambiguous cases, for example ‘Pretending
to throw something’ where the release point is partially or completely obscured
from view, disrupting a strong ‘sense of motion’ may bias model predictions
away from the likely alternative, ‘throwing something’, frequently but incorrectly
selected by the ordered model, thus giving rise to a curious difference in accuracy
for that action.

The difference between TSN and TRN is at using different frame feature
pooling strategies, where TRN using Temporal Relation(TR) pool emphasizes
on capturing the temporal dependency of frames while TSN simply uses average
pool to ignore the temporal order. We evaluate the two pool strategies in detail
as shown in Table 5. The difference in the performance using average pool and
TR pool actually reflects the importance of temporal orders in a video dataset.
The tested datasets are categorized by the video source, where the first three
are Youtube videos, the other three are videos crowdsourced from AMT. The
base CNN is BNInception. Both of the models use 8 frames. Interestingly, the
models with average pool and TR pool achieve similar accuracy on Youtube
videos, thus recognizing Youtube videos doesn’t require much temporal order
reasoning, which might be due to that activity in the randomly trimmed Youtube
videos doesn’t usually have a clear action start or end. On the other hand,
the crowdsourced video has just one activity with clearly start and end, thus
temporal relation pool brings significant improvement.
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Fig. 6: (a) Accuracy obtained using ordered frames and shuffled frames,
on Something-Something and UCF101 dataset respectively. On Something-
Something, the temporal order is critical for recognizing the activity. But rec-
ognizing activities in UCF101 does not necessarily require temporal relational
reasoning. (b) The top 5 action categories that exhibited the largest gain and the
least gain (negative) respectively between ordered and shuffled frames as inputs.
Actions with directional motion appear to suffer most from shuffled inputs.

Youtube videos Crowdsourced videos

Dataset UCF Kinetics Moments Something Jester Charades

Num.Classes 101 200 339 174 27 157

Average Pool 82.69 63.34 24.11 19.53 85.41 11.32
TR Pool 83.83 63.18 25.94 34.44 95.31 25.20

Table 5: Accuracy on six video datasets for models with two pool strategies.

2: Tearing sth into two pieces (0.001)

1: Lifting a surface with sth on it but not enough for it to 

slide down (0.490)

Ground TruthFirst Frames

1: Poking sth so lightly that it doesn't or almost doesn't move (0.466)

Forecasts

3: Poking sth so it slightly moves (0.164)

2: Poking a stack of sth so the stack collapses (0.207)

3: Tilting sth with sth on it slightly so it doesn't fall down (0.079)

2: Lifting sth with sth on it (0.423)

3: Pretending to be tearing sth that is not tearable (0.001)

1: Tearing sth just a little bit (0.998)

2: Swiping Up (0.105)

3: Stop Sign (0.881)

1: Swiping Down (0.881)

Fig. 7: Early recognition of activity when only given the first 25% frames. The
first 25% of each video, represented by the first frame shown in the left column, is
used to generate the top 3 anticipated forecasts and corresponding probabilities
listed in the middle column. The ground truth label is highlighted by a blue
arrow which points to the last frame of the video on the right.
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Table 6: Early activity recognition using the MultiScale TRN on Something-
Something and Jester dataset. Only the first 25% and 50% of frames are given
to the TRN to predict activities. Baseline is the model trained on single frames.

Something Jester
Frames baseline TRN baseline TRN

first 25% 9.08 11.14 27.25 34.23
first 50% 10.10 19.10 41.43 78.42
full 11.41 33.01 63.60 93.70

Early Activity Recognition. Recognizing activities early or even antici-
pating and forecasting activities before they happen or fully happen is a chal-
lenging yet less explored problem in activity recognition. Here we evaluate our
TRN model on early recognition of activity when given only the first 25% and
50% of the frames in each validation video. Results are shown in Table 6. For
comparison, we also include the single frame baseline, which is trained on ran-
domly sampled individual frames from a video. We see that TRN can use the
learned temporal relations to anticipate activity. The performance increases as
more ordered frames are received. Figure 7 shows some examples of anticipat-
ing activities using only first 25% and 50% frames of a video. A qualitative
review of these examples reveals that model predictions on only initial frames
do serve as very reasonable forecasts despite being given task with a high degree
of uncertainty even for human observers.

4 Conclusion

We proposed a simple and interpretable network module called Temporal Rela-
tion Network (TRN) to enable temporal relational reasoning in neural networks
for videos. We evaluated the proposed TRN on several recent datasets and es-
tablished competitive results using only discrete frames. Finally, we have shown
that TRN modules discover visual common sense knowledge in videos.
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