
Deep Component Analysis via
Alternating Direction Neural Networks

Calvin Murdock, Ming-Fang Chang, and Simon Lucey

Carnegie Mellon University
{cmurdock,mingfanc,slucey}@cs.cmu.edu

Abstract. Despite a lack of theoretical understanding, deep neural net-
works have achieved unparalleled performance in a wide range of appli-
cations. On the other hand, shallow representation learning with com-
ponent analysis is associated with rich intuition and theory, but smaller
capacity often limits its usefulness. To bridge this gap, we introduce Deep
Component Analysis (DeepCA), an expressive multilayer model formu-
lation that enforces hierarchical structure through constraints on latent
variables in each layer. For inference, we propose a diferentiable opti-
mization algorithm implemented using recurrent Alternating Direction
Neural Networks (ADNNs) that enable parameter learning using stan-
dard backpropagation. By interpreting feed-forward networks as single-
iteration approximations of inference in our model, we provide both
a novel perspective for understanding them and a practical technique
for constraining predictions with prior knowledge. Experimentally, we
demonstrate performance improvements on a variety of tasks, including
single-image depth prediction with sparse output constraints.

Keywords: Component Analysis · Deep Learning · Constraints

1 Introduction

Deep convolutional neural networks have achieved remarkable success in the
ield of computer vision. While far from new [24], the increasing availability of
extremely large, labeled datasets along with modern advances in computation
with specialized hardware have resulted in state-of-the-art performance in many
problems, including essentially all visual learning tasks. Examples include image
classiication [19], object detection [20], and semantic segmentation [10]. Despite
a rich history of practical and theoretical insights about these problems, mod-
ern deep learning techniques typically rely on task-agnostic models and poorly-
understood heuristics. However, recent work [6,28,43] has shown that specialized
architectures incorporating classical domain knowledge can increase parameter
eiciency, relax training data requirements, and improve performance.

Prior to the advent of modern deep learning, optimization-based methods
like component analysis and sparse coding dominated the ield of representation
learning. These techniques use structured matrix factorization to decompose
data into linear combinations of shared components. Latent representations are

2 C. Murdock, M.-F. Chang, and S. Lucey

0 200 400 600 800 1000

Feature Index

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
o
s
it
iv

e
 C

o
rr

e
la

ti
o
n

(a) Feed-Forward

0 200 400 600 800 1000

Feature Index

0

0.05

0.1

0.15

0.2

C
o
e
ff
ic

ie
n
t
V

a
lu

e

(b) Optimization

(c)

x .336

...

.122

...

.083

...

.039

...

.024

...

.001

(d)

x̂

=

.194

+

.164

+

.141

+

.066

+

.026

+

.009

Fig. 1: An example of the “explaining away” conditional dependence provided by
optimization-based inference. Sparse representations constructed by feed-forward non-
negative soft thresholding (a) have many more non-zero elements due to redundancy
and spurious activations (c). On the other hand, sparse representations found by ℓ1-
penalized, nonnegative least-squares optimization (b) yield a more parsimonious set of
components (d) that optimally reconstruct approximations of the data.

inferred by minimizing reconstruction error subject to constraints that enforce
properties like uniqueness and interpretability. Importantly, unlike feed-forward
alternatives that construct representations in closed-form via independent fea-
ture detectors, this iterative optimization-based approach naturally introduces
conditional dependence between features in order to best explain data, a use-
ful phenomenon commonly referred to as “explaining away” within the context
of graphical models [4]. An example of this efect is shown in Fig. 1, which
compares sparse representations constructed using feed-forward soft threshold-
ing with those given by optimization-based inference with an ℓ1 penalty. While
many components in an overcomplete set of features may have high-correlation
with an image, constrained optimization introduces competition between com-
ponents resulting in more parsimonious representations.

Component analysis methods are also often guided by intuitive goals of in-
corporating prior knowledge into learned representations. For example, statis-
tical independence allows for the separation of signals into distinct generative
sources [22], non-negativity leads to parts-based decompositions of objects [25],
and sparsity gives rise to locality and frequency selectivity [35]. Due to the dii-
culty of enforcing intuitive constraints like these with feed-forward computations,
deep learning architectures are instead often motivated by distantly-related bio-
logical systems [39] or poorly-understand internal mechanisms such as covariate
shift [21] and gradient low [17]. Furthermore, while a theoretical understand-
ing of deep learning is fundamentally lacking [47], even non-convex formulations
of matrix factorization are often associated with guarantees of convergence [2],
generalization [29], uniqueness [13], and even global optimality [16].

In order to unify the intuitive and theoretical insights of component analysis
with the practical advances made possible through deep learning, we introduce
the framework of Deep Component Analysis (DeepCA). This novel model for-
mulation can be interpreted as a multilayer extension of traditional component
analysis in which multiple layers are learned jointly with intuitive constraints in-
tended to encode structure and prior knowledge. DeepCA can also be motivated

Deep Component Analysis via Alternating Direction Neural Networks 3

࢞
�ଵ ≔ � ଵሺ�ଵT࢞ ሻ
�ଶ ≔ � ଶሺ�ଶT�ଵሻ
�ଷ ≔ � ଷሺ�ଷT�ଶሻ

ℓሺ�ଷ, ሻ࢟

(a) Feed-Forward

ℓሺ࢝ଷ, ሻ࢟

�ଶ࢝ଶ
࢞ ≈ �ଵ࢝ଵ

ଷ࢝ = argmin3࢝ ∈� 3 �ሺ࢝, ଷ࢝ሻ�ଷ࢞ ଶ࢝ ∈ �ଶ
ଵ࢝ ∈ �ଵ

≈
≈

(b) DeepCA

ℓሺࢠଷ, ሻ࢟

ଵ࢝
࢞

ଶ࢝ ଶࢠ ∈ �ଶ
ଵࢠ ∈ �ଵ

ଷ࢝ ଷࢠ ∈ �ଷ

(c) ADNN

ℓሺࢠଷ[�], ሻ࢟

ଵ[ଵ]ࢠ
࢞
ଶ[ଵ]ࢠ
ଷ[ଵ]ࢠ

ଵ[ଶ]ࢠ
ଶ[ଶ]ࢠ
ଷ[ଶ]ࢠ

[�]ଵࢠ
[�]ଶࢠ
[�]ଷࢠ

(d) Unrolled ADNN

Fig. 2: A comparison between feed-forward neural networks and the proposed deep
component analysis (DeepCA) model. Standard deep networks construct learned rep-
resentations as feed-forward compositions of nonlinear functions (a). DeepCA instead
treats them as unknown latent variables to be inferred by constrained optimization
(b). To accomplish this, we propose a diferentiable inference algorithm that can be
expressed as an Alternating Direction Neural Network (ADNN) (c), a recurrent gener-
alization of feed-forward networks that can be unrolled to a ixed number of iterations
for learning via backpropagation (d).

from the perspective of deep neural networks by relaxing the implicit assumption
that the input to a layer is constrained to be the output of the previous layer, as
shown in Eq. 1 below. In a feed-forward network (left), the output of layer j, de-
noted aj , is given in closed-form as a nonlinear function of aj−1. DeepCA (right)
instead takes a generative approach in which the latent variables wj associated
with layer j are inferred to optimally reconstruct wj−1 as a linear combination
of learned components subject to some constraints Cj .

Feed-Forward: aj = ϕ(BT

j aj−1) =⇒ DeepCA: Bjwj ≈ wj−1 s.t. wj ∈ Cj (1)

From this perspective, intermediate network “activations” cannot be found
in closed-form but instead require explicitly solving an optimization problem.
While a variety of diferent techniques could be used for performing this infer-
ence, we propose the Alternating Direction Method of Multipliers (ADMM) [5].
Importantly, we demonstrate that after proper initialization, a single iteration of
this algorithm is equivalent to a pass through an associated feed-forward neural
network with nonlinear activation functions interpreted as proximal operators
corresponding to penalties or constraints on the coeicients. The full inference
procedure can thus be implemented using Alternating Direction Neural Networks
(ADNN), recurrent generalizations of feed-forward networks that allow for pa-
rameter learning using backpropagation. A comparison between standard neural
networks and DeepCA is shown in Fig. 2. Experimentally, we demonstrate that
recurrent passes through convolutional neural networks enable better sparsity
control resulting in consistent performance improvements in both supervised and
unsupervised tasks without introducing any additional parameters.

More importantly, DeepCA also allows for other constraints that would be
impossible to efectively enforce with a single feed-forward pass through a net-

4 C. Murdock, M.-F. Chang, and S. Lucey

Image Given Baseline T = 2 T = 3 T = 5 T = 10 T = 20 Truth

Fig. 3: A demonstration of DeepCA applied to single-image depth prediction using
images concatenated with sparse sets of known depth values as input. Baseline feed-
forward networks are not guaranteed to produce outputs that are consistent with the
given depth values. In comparison, ADNNs with an increasing number of iterations
(T > 1) learn to satisfy the sparse output constraints, resolving ambiguities for more
accurate predictions without unrealistic discontinuities.

work. As an example, we consider the task of single-image depth prediction,
a diicult problem due to the absence of three-dimensional information such as
scale and perspective. In many practical scenarios, however, sparse sets of known
depth outputs are available for resolving these ambiguities to improve accuracy.
This prior knowledge can come from additional sensor modalities like LIDAR or
from other 3D reconstruction algorithms that provide sparse depths around tex-
tured image regions. Feed-forward networks have been proposed for this problem
by concatenating known depth values as an additional input channel [30]. How-
ever, while this provides useful context, predictions are not guaranteed to be
consistent with the given outputs leading to unrealistic discontinuities. In com-
parison, DeepCA enforces the constraints by treating predictions as unknown
latent variables. Some examples of how this behavior can resolve ambiguities
are shown in Fig. 3 where ADNNs with additional iterations learn to propagate
information from the given depth values to produce more accurate predictions.

In addition to practical advantages, our model also provides a novel perspec-
tive for conceptualizing deep learning techniques. Speciically, rectiied linear
unit (ReLU) activation functions [14], which are ubiquitous among many state-
of-the-art models in a variety of applications, are equivalent to ℓ1-penalized,
sparse projections onto non-negativity constraints. Alongside the interpretation
of feed-forward networks as single-iteration approximations of reconstruction ob-
jective functions, this suggests new insights towards better understanding the
efectiveness of deep neural networks from the perspective of sparse approxima-
tion theory.

Deep Component Analysis via Alternating Direction Neural Networks 5

2 Background and Related Work
In order to motivate our approach, we irst provide some background on matrix
factorization, component analysis, and deep neural networks.

Component analysis is a common approach for shallow representation learn-
ing that approximately decomposes data x ∈ R

d into linear combinations of
learned components in B ∈ R

d×k. This is typically accomplished by minimizing
reconstruction error subject to constraints C on the coeicients that serve to
resolve ambiguity or incorporate prior knowledge such as low-rank structure or
sparsity. Some examples include Principal Component Analysis (PCA) [44] for
dimensionality reduction and sparse dictionary learning [2] which accommodates
overcomplete representations by enforcing sparsity.

While the problem of learning both the components and coeicients is typ-
ically non-convex, its structure naturally suggests simple alternating minimiza-
tion strategies that are often guaranteed to converge [45]. However, these tech-
niques typically require careful initialization in order to avoid poor local min-
ima. This difers from backpropagation with stochastic gradient descent wherein
random initializations are often suicient. Alternatively, we consider a nested
optimization problem that separates learning from inference:

argmin
B

n
∑

i=1

1
2∥x

(i) −Bf(x(i))∥22 s.t. f(x) = argmin
w∈C

1
2 ∥x−Bw∥

2
2 (2)

Here, the inference function f : Rd → R
k is a potentially nonlinear transfor-

mation that maps data to their corresponding representations by solving an
optimization problem with ixed parameters. For unconstrained PCA with or-
thogonal components, this inference problem has a simple closed-form solution
given by the linear transformation fPCA(x) = B

Tx. Substituting this into Eq. 2
results in a linear autoencoder with one hidden layer and tied weights, which has
the same unique global minimum but can be trained by backpropagation [1].

With general constraints, inference typically cannot be accomplished in closed
form but must instead rely on an iterative optimization algorithm. However, if
this algorithm is composed as a inite sequence of diferentiable transformations,
then the model parameters can still be learned in the same way by backpropagat-
ing gradients through the steps of the inference algorithm. We extend this idea
by representing an algorithm for inference in our DeepCA model as a recurrent
neural network unrolled to a ixed number of iterations.

Recently, deep neural networks have emerged as the preferred alternative to
component analysis for representation learning of visual data. Their ability to
jointly learn multiple layers of abstraction has been shown to allow for encoding
increasingly complex features such as textures and object parts [26]. Unlike with
component analysis, inference is given in closed-form by design. Speciically, a
representation is constructed by passing an image x through the composition of
alternating linear transformations with parameters Bj and bj and ixed nonlinear
activation functions ϕj for layers j = 1, . . . , l as follows:

fDNN(x) = ϕl

(

B
T

l · · ·ϕ2(B
T

2 (ϕ1(B
T

1x− b1)− b2) · · · − bl
)

(3)

6 C. Murdock, M.-F. Chang, and S. Lucey

Instead of considering the forward pass of a neural network as an arbitrary
nonlinear function, we interpret it as a method for approximate inference in
an unsupervised generative model. This follows from previous work which has
shown it to be equivalent to bottom-up inference in a probabilistic graphical
model [38] or approximate inference in a multi-layer convolutional sparse coding
model [36,40]. However, these approaches have limited practical applicability due
to their reliance on careful hyperparameter selection and specialized optimization
algorithms. While ADMM has been proposed as a gradient-free alternative to
backpropagation for parameter learning [42], we use it only for inference which
allows for simpler learning using backpropagation with arbitrary loss functions.

Aside from ADNNs, recurrent feedback has been proposed in other models
to improve performance by iteratively reining predictions, especially for appli-
cations such as human pose estimation or image segmentation where outputs
have complex correlation patterns [3, 7, 27]. While some methods also imple-
ment feedback by directly unrolling iterative algorithms, they are often geared
towards speciic applications such as graphical model inference [11, 18], solving
under-determined inverse problems [12, 15, 41], or image alignment [28]. Similar
to [46], DeepCA provides a more general mechanism for low-level feedback in
arbitrary neural networks, but it is motivated by the more interpretable goal of
minimizing reconstruction error subject to constraints on network activations.

3 Deep Component Analysis

Deep Component Analysis generalizes the shallow inference objective function
in Eq. 2 by introducing additional layers j = 1, . . . , l with parameters Bj ∈
R

pj−1×pj . Optimal DeepCA inference can then be accomplished by solving:

f∗(x) = argmin
{wj}

l
∑

j=1

1
2 ∥wj−1 −Bjwj∥

2
2 + Φj(wj) s.t. w0 = x (4)

Instead of constraint sets Cj , we use penalty functions Φj : Rpj → R to enable
more general priors. Note that hard constraints can still be represented by in-
dicator functions I(wj ∈ Cj) that equal zero if wj ∈ Cj and ininity otherwise.
While we use pre-multiplication with a weight matrix Bj to simplify notation,
our method also supports any linear transformation by replacing transposed
weight matrix multiplication with its corresponding adjoint operator. For exam-
ple, the adjoint of convolution is transposed convolution, a popular approach to
upsampling in convolutional networks [34].

If the penalty functions are convex, this problem is also convex and can
be solved using standard optimization methods. While this appears to difer
substantially from inference in deep neural networks, we later show that it can
be seen as a generalization of the feed-forward inference function in Eq. 3. In
the remainder of this section, we justify the use of penalty functions in lieu
of explicit nonlinear activation functions by drawing connections between non-
negative ℓ1 regularization and ReLU activation functions. We then propose a

Deep Component Analysis via Alternating Direction Neural Networks 7

general algorithm for solving Eq. 4 for the unknown coeicients and formalize
the relationship between DeepCA and traditional deep neural networks, which
enables parameter learning via backpropagation.

3.1 From Activation Functions to Constraints
Before introducing our inference algorithm, we irst discuss the connection be-
tween penalties and their nonlinear proximal operators, which forms the ba-
sis of the close relationship between DeepCA and traditional neural networks.
Ubiquitous within the ield of convex optimization, proximal algorithms [37] are
methods for solving nonsmooth optimization problems. Essentially, these tech-
niques work by breaking a problem down into a sequence of smaller problems
that can often be solved in closed-form by proximal operators ϕ : Rd → R

d asso-
ciated with penalty functions Φ : Rd → R given by the solution to the following
optimization problem, which generalizes projection onto a constraint set:

ϕ(w) = argmin
w′

1
2 ∥w −w′∥

2
2 + Φ(w′) (5)

Within the framework of DeepCA, we interpret nonlinear activation func-
tions in deep networks as proximal operators associated with convex penalties
on latent coeicients in each layer. While this connection cannot be used to
generalize all nonlinearities, many can naturally be interpreted as proximal op-
erators. For example, the sparsemax activation function is a projection onto the
probability simplex [31]. Similarly, the ReLU activation function is a projection
onto the nonnegative orthant. When used with a negative bias b, it is equiva-
lent to nonnegative soft-thresholding S+

b
, the proximal operator associated with

nonnegative ℓ1 regularization:

Φℓ
+

1 (w) = I(w ≥ 0)+
∑

pbp |wp| =⇒ ϕℓ
+

1 (w) = S+
b
(w) = ReLU(w−b) (6)

While this equivalence has been noted previously as a means to theoretically an-
alyze convolutional neural networks [36], DeepCA supports optimizing the bias
b as an ℓ1 penalty hyperparameter via backpropagation for adaptive regulariza-
tion, which results in better control of representation sparsity.

In addition to standard activation functions, DeepCA also allows for enforc-
ing additional constraints that encode prior knowledge if their corresponding
proximal operators can be computed eiciently. For our example of single-image
depth prediction with a sparse set of known outputs y provided as prior knowl-
edge, the penalty function on the inal output wl is Φl(wl) = I(Swl = y) where
the selector matrix S extracts the indices corresponding to the known outputs
in y. The associated proximal operator φl projects onto this constraint set by
simply correcting the outputs that disagree with the known constraints. Note
that this would not be an efective output nonlinearity in a feed-forward network
because, while the constraints would be technically satisied, there is nothing to
enforce that they be consistent with neighboring predictions leading to unrealis-
tic discontinuities. In contrast, DeepCA inference minimizes the reconstruction
error at each layer subject to these constraints by taking multiple iterations
through the network.

8 C. Murdock, M.-F. Chang, and S. Lucey

3.2 Inference by the Alternating Direction Method of Multipliers

With the model parameters ixed, we solve our DeepCA inference problem using
the Alternating Direction Method of Multipliers (ADMM), a general optimiza-
tion technique that has been successfully used in a wide variety of applica-
tions [5]. To derive the algorithm applied to our problem, we irst modify our
objective function by introducing auxiliary variables zj that we constrain to be
equal to the unknown coeicients wj , as shown in Eq. 7 below.

argmin
{wj ,zj}

l
∑

j=1

1
2 ∥zj−1−Bjwj∥

2
2 + Φj(zj) s.t. w0 = x, ∀j : wj = zj (7)

From this, we construct the augmented Lagrangian Lρ with dual variables λ
and a quadratic penalty hyperparameter ρ = 1:

Lρ =

l
∑

j=1

1
2 ∥zj−1 −Bjwj∥

2
2 + Φj(zj) + λT

j (wj − zj) +
ρ
2 ∥wj − zj∥

2
2 (8)

The ADMM algorithm then proceeds by iteratively minimizing Lρ with re-
spect to each set of variables with the others ixed, breaking our full inference
problem into smaller pieces that can each be solved in closed form. Due to the
decoupling of layers in our DeepCA model, the latent activations can be up-
dated incrementally by stepping through each layer in succession, resulting in
faster convergence and computations that mirror the computational structure
of deep neural networks. With only one layer, our objective function is separa-
ble and so this algorithm reduces to the classical two-block ADMM, which has
extensive convergence guarantees [5]. For multiple layers, however, our problem
becomes non-separable and so this algorithm can be seen as an instance of cycli-
cal multi-block ADMM with quadratic coupling terms. While our experiments
have shown this approach to be efective in our applications, theoretical analysis
of its convergence properties is still an active area of research [9].

A single iteration of our algorithm proceeds by taking the following steps for
all layers j = 1, . . . , l in succession:

1.) First, wj is updated by minimizing the Lagrangian after ixing the asso-
ciated auxiliary variable zj from the previous iteration along with that of the
previous layer zj−1 from the current iteration:

w
[t+1]
j := argmin

wj

Lρ(wj , z
[t+1]
j−1 , z

[t]
j ,λ

[t]
j) (9)

=
(

B
T

j Bj + ρI
)−1

(BT

j z
[t+1]
j−1 + ρz

[t]
j − λ

[t]
j)

This is an unconstrained linear least squares problem, so it’s solution is given
by solving a linear system of equations.

Deep Component Analysis via Alternating Direction Neural Networks 9

2.) Next, zj is updated by ixing the newly updated wj along with the next
layer’s coeicients wj+1 from the previous iteration:

z
[t+1]
j := argmin

zj

Lρ(w
[t+1]
j ,w

[t]
j+1, zj ,λ

[t]
j) (10)

= ϕj

(

1
ρ+1Bj+1w

[t]
j+1 +

ρ
ρ+1 (w

[t+1]
j + 1

ρ
λ
[t]
j)

)

z
[t+1]
l

:= ϕj

(

w
[t+1]
j + 1

ρ
λ
[t]
j

)

This is the proximal minimization problem from Eq. 5, so its solution is given in
closed form via the proximal operator φj associated with the penalty function
Φj . Note that for j ̸= l, its argument is a convex combination of the current
coeicients wj and feedback that enforces consistency with the next layer.

3.) Finally, the dual variables λj are updated with the constraint violations
scaled by the penalty parameter ρ.

λ
[t+1]
j := λ

[t]
j + ρ(w

[t+1]
j − z

[t+1]
j) (11)

This process is then repeated until convergence. Though not available as a
closed-form expression, in the next section we demonstrate how this algorithm
can be posed as a recurrent generalization of a feed-forward neural network.

4 Alternating Direction Neural Networks

Our inference algorithm essentially follows the same pattern as a deep neural
network: for each layer, a learned linear transformation is applied to the previous
output followed by a ixed nonlinear function. Building upon this observation,
we implement it using a recurrent network with standard layers, thus allowing
the model parameters to be learned using backpropagation.

Recall that the wj update in Eq. 9 requires solving a linear system of equa-
tions. While diferentiable, this introduces additional computational complexity
not present in standard neural networks. To overcome this, we implicitly assume
that the parameters in over-complete layers are Parseval tight frames, i.e. so that
BjB

T

j = I. This property is theoretically advantageous in the ield of sparse ap-
proximation [8] and has been used as a constraint to encourage robustness in
deep neural networks [32]. However, in our experiments we found that it was un-
necessary to explicitly enforce this assumption during training; with appropriate
learning rates, backpropagating through our inference algorithm was enough to
ensure that repeated iterations did not result in diverging sequences of variable
updates. Thus, under this assumption, we can simplify the update in Eq. 9 using
the Woodbury matrix identity as follows:

w
[t+1]
j := z̃

[t]
j + 1

ρ+1B
T

j

(

z
[t+1]
j−1 −Bj z̃

[t]
j

)

, z̃
[t]
j := z

[t]
j − 1

ρ
λ
[t]
j (12)

As this only involves simple linear transformations, our ADMM algorithm for
solving the optimization problem in our inference function f∗ can be expressed

10 C. Murdock, M.-F. Chang, and S. Lucey

Algorithm 1: Feed-Forward

Input: x, {Bj , bj}

Output: {wj}, {zj}

Initialize: z0 = x

for j = 1, . . . , l do
Pre-activation:
wj := B

T

j zj−1

Activation:
zj := ϕj(wj−bj)

end

Algorithm 2: Alternating Direction Neural Network

Input: x, {Bj , bj}

Output: {w[T]
j }, {z[T]

j }

Initialize: {λ[0]
j } = 0, {w[1]

j , z
[1]
j } from Alg. 1

for t = 1, . . . , T − 1 do
for j = 1, . . . , l do

Dual: Update λ
[t]
j (Eq. 11)

Pre-activation: Update w
[t+1]
j (Eq. 12)

Activation: Update z
[t+1]
j (Eq. 10)

end
end

as a recurrent neural network that repeatedly iterates until convergence. In prac-
tice, however, we unroll the network to a ixed number of iterations T for an
approximation of optimal inference so that f [T](x) ≈ f∗(x). Our full algorithm
is summarized in Algs. 1 and 2.

4.1 Generalization of Feed-Forward Networks

Given proper initialization of the variables, a single iteration of this algorithm
is identical to a single pass through a feed-forward network. Speciically, if we
let λ

[0]
j = 0 and z

[0]
j = B

T

j z
[1]
j−1, where we again denote z

[1]
0 = x, then w

[1]
j is

equivalent to the pre-activation of a neural network layer:

w
[1]
j := B

T

j z
[1]
j−1 +

1
ρ+1B

T

j

(

z
[1]
j−1 −Bj(B

T

j z
[1]
j−1)

)

= B
T

j z
[1]
j−1 (13)

Similarly, if we initialize w
[0]
j+1 = B

T

j+1w
[1]
j , then z

[1]
j is equivalent to the

corresponding nonlinear activation using the proximal operator ϕj :

z
[1]
j := ϕj

(

1
ρ+1Bj+1(B

T

j+1w
[1]
j) + ρ

ρ+1w
[1]
j

)

= ϕj

(

w
[1]
j

)

(14)

Thus, one iteration of our inference algorithm is equivalent to the standard
feed-forward neural network given in Eq. 3, i.e. f [1](x) = fDNN(x), where non-
linear activation functions are interpreted as proximal operators corresponding
to the penalties of our DeepCA model. Additional iterations through the net-
work lead to more accurate inference approximations while explicitly satisfying
constraints on the latent variables.

4.2 Learning by Backpropagation

With DeepCA inference approximated by diferentiable ADNNs, the model pa-
rameters can be learned in the same way as standard feed-forward networks.
Extending the nested component analysis optimization problem from Eq. 2, the

Deep Component Analysis via Alternating Direction Neural Networks 11

0.001 0.003 0.01 0.03

Fixed Bias (Sparse Regularization Weight)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

R
e

c
o

n
s
tr

u
c
ti
o

n
 E

rr
o

r

Baseline

DeepCA

Learned Bias

(a) Decoder Error

0.001 0.003 0.01 0.03

Fixed Bias (Sparse Regularization Weight)

0

0.2

0.4

0.6

0.8

1

S
p

a
rs

it
y
 P

ro
p

o
rt

io
n

Baseline

DeepCA

Learned Bias

(b) Layer 1 Sparsity

0.001 0.003 0.01 0.03

Fixed Bias (Sparse Regularization Weight)

0

0.2

0.4

0.6

0.8

1

S
p

a
rs

it
y
 P

ro
p

o
rt

io
n

Baseline

DeepCA

Learned Bias

(c) Layer 2 Sparsity

0.001 0.003 0.01 0.03

Fixed Bias (Sparse Regularization Weight)

0

0.2

0.4

0.6

0.8

1

S
p

a
rs

it
y
 P

ro
p

o
rt

io
n

Baseline

DeepCA

Learned Bias

(d) Layer 3 Sparsity

Fig. 4: A demonstration of the efects of ixed (solid lines) and learnable (dotted lines)
bias parameters on the reconstruction error (a) and activation sparsity (b-d) compar-
ing feed forward networks (blue) with DeepCA (red). All models consist of three layers
each with 512 components. Due to the conditional dependence provided by recurrent
feedback, DeepCA learns to better control the sparsity level in order improve recon-
struction error. As ℓ1 regularization weights, the biases converge towards zero resulting
in denser activations and higher network capacity for reconstruction.

inference function f [T] can be used as a generalization of feed-forward network
inference f [1] for backpropagation with arbitrary loss functions L that encourage
the output to be consistent with provided supervision y(i), as shown in Eq. 15
below. Here, only the latent coeicients f

[T]
l (x(i)) from the last layer are shown

in the loss function, but other intermediate outputs j ̸= l could also be included.

argmin
{Bj ,bj}

n
∑

i=1

L
(

f
[T]
l (x(i)), y(i)

)

(15)

From an agnostic perspective, an ADNN can thus be seen as an end-to-end deep
network architecture with a particular sequence of linear and nonlinear trans-
formations and tied weights. More iterations (T > 1) result in networks with
greater efective depth, potentially allowing for the representation of more com-
plex nonlinearities. However, because the network architecture was derived from
an algorithm for inference in our DeepCA model instead of arbitrary composi-
tions of parameterized transformations, the greater depth requires no additional
parameters and serves the very speciic purpose of satisfying constraints on the
latent variables while enforcing consistency with the model parameters.

5 Experimental Results

In this section, we demonstrate some practical advantages of more accurate
inference approximations in our DeepCA model using recurrent ADNNs over
feed-forward networks. Even without additional prior knowledge, standard con-
volutional networks with ReLU activation functions still beneit from additional
recurrent iterations as demonstrated by consistent improvements in both su-
pervised and unsupervised tasks on the CIFAR-10 dataset [23]. Speciically, for
an unsupervised autoencoder with an ℓ2 reconstruction loss, Fig. 4 shows that
the additional iterations of ADNNs allow for better sparsity control, resulting

12 C. Murdock, M.-F. Chang, and S. Lucey

1 2 3 4 5 6

Model Size Multiplier

0

0.1

0.2

0.3

0.4

0.5

0.6

C
la

s
s
if
ic

a
ti
o

n
 E

rr
o

r

1 Iteration (Feed-Forward)

5 Iterations

10 Iterations

(a) Training Error

1 2 3 4 5 6

Model Size Multiplier

0.2

0.3

0.4

0.5

C
la

s
s
if
ic

a
ti
o

n
 E

rr
o

r

1 Iteration (Feed-Forward)

5 Iterations

10 Iterations

(b) Testing Error

0 50 100 150 200

Training Epoch

0.15

0.2

0.25

0.3

0.35

0.4

C
la

s
s
if
ic

a
ti
o

n
 E

rr
o

r

1 Iteration (Feed-Forward)

5 Iterations

10 Iterations

(c) Optimization

Fig. 5: The efect of increasing model size on training (a) and testing (b) classiication
error, demonstrating consistently improved performance of ADNNs over feed-forward
networks, especially in larger models. The base model consists of two 3 × 3, 2-strided
convolutional layers followed by one fully-connected layer with 4, 8, and 16 components
respectively. Also shown are is the classiication error throughout training (c).

0 50 100 150 200

Training Epoch

0.01

0.02

0.03

0.04

0.05

0.06

0.07

T
ra

in
in

g
 E

rr
o
r

1 Iteration

2 Iterations

3 Iterations

5 Iterations

10 Iterations

20 Iterations

(a) Training

0 50 100 150 200

Training Epoch

0.01

0.02

0.03

0.04

0.05

0.06

0.07

T
e
s
ti
n
g
 E

rr
o
r

1 Iteration

2 Iterations

3 Iterations

5 Iterations

10 Iterations

20 Iterations

(b) Testing

1 2 3 5 10 20

Number of Iterations

0.01

0.02

0.03

0.04

0.05

0.06

0.07

T
ra

in
in

g
 E

rr
o
r

1 Residual Block

5 Residual Blocks

18 Residual Blocks

(c) Train Error

1 2 3 5 10 20

Number of Iterations

0.01

0.02

0.03

0.04

0.05

0.06

0.07

T
e
s
ti
n
g
 E

rr
o
r

1 Residual Block

5 Residual Blocks

18 Residual Blocks

(d) Test Error

Fig. 6: Quantitative results demonstrating the improved generalization performance
of ADNN inference. The training (a) and testing (b) reconstruction errors throughout
optimization show that more iterations (T > 1) substantially reduce convergence time
and give much lower error on held-out test data. With a suiciently large number of
iterations, even lower-capacity models with encoders consisting of fewer residual blocks
all achieve nearly the same level of performance with small discrepancies between
training (c) and testing (d) errors.

in higher network capacity through denser activations and lower reconstruction
error. This suggests that recurrent feedback allows ADNNs to learn richer rep-
resentation spaces by explicitly penalizing activation sparsity. For supervised
classiication with a cross-entropy loss, ADNNs also see improved accuracy as
shown in Fig. 5, particularly for larger models with more parameters per layer.
Because we treat layer biases as learned hyperparameters that modulate the rela-
tive weight of ℓ1 activation penalties, this improvement could again be attributed
to this adaptive sparsity encouraging more discriminative representations across
semantic categories.

While these experiments emphasize the importance of sparsity in deep net-
works and justify our DeepCA model formulation, the efectiveness of feed-
forward soft thresholding as an approximation of explicit ℓ1 regularization limits
the amount of additional capacity that can be achieved with more iterations. As
such, ADNNs provide much greater performance gains when prior knowledge
is available in the form of constraints that cannot be efectively approximated
by feed-forward nonlinearities. This is exempliied by our application of output-
constrained single-image depth prediction where simple feed-forward correction

Deep Component Analysis via Alternating Direction Neural Networks 13

(a)
In

pu
t

Im
ag

e

(b)

B
as

el
in

e
(T

=
1

)

(c)

A
D

N
N

(T
=

2
0

)

(d)

G
ro

un
d

T
ru

th

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)

Fig. 7: Qualitative depth prediction results given a single image (a) and a sparse set
of known depth values as input. Outputs of the baseline feed-forward model (b) are
inconsistent with the constraints as evidenced by unrealistic discontinuities. An ADNN
with T = 20 iterations (c) learns to enforce the constraints, resolving ambiguities
for more detailed predictions that better agree with ground truth depth maps (d).
Depending on the diiculty, additional iterations may have little efect on the output
(viii) or be insuicient to consistently integrate the known constraint values (ix).

of the known depth values results in inconsistent discontinuities. We demon-
strate this with the NYU-Depth V2 dataset [33], from which we sample 60k
training images and 500 testing images from held-out scenes. To enable clearer
visualization, we resize the images to 28× 28 and then randomly sample 10% of
the ground truth depth values to simulate known measurements. Following [30],
our model architecture uses a ResNet encoder for feature extraction of the im-
age concatenated with the known depth values as an additional input channel.
This is followed by an ADNN decoder composed of three transposed convolution
upsampling layers with biased ReLU nonlinearites in the irst two layers and a
constraint correction proximal operator in the last layer. Fig. 6 shows the mean
absolute prediction errors of this model with increasing numbers of iterations
and diferent encoder sizes. While all models have similar prediction error on
training data, ADNNs with more iterations achieve signiicantly improved gen-
eralization performance, reducing the test error of the feed-forward baseline by
over 72% from 0.054 to 0.015 with 20 iterations even with low-capacity encoders.
Qualitative visualizations in Fig. 7 show that these improvements result from
consistent constraint satisfaction that serves to resolve depth ambiguities.

In Figure 8, we also show qualitative and quantitative results on the full-
sized images, an easier problem due to reduced ambiguities provided by higher-
resolution details. While feed-forward models have achieved good performance
given suicient model capacity [30], they generalize poorly due to globally-biased
prediction errors causing disagreement with the known measurements. By ex-

14 C. Murdock, M.-F. Chang, and S. Lucey

B
as

el
in

e
A

D
N

N

Image Baseline ADNN

Table 1: Quantitative Results

Method ResNet # Params RMSE Rel δ1 δ2 δ3

Baseline 18 1.5× 107 0.54 0.16 79.2 94.7 99.4
ADNN 18 1.2× 107 0.28 0.06 95.5 99.4 99.9
Baseline 10 8.8× 106 0.56 0.16 79.8 94.6 99.4
ADNN 10 6.5 × 10

6 0.24 0.05 97.3 99.6 99.9
[30] 50 3.4× 107 0.23 0.04 97.1 99.4 99.8

Fig. 8: Results on full-sized images from the NYU-Depth V2 dataset, comparing the
feed-forward baseline and ADNN (with 10 iterations) architectures shown on top. On
the left, example absolute error maps are visualized with lighter colors corresponding
to higher errors and gray points indicating the locations of 200 randomly sampled
measurements. On the right, quantitative metrics (following [30]) demonstrate the efect
of changing the ResNet encoder size on prediction performance. Despite having far
fewer learnable parameters, ADNNs perform comparably to a state-of-the-art feed-
forward model due to explicit enforcement of the sparse output constraints.

plicitly enforcing agreement with the sparse output constraints, ADNNs reduce
outliers and give improved test performance that is comparable with feed-forward
networks requiring signiicantly more learnable parameters.

6 Conclusion

DeepCA is a novel deep model formulation that extends shallow component
analysis techniques to increase representational capacity. Unlike feed-forward
networks, intermediate network activations are interpreted as latent variables to
be inferred using an iterative constrained optimization algorithm implemented
as a recurrent ADNN. This allows for learning with arbitrary loss functions and
provides a tool for consistently integrating prior knowledge in the form of con-
straints or regularization penalties. Due to its close relationship to feed-forward
networks, which are equivalent to one iteration of this algorithm with proximal
operators replacing nonlinear activation functions, DeepCA also provides a novel
perspective from which to interpret deep learning, suggesting possible new direc-
tions for the analysis and design of network architectures from the perspective
of sparse approximation theory.

Deep Component Analysis via Alternating Direction Neural Networks 15

References

1. Baldi, P., Hornik, K.: Neural networks and principal component analysis: Learning
from examples without local minima. Neural networks 2(1), 53–58 (1989)

2. Bao, C., Ji, H., Quan, Y., Shen, Z.: Dictionary learning for sparse coding: Al-
gorithms and convergence analysis. Pattern Analysis and Machine Intelligence
(PAMI) 38(7), 1356–1369 (2016)

3. Belagiannis, V., Zisserman, A.: Recurrent human pose estimation. In: International
Conference on Automatic Face & Gesture Recognition (FG) (2017)

4. Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and new
perspectives. Pattern Analysis and Machine Intelligence (PAMI) 35(8), 1798–1828
(2013)

5. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization
and statistical learning via the alternating direction method of multipliers. Foun-
dations and Trends® in Machine Learning 3(1) (2011)

6. Brachmann, E., Krull, A., Nowozin, S., Shotton, J., Michel, F., Gumhold, S.,
Rother, C.: DSAC-diferentiable RANSAC for camera localization. In: Conference
on Computer Vision and Pattern Recognition (CVPR) (2017)

7. Carreira, J., Agrawal, P., Fragkiadaki, K., Malik, J.: Human pose estimation with
iterative error feedback. In: Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (2016)

8. Casazza, P.G., Kutyniok, G.: Finite frames: Theory and applications. Springer
(2012)

9. Chen, C., Li, M., Liu, X., Ye, Y.: Extended ADMM and BCD for nonseparable
convex minimization models with quadratic coupling terms: convergence analysis
and insights. Mathematical Programming (2017)

10. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab:
Semantic image segmentation with deep convolutional nets, atrous convolution,
and fully connected CRFs. Pattern Analysis and Machine Intelligence (PAMI)
PP(99) (2017)

11. Chen, L.C., Schwing, A., Yuille, A., Urtasun, R.: Learning deep structured models.
In: International Conference on Machine Learning (ICML) (2015)

12. Diamond, S., Sitzmann, V., Heide, F., Wetzstein, G.: Unrolled optimization with
deep priors. arXiv preprint arXiv:1705.08041 (2017)

13. Gillis, N.: Sparse and unique nonnegative matrix factorization through data prepro-
cessing. Journal of Machine Learning Research (JMLR) 13(November), 3349–3386
(2012)

14. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectiier neural networks. In: In-
ternational Conference on Artiicial Intelligence and Statistics (AISTATS) (2011)

15. Gregor, K., LeCun, Y.: Learning fast approximations of sparse coding. In: Inter-
national Conference on Machine Learning (ICML) (2010)

16. Haefele, B., Young, E., Vidal, R.: Structured low-rank matrix factorization: Opti-
mality, algorithm, and applications to image processing. In: International Confer-
ence on Machine Learning (ICML) (2014)

17. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks.
In: European Conference on Computer Vision (ECCV) (2016)

18. Hu, P., Ramanan, D.: Bottom-up and top-down reasoning with hierarchical rec-
tiied gaussians. In: Conference on Computer Vision and Pattern Recognition
(CVPR) (2016)

16 C. Murdock, M.-F. Chang, and S. Lucey

19. Huang, G., Liu, Z., Weinberger, K.Q., van der Maaten, L.: Densely connected con-
volutional networks. In: Conference on Computer Vision and Pattern Recognition
(CVPR) (2017)

20. Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I.,
Wojna, Z., Song, Y., Guadarrama, S., Murphy, K.: Speed/accuracy trade-ofs for
modern convolutional object detectors. In: Conference on Computer Vision and
Pattern Recognition (CVPR) (2017)

21. Iofe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: International Conference on Machine Learning
(ICML). pp. 448–456 (2015)

22. Jutten, C., Herault, J.: Blind separation of sources, part i: An adaptive algorithm
based on neuromimetic architecture. Signal Processing 24(1), 1–10 (1991)

23. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
Tech. rep., University of Toronto (2009)

24. LeCun, Y., Bottou, L., Bengio, Y., Hafner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

25. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix fac-
torization. Nature 401(6755), 788–791 (1999)

26. Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Convolutional deep belief networks
for scalable unsupervised learning of hierarchical representations. In: International
Conference on Machine Learning (ICML) (2009)

27. Li, K., Hariharan, B., Malik, J.: Iterative instance segmentation. In: Conference
on Computer Vision and Pattern Recognition (CVPR) (2016)

28. Lin, C.H., Lucey, S.: Inverse compositional spatial transformer networks. Confer-
ence on Computer Vision and Pattern Recognition (CVPR) (2017)

29. Liu, T., Tao, D., Xu, D.: Dimensionality-dependent generalization bounds for k-
dimensional coding schemes. Neural computation (2016)

30. Ma, F., Karaman, S.: Sparse-to-dense: Depth prediction from sparse depth samples
and a single image. In: International Conference on Robotics and Automation
(ICRA) (2018)

31. Martins, A., Astudillo, R.: From softmax to sparsemax: A sparse model of attention
and multi-label classiication. In: International Conference on Machine Learning
(ICML) (2016)

32. Moustapha, C., Piotr, B., Edouard, G., Yann, D., Nicolas, U.: Parseval networks:
Improving robustness to adversarial examples. arXiv preprint arXiv:1704.08847
(2017)

33. Nathan Silberman, Derek Hoiem, P.K., Fergus, R.: Indoor segmentation and sup-
port inference from RGBD images. In: European Conference on Computer Vision
(ECCV) (2012)

34. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmen-
tation. In: International Conference on Computer Vision (ICCV) (2015)

35. Olshausen, B.A., et al.: Emergence of simple-cell receptive ield properties by learn-
ing a sparse code for natural images. Nature 381(6583), 607–609 (1996)

36. Papyan, V., Romano, Y., Elad, M.: Convolutional neural networks analyzed via
convolutional sparse coding. Journal of Machine Learning Research (JMLR) 18(83)
(2017)

37. Parikh, N., Boyd, S., et al.: Proximal algorithms. Foundations and Trends® in
Optimization 1(3) (2014)

38. Patel, A.B., Nguyen, M.T., Baraniuk, R.: A probabilistic framework for deep learn-
ing. In: Advances in Neural Information Processing Systems (NIPS) (2016)

Deep Component Analysis via Alternating Direction Neural Networks 17

39. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recog-
nition in videos. In: Advances in Neural Information Processing Systems (NIPS)
(2014)

40. Sulam, J., Papyan, V., Romano, Y., Elad, M.: Multi-layer convolutional sparse
modeling: Pursuit and dictionary learning. arXiv preprint arXiv:1708.08705 (2017)

41. Sun, J., Li, H., Xu, Z., et al.: Deep ADMM-net for compressive sensing MRI. In:
Advances in Neural Information Processing Systems (NIPS) (2016)

42. Taylor, G., Burmeister, R., Xu, Z., Singh, B., Patel, A., Goldstein, T.: Training
neural networks without gradients: A scalable admm approach. In: International
Conference on Machine Learning (ICML) (2016)

43. Tulsiani, S., Zhou, T., Efros, A.A., Malik, J.: Multi-view supervision for single-
view reconstruction via diferentiable ray consistency. In: Conference on Computer
Vision and Pattern Recognition (CVPR) (2017)

44. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemometrics
and intelligent laboratory systems 2(1-3), 37–52 (1987)

45. Xu, Y., Yin, W.: A block coordinate descent method for regularized multiconvex
optimization with applications to nonnegative tensor factorization and completion.
SIAM Journal on imaging sciences 6(3), 1758–1789 (2013)

46. Zamir, A.R., Wu, T.L., Sun, L., Shen, W., Malik, J., Savarese, S.: Feedback net-
works. In: Advances in Neural Information Processing Systems (NIPS) (2017)

47. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep
learning requires rethinking generalization. In: International Conference on Learn-
ing Representations (ICLR) (2017)

