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Abstract. Robust and accurate visual localization across large appear-
ance variations due to changes in time of day, seasons, or changes of the
environment is a challenging problem which is of importance to applica-
tion areas such as navigation of autonomous robots. Traditional feature-
based methods often struggle in these conditions due to the significant
number of erroneous matches between the image and the 3D model. In
this paper, we present a method for scoring the individual correspon-
dences by exploiting semantic information about the query image and
the scene. In this way, erroneous correspondences tend to get a low se-
mantic consistency score, whereas correct correspondences tend to get a
high score. By incorporating this information in a standard localization
pipeline, we show that the localization performance can be significantly
improved compared to the state-of-the-art, as evaluated on two challeng-
ing long-term localization benchmarks.

Keywords: Visual localization, semantic segmentation, camera pose es-
timation, outlier rejection, self-driving cars

1 Introduction

Visual localization, i.e., estimating the camera pose of a query image with respect
to a scene model, is one of the core problems in computer vision. It plays a central
role in a wide range of practical applications, such as Structure-from-Motion
(SfM) [43], augmented reality [9], and robotics [31], where visual navigation for
autonomous vehicles has recently been receiving considerable attention.

Traditional approaches to the visual localization problem [27–29,38,40,47,58]
rely on local feature descriptors to establish correspondences between 2D features
found in a query image and 3D points in an SfM model of the scene. These 2D-
3D matches are then used to estimate the camera pose of the query image by
applying an n-point-pose solver, e.g., [23], inside a RANSAC loop [18]. Learning-
based alternatives exist [6,7,21,22,51], but are either less accurate than feature-
based approaches [40, 51] or struggle to handle larger scenes [7, 21, 37]. Feature-
based approaches thus still represent the current state-of-the-art [37,40,51].

Existing feature-based methods for visual localization tend to work very well
when the query image is taken under similar conditions as the database images
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Fig. 1. Illustration of the visual localization approach proposed in this paper. We
extend the standard localization pipeline (blue boxes) to include a semantic consistency
score (red boxes). Our approach rates the consistency of each 2D-3D match and uses
the score to prioritize more consistent matches during RANSAC-based pose estimation.

used for creating the 3D model. However, feature matching performance suffers if
the localization and mapping stages occur far apart in time [37], e.g., in different
weather conditions, between day and night, or across different seasons. As feature
detectors become less repeatable and feature descriptors less similar, localization
pipelines struggle to find enough correct 2D-3D matches to facilitate successful
pose estimation. One possible solution is to map the scene in as wide a range
of different conditions as possible. Yet, 3D model construction and extensive
data collection are costly, time-consuming, and tedious processes. At the same
time, the resulting models consume a significant amount of memory. Developing
localization algorithms that work well across a wide range of conditions, even if
the 3D model is constructed using only a single condition, is thus desirable.

This paper presents a step towards robust algorithms for long-term visual
localization through a novel strategy for robust inlier / outlier detection. The
main insight is that semantic information can be used as a weak supervisory
signal to distinguish between correct and incorrect correspondences: Given a
semantic segmentation for each database image, we can assign a semantic label
to each 3D point in the SfM model. Given a pose estimate for a query image,
we can project the 3D points into a semantic segmentation of the query image.
An estimate close to the correct pose should lead to a semantically consistent

projection, where each point is projected to an image region with the same
semantic label. Based on this idea, we assign each 2D-3D match a semantic
consistency score, where high scores are assigned to matches more likely to be
correct. We later use these scores to bias sampling during RANSAC-based pose
estimation. See Fig. 1 for an overview. While conceptually simple, this strategy
leads to dramatic improvements in terms of localization rate and pose accuracy in
the long-term localization scenario. The reason is that, unlike existing methods,
our approach takes advantage of unmatched 3D points, and consequently copes
much better with situations in which only few correct matches can be found.

While the idea of using semantics for localization is not new, cf. [42,48], the
challenge is to develop a computationally tractable framework that takes ad-
vantage of the available information. In detail, this paper makes the following
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Fig. 2. For each ground truth camera pose, we have counted how many true inlier 2D-
3D matches have been obtained at the matching stage (shown in the left figure). Note
that in around 70% of the cases, there are less than 7 true inliers. For structure-based
methods, typically 12 or more consistent 2D-3D matches are required to compute and
verify a camera pose, cf. [27,28,36]. The right figure shows a histogram over the number
of matches for the same submap from the CMU Seasons dataset [5, 37].

contributions: 1) We present a new localization method that incorporates both
standard feature matching and semantic information in a robust and efficient
manner. At the center of our method is a novel semantic consistency check that
allows us to rate the quality of individual 2D-3D matches. 2) We extensively
evaluate and compare our method to the current state-of-the-art on two bench-
marks for long-term visual localization. Our experimental results show significant
improvements by incorporating semantics, particularly for challenging scenarios
due to change of weather, seasonal, and lighting conditions.

The remainder of this paper is structured as follows: Sec. 2 reviews related
work. Sec. 3 derives our semantic consistency score and shows how it can be
incorporated into a state-of-the-art localization pipeline. Sec. 4 extensively eval-
uates our approach in the context of long-term localization.

2 Related Work

Traditionally, there are two approaches to visual localization: The first one uses
image retrieval techniques to find the most relevant database images for each
query image [1, 11, 24, 39,41,49,56, 57]. The pose of the query image is then ap-
proximated by the pose of the top-ranked retrieved image [11] or computed from
the top-k ranking database images [40,56,59]. Instead of explicitly representing
a scene by a database of images, another approach is to implicitly model a scene
by a CNN trained for pose regression [21,22,51] or place classification [52].

The second approach is based on 3D scene models, typically reconstructed
using SfM. Such structure-based methods assign one or more feature descriptors,
e.g., SIFT [30] or LIFT [53], to each 3D point. For a given query image, 2D-3D
correspondences are established using descriptor matching. These matches are
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then used to estimate the camera pose. Compared to image-retrieval approaches,
structure-based methods tend to provide more accurate camera poses [40]. Yet,
it is necessary that enough correct matches are found to not only estimate a pose,
but also to verify that the pose is indeed correct, e.g., through inlier counting.
As shown in Fig. 2 and [37], these conditions are often not satisfied when the
query images are taken under significantly different conditions compared to the
database images. Our approach extends structure-based methods by incorporat-
ing semantic scene understanding into the pose estimation stage.

Structure-based approaches for visual localization can be classified based on
their efficiency and ability to handle more complex scenes. Approaches based
on prioritized matching [12,28,36] focus on efficiency by terminating correspon-
dence search once a fixed number of matches has been found. In order to handle
more complex environments, robust structure-based approaches either relax the
matching criteria [8, 27, 38, 47, 58] or restrict the search space [20, 27, 29, 38].
The latter type of methods use image retrieval [20, 38] or co-visibility informa-
tion [27, 29] to determine which parts of the scene are visible in a query image,
potentially allowing them to disambiguate matches. The former type handles the
larger amount of outliers resulting from a more relaxed matching stage through
deterministic outlier filtering. To this end, they use geometric reasoning to deter-
mine how consistent each match is with all other matches [8, 47, 58]. Especially
when the gravity direction is known, which is typically the case in practice (e.g.,
via sensors or vanishing points), such approaches can handle outlier ratios of 99%
or more [47, 58]. Our approach combines techniques from geometric outlier fil-
tering [47,58] with reasoning based on scene semantics. This enables our method
to better handle scenarios where it is hard to find correct 2D-3D matches.

An alternative to obtaining 2D-3D correspondences via explicit feature match-
ing is to directly learn the matching function [6, 7, 10, 33, 45, 50]. Such methods
implicitly represent the 3D scene structure via a random forest or CNN that pre-
dicts a 3D scene coordinate for a given image patch [33]. While these methods
can achieve a higher pose accuracy than feature-based approaches [7], they also
have problems handling larger outdoor scenes to the extent that training might
fail completely [7, 37, 42].

The idea of using semantic scene understanding as part of the visual localiza-
tion process has gained popularity over the last few years. A common strategy
is to include semantics in the matching stage of visual localization pipelines,
either by detecting and matching objects [3, 4, 15, 35, 44, 55] or by enhancing
classical feature descriptors [2,25,46]. The latter type of approaches still mainly
relies on the strength of the original descriptor as semantics only provide a weak
additional signal. Thus, these approaches do not solve the problem of finding
enough correct correspondences, which motivates our work. Recent work shows
that directly learning a descriptor that encodes both 3D scene geometry and se-
mantic information significantly improves matching performance [42]. Yet, this
approach requires depth maps for each query image, e.g., from stereo, which are
not necessarily available in the scenario we are considering.
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In contrast to the previously discussed approaches, which aim at improving
the matching stage in visual localization, our method focuses on the subsequent
pose estimation stage. As such, most similar to ours is existing work on semantic
hypothesis verification [14] and semantic pose refinement [48]. Given a hypothesis
for the alignment of two SfM models, Cohen et al. [14] project the 3D points
of one model into semantic segmentations of the images used to reconstruct the
other model. They count the number of 3D points projecting into regions labelled
as “sky” and select the alignment hypotheses with lowest number of such free-
space violations. While Cohen et al. make hard decisions, our approach avoids
them by converting our semantic consistency score into sampling probabilities
for RANSAC. Our approach aims at improving pose hypothesis generation while
Cohen et al. only rate given hypotheses. Given an initial camera pose hypothesis,
Toft et al. [48] use semantics to obtain a refined pose estimate by improving the
semantic consistency of projected 3D points and curve segments. Their approach
could be used as a post-processing step for the poses estimated by our method.

3 Semantic Match Consistency for Visual Localization

As outlined above, long-term localization is a hard problem due to the diffi-
culty of establishing reliable correspondences. Our approach follows a standard
feature-based pipeline and is illustrated in Fig. 1. Our central contribution is a
novel semantic consistency score that is used to determine which matches are
likely to be correct. Building on top of existing work on geometric outlier filter-
ing [47,58], we generate a set of pose hypotheses for each 2D-3D correspondence
established during the descriptor matching stage. These poses are then used
to measure the semantic consistency of each match. We then use the consis-
tency scores to bias sampling inside RANSAC towards semantically consistent
matches, allowing RANSAC to focus more on matches more likely to be correct.

Specifically, for each pose hypothesis generated by a given 2D-3D match, we
project the visible 3D structure into the corresponding camera. Since each 3D
point is endowed with a semantic label, it is possible to compare the observed
semantic label in the query image with the label assigned to the 3D point. The se-
mantic inlier count for that pose is given by the number of 3D points that project
into pixels whose semantic class agrees with that of the point. The semantic con-
sistency for the 2D-3D correspondence is then defined as the maximum semantic
inlier count over all hypotheses generated by that correspondence.

Our approach offers a clear advantage over existing outlier filtering strate-
gies [8,47,58]: Rather than being restricted to the 2D-3D correspondences found
during the matching stage, the semantic consistency score allows us to also use
unmatched 3D points when rating the 2D-3D matches. As a result, our approach
is better able to handle scenarios in which it is hard to find many correct matches.

In this section, we present our proposed localization method based on seman-
tic consistency in detail. We first introduce necessary notation. Sec. 3.1 explains
the pose hypothesis generation stage. Our semantic consistency score is then
described in Sec. 3.2. Finally, Sec. 3.3 summarizes the complete pipeline.
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Fig. 3. Example triangulation of a point during the 3D reconstruction of the point
cloud. The example shows a 3D point triangulated from three observations. The quan-
tities θi, d

lower
i and d

upper

i as defined in the text are shown. The vector vi for this point
is the unit vector in the middle between v

lower and v
upper.

Notation. We compute the camera pose of a query image relative to a 3D
point cloud that has been pre-computed using a regular Structure-from-Motion
pipeline. The 3D map is defined as a set of 3D points

M = {(Xi, ci,f i,vi, θi, d
lower
i , dupperi )}Ni=1 , (1)

where N is the number of 3D points in the model. Each 3D point is defined by
its 3D coordinates Xi, its class label ci (e.g., vegetation, road, etc), visibility
information, and its corresponding (mean) feature descriptor f i. We encode
the visibility information of a point as follows (cf. Fig. 3): vi is a unit vector
pointing from the 3D point towards the mean direction from which the 3D point
was seen during reconstruction. It is computed by determining the two most
extreme viewpoints from which the point was triangulated (vlower and vupper in
the figure) and choosing the direction half-way between them. The angle θi is
the angle between the two vectors. The quantities dlower

i and dupperi denote the
minimum and maximum distances, respectively, from which the 3D point was
observed during SfM. Note that all this information is readily provided by SfM.

The semantic class labels are found by performing a pixelwise semantic la-
belling of all database images. For a 3D point in the SfM model, we assign its
label ci to the semantic class it was most frequently observed in.

3.1 Generating Camera Pose Hypotheses

In order to determine the semantic consistency of a single 2D-3D match xj ↔
Xj , we compute a set of plausible camera poses for this match. We thereby follow
the setup used by geometric outlier filters [47, 58] and assume that the gravity
direction g in the local camera coordinates of the query image is known. This
assumption is not restrictive as the gravity direction can typically be estimated
very reliably from sensors or from vanishing points. In the experiments, the



Semantic Match Consistency 7

Fig. 4. If the gravity direction is known in the camera’s coordinate system, a single
2D-3D match xj ↔ Xj constrains the camera center to lie on a cone with Xj at the
vertex, and whose axis is parallel to the gravity direction. If the camera height is also
known, the camera center must lie on a circle (shown in red).

gravity direction in local camera coordinates was extracted from the ground
truth camera pose.

Knowing the intrinsic camera calibration and the point position Xj , the
correspondence can be used to restrict the set of plausible camera poses under
which Xj exactly projects to xj [47,58]: The camera center must lie on a circular
cone with Xj at its vertex (cf. Fig. 4). To see this, let the position of the
camera center be C and the coordinates of Xj be (xj , yj , zj)

T . In a slight abuse
of notation, let xj be the normalized viewing direction corresponding to the
matching 2D feature. Since the gravity vector g in local camera coordinates is
known, we can measure the angle β between the gravity direction and the line
that joins C and Xj as β = arccos(gTxj). Assuming that the gravity direction
in the 3D model coincides with the z-axis, the angle between the line joining C
and Xj and the xy − plane then is

α = arccos(gTxj)− π/2 . (2)

The set of points C such that the angle between the xy − plane and the line
joining C and Xj equals α is a cone with Xj as the vertex. Note that the cone’s
position and opening angle are fully determined by g and the correspondence
xj ↔ Xj . Also note that the camera rotation is fully determined at each point
of the cone [58]: two of the rotational degrees of freedom are fixed by the known
gravity direction and the last degree is fixed by requiring that the viewing di-
rection of xj points to Xj . As a result, two degrees-of-freedom remain for the
camera pose, corresponding to a position on the cone’s surface.

Often, the camera height z0 can be roughly estimated from the typical depth
of the 3D point in the SfM model1. Knowing the camera height removes one
degree of freedom. As a result, the camera must lie on the circle with radius R
given by R = |zj − z0|/| tanα|, which lies in the plane z = z0, and whose center

1 This strategy is used in the experiments to estimate the camera heights.
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Algorithm 1 Semantic consistency score calculation for single correspondence
1: procedure CalculateScore(xj ,Xj , g, z0,M)
2: maxScore← 0
3: α← arccos(gTxj)− π/2 ⊲ Angle of cone
4: R← |zj − z0|/| tanα| ⊲ Radius of circle of possible camera poses
5: for φ ∈ {0◦, 1◦, . . . , 359◦} do
6: score← 0
7: Calculate camera center C(φ) using φ
8: Calculate projection matrix P (φ) using R, C(φ)
9: for Xk ∈ M do
10: u← P (φ)Xk ⊲ Project 3D point into query image
11: if C(φ) ∈ Vk and Isemantic(u) = ck then
12: score← score + 1 ⊲ Point is visible and semantically consistent

13: if score > maxScore then
14: maxScore← score
15: Cbest ← C(φ)

16: return (maxScore,Cbest)

point is the point (xj , yj , z0) [58]. For a single correspondence xj ↔ Xj , we
thus generate a set of plausible camera poses by varying an angle φ that defines
positions on this circle (cf. Fig. 4).

3.2 Measuring Semantic Match Consistency

Given a 2D-3D match xj ↔ Xj and its corresponding set of camera pose hy-
potheses (obtained by discretizing the circle into evenly spaced points), we next
compute a semantic consistency score as described in Alg. 1.

For a camera pose hypothesis corresponding to an angle φ, we project the
semantically labelled 3D points from the SfM model into a semantic segmenta-
tion of the query image. We then count the number of 3D points that project
to a pixel whose semantic class matches that of the 3D point. For each pose on
the circle, we thus find the number of 3D points that agree with the semantic la-
belling of the query image. The semantic consistency score for a match xj ↔ Xj

is then defined as the maximum number of semantic inliers while sweeping the
angle φ. Note that we project all 3D points in the model, not only the corre-
spondences found via descriptor matching. This means that the calculation of
the consistency score is not dependent of the quality of the correspondences.

Since we are using all 3D points in a model, we need to explicitly handle
occlusions: a 3D point is not necessarily visible in the image even though it
projects inside the image area for a given camera pose. We do so by defining a
visibility volume for each 3D point from the corresponding visibility information
vi, θi, d

lower
i and dupperi . The volume for the ith point is defined as

Vi =
{

X ∈ R3 : dlower
i < ||X −Xi|| < dupperi ||,∠(X −Xi,vi) < θi

}

. (3)

A 3D point is only considered visible from a camera pose with with its center at
C if C ∈ Vi. The intuition is that a 3D point only contributes to the semantic
score if it is viewed from approximately the same distance and direction as the
3D point was seen from when it was triangulated during SfM. This is not too
much of a restriction since local features are not completely invariant to changes
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Fig. 5. An example for sweeping over the angle φ for a single correct 2D-3D match.
The upper left figure shows the number of semantic inliers as a function of φ. The five
images with projected points correspond to the red lines in the top left and are shown
in order from left to right. The upper right image corresponds to the angle that yielded
the largest number of semantic inliers.

in viewpoint, i.e., features naturally do not match anymore if a query image is
taken too far away from the closest database image.

To further speed up the semantic scoring, we limit the set of labelled points
that are projected into the image. For a 2D-3D match, only those 3D points
inside a cylinder with radius R whose axis aligns with the gravity direction and
goes through the 3D point Xj are considered.

Discussion. Intuitively, if a match xj ↔ Xj is correct, we expect the number
of semantic inliers to be large for values of φ that correspond to camera poses
close to the ground truth pose, and small for values of φ that yield poses distant
to the ground truth pose. An example of this behavior is shown in Fig. 5. On
the other hand, if a match is an outlier, we would expect only a small number
of semantic inliers for all values of φ (cf. Fig. 1).

Naturally, the distribution of the number of semantic inliers over the angle φ
and the absolute value of the semantic consistency score depend on how “seman-
tically interesting” a scene is. As shown in Fig. 2, the case where many different
classes are observed leads to a clear and high peak in the distribution. If only
a single class is visible, e.g., “building”, we can expect a more uniform distri-
bution, both for correct and incorrect matches. As shown later, our approach
degenerates to the standard localization pipeline in this scenario.

3.3 Full Localization Pipeline

Fig. 1 shows our full localization pipeline: Given a query image, we extract local
(SIFT [30]) features and compute its semantic segmentation. Using approximate
nearest neighbor search, we compute 2D-3D matches between the query features
and the 3D model points. We follow common practice and use Lowe’s ratio
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test to filter out ambiguous matches [30]. Similar to work on geometric outlier
filtering [8, 47, 58], we use a rather relaxed threshold of 0.9 for the ratio test
to avoid rejecting correct matches. Next, we apply our proposed approach to
compute a semantic consistency score per 2D-3D match (cf. Alg. 1). For each
correspondence, an estimate of the camera height z0 is obtained by checking
where the database trajectory (whose poses and camera heights are available)
intersects the cone of possible poses. Lastly, we apply an n-point-pose solver
inside a RANSAC loop for pose estimation, using 10’000 iterations.

We use the consistency scores to adapt RANSAC’s sampling scheme. More
precisely, we normalize each score by the sum of the scores of all matches. We
interpret this normalized score as a probability pj and use it to bias RANSAC’s
sampling, i.e., RANSAC selects a match xj ↔ Xj with probability pj . This can
thus be seen as a “soft” version of outlier rejection: instead of explicitly removing
correspondences that seem to be outliers, it just becomes unlikely that they are
sampled inside RANSAC. This strategy guarantees that our approach gracefully
degenerates to a standard pipeline in semantically ambiguous scenes.

4 Experimental Evaluation

In this section we present experimental evaluations of the proposed algorithm
on two challenging benchmark datasets for long-term visual localization. The
datasets used are the CMU Seasons and RobotCar Seasons datasets from [37].

CMU Seasons. The dataset is based on the CMU Visual Localization dataset
[5]. It consists of 7,159 database images that can be used for map building, and
75,335 query images for evaluation. The images are collected from two sideways
facing cameras mounted on a car while traversing the same route in Pittsburgh
on 12 different occasions over the course of a year. It captures many different
environmental conditions, including overcast weather, direct sunlight, snow, and
trees with and without foliage. The route contains urban and suburban areas,
as well as parks mostly dominated by vegetation. All images are accompanied
by accurate six degrees-of-freedom ground truth poses [37].

CMU Seasons is a very challenging dataset due to the large variations in
appearance of the environment over time. Especially challenging are the areas
dominated by vegetation, since these regions change drastically in appearance
under different lighting conditions and in different seasons.

We used the Dilation10 network [54] trained on the Cityscapes dataset [16]
to obtain the semantic segmentations. The classes used to label the 3D points
were: sky, building, vegetation, road, sidewalk, pole and terrain/grass.

RobotCar Seasons. The dataset is based on a subset of the Oxford RobotCar
dataset [32]. It was collected using a car-mounted camera rig consisting of 3 cam-
eras facing to the left, right and rear of the car. The dataset consists of 26,121
database images taken at 8,707 positions, and 11,934 query images captured at
3,978 positions. All images are from a mostly urban setting in Oxford, UK, but
they cover a wide variety of environmental conditions, including varying light
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Table 1. Ablation study of our approach on the CMU Seasons dataset

Method / Setting Urban Suburban Park
m 0.25 / 0.5 / 5 0.25 / 0.5 / 5 0.25 / 0.5 / 5
deg 2 / 5 / 10 2 / 5 / 10 2 / 5 / 10

Weighted, P3P 75.2 / 82.1 / 87.7 44.6 / 53.9 / 63.5 30.4 / 37.8 / 48.0
Unweighted, P3P 42.5 / 50.0 / 64.5 11.5 / 16.8 / 30.1 9.3 / 13.1 / 24.2
Weighted, P2P 81.7 / 88.0 / 92.3 55.4 / 65.5 / 73.1 39.5 / 47.5 / 58.2

Unweighted, P2P 72.9 / 80.0 / 87.0 41.3 / 50.8 / 61.8 29.7 / 37.0 / 49.1

Table 2. Ablation study of our approach on the RobotCar Seasons dataset

Method / Setting all day all night
m 0.25 / 0.5 / 5 0.25 / 0.5 / 5
deg 2 / 5 / 10 2 / 5 / 10

Weighted, P3P 50.6 / 79.8 / 95.1 7.6 / 21.5 / 45.4
Unweighted, P3P 47.0 / 74.8 / 91.9 0.5 / 4.2 / 16.0
Weighted, P2P 35.4 / 73.2 / 93.4 13.0 / 34.1 / 63.1

Unweighted, P2P 34.1 / 71.3 / 93.3 5.1 / 20.8 / 46.8

conditions at day and night, seasonal changes from summer to winter, and vari-
ous weather conditions such as sun, rain, and snow. All images have a reference
pose associated with them. The average reference pose error is estimated to be
below 0.10m in position and 0.5◦ in orientation [37].

The most challenging images of this dataset are the night images. They both
exhibit a big change in lighting, but also, due to longer exposure times, contain
significant motion blur.

For the RobotCar dataset, semantic segmentations were obtained using the
PSPNet network [60], trained jointly on the Cityscapes [16] and Mapillary Vis-
tas [34] datasets2. Additionally, 69 daytime and 13 nighttime images from the
RobotCar dataset [32] were manually annotated by us, and incorporated into the
training, in order to alleviate generalization issues. The classes used to label the
3D points were: sky, building, vegetation, road, sidewalk, pole and terrain/grass.

Evaluation protocol. We follow the evaluation protocol from [37], i.e., we
report the percentage of query images for which the estimated pose differs by at
most Xm and Y ◦ from their ground truth pose. As in [37], we use three different
threshold combinations, namely (0.25m, 2◦), (0.5m, 5◦), and (5m, 10◦).

4.1 Ablation Study

In this section we present an ablation study of our approach on both datasets.
The baseline is a standard, unweighted RANSAC procedure that samples

each 2D-3D match with the same probability. We combine this RANSAC variant,
denoted as unweighted, with two pose solvers: the first is a standard 3-point
solver [19] (P3P) since the intrinsic calibration is known for all query images. The
second solver is a 2-point solver [26] (P2P) that uses the known gravity direction.

2 Starting from a network pretrained on Cityscapes, joint training was carried out by
regarding 4 Cityscapes samples, 4 Mapillary Vistas samples and 1 RobotCar sample
in each iteration. Mapillary Vistas labels were mapped to Cityscapes labels by us.
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Table 3. Comparison of our approach, using semantic consistency scoring and the P3P
pose solver, with state-of-the-art approaches on the CMU Seasons dataset

Method / Setting Urban Suburban Park
m 0.25 / 0.5 / 5 0.25 / 0.5 / 5 0.25 / 0.5 / 5
deg 2 / 5 / 10 2 / 5 / 10 2 / 5 / 10

ActiveSearch [36] 55.2 / 60.3 / 65.1 20.7 / 25.9 / 29.9 12.7 / 16.3 / 20.8
CSL [47] 36.7 / 42.0 / 53.1 8.6 / 11.7 / 21.1 7.0 / 9.6 / 17.0

DenseVLAD [49] 22.2 / 48.7 / 92.8 9.6 / 26.6 / 85.2 10.3 / 27.0 / 77.0
NetVLAD [1] 17.4 / 40.3 / 93.2 7.7 / 20.1 / 80.5 5.6 / 15.7 / 65.8

PROSAC P3P [13] 56.7 / 64.0 / 74.2 30.6 / 38.3 / 49.1 20.0 / 25.4 / 35.1
Single-match P3P 59.3 / 66.8 / 76.2 24.6 / 32.4 / 44.6 16.8 / 22.2 / 32.6

Sem. rank. (ours) 75.2 / 82.1 / 87.7 44.6 / 53.9 / 63.5 30.4 / 37.8 / 48.0

Table 4. Comparison of our approach, using semantic consistency scoring and the P3P
pose solver, with state-of-the-art approaches on the RobotCar Seasons dataset

Method / Setting all day all night
m 0.25 / 0.5 / 5 0.25 / 0.5 / 5
deg 2 / 5 / 10 2 / 5 / 10

ActiveSearch [36] 35.6 / 67.9 / 90.4 0.9 / 2.1 / 4.3
CSL [47] 45.3 / 73.5 / 90.1 0.6 / 2.6 / 7.2

PROSAC P3P [13] 50.4 / 79.1 / 96.4 3.9 / 14.1 / 34.4
Single-match P3P 50.7 / 79.3 / 97.2 2.5 / 6.4 / 16.7

Sem. rank. (ours) 50.6 / 79.8 / 95.1 7.6 / 21.5 / 45.4

We compare both baselines against our proposed weighted RANSAC variant that
uses our semantic consistency scores to estimate a sampling probability for each
2D-3D match. Again, we combine our approach with both pose solvers.

Tables 1 and 2 show the results of our ablation study. As can be seen, using
our proposed semantic consistency scores (weighted) leads to clear and significant
improvements in localization performance for all scenes and solvers on the CMU
dataset. On the RobotCar dataset, we similar observe a significant improvement
when measuring semantic consistency, with the exception of using the P2P solver
during daytime. Interestingly, the P2P solver outperforms the P3P solver on
both datasets using both RANSAC variants, with the exception of the daytime
query images of the Oxford RobotCar dataset. The reason for this is likely due to
sensitivity of the P2P solver to small noise in the ground truth vertical direction.

4.2 Comparison with State-of-the-Art

After demonstrating the benefit of our proposed semantic consistency scor-
ing, we compare our localization pipeline against state-of-the-art approaches
on both datasets, using the results reported in [37]. More concretely, we com-
pare against ActiveSearch (AS) [36] and the City-Scale Localization (CSL) [47]
methods, which represent the state-of-the-art in efficient and scalable localiza-
tion, respectively. In addition, we compare against two image retrieval-based
baselines, namely DenseVLAD [49] and NetVLAD [1], when their results are
available in [37]. We omitted results for the methods LocalSfM, DenseSfM, Ac-
tiveSearch+Generalized Camera, and FABMAP [17] present in [37], since these
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use either a sequence of images (the latter two), costly SfM approaches coupled
with a strong location prior (the former two), or use ground truth information
(the former three), and are thus not directly comparable. For a fair compari-
son with AS and CSL, we use the variant of our localization pipeline that uses
semantic consistency scoring and the P3P solver.

Tables 3 and 4 show the results of our comparison. As can be seen, our
approach significantly outperforms both AS and CSL, especially in the high-
precision regime. Especially the comparison with CSL is interesting as our pose
generation stage is based on its geometric outlier filtering strategy. The clear
improvements over CSL validate our idea of incorporating scene semantics into
the pose estimation stage in general and the idea of using non-matching 3D
points to score matches in particular.

On the CMU dataset, both DenseVLAD and NetVLAD can localize more
query images in the coarse-precision regime (5m, 10◦). Both approaches repre-
sent images using a compact image-level descriptor and approximate the pose
of the query image using the pose of the top-retrieved database image. Both
methods do not use any feature matching between images. As shown in Fig. 6,
this allows DenseVLAD and NetVLAD to handle scenarios with very strong
appearance changes in which feature matching completely fails. Note that both
DenseVLAD or NetVLAD could be used as a fallback option for our approach.

Interestingly, the P3P RANSAC baseline outperforms AS and CSL in several
instances. This is likely due to differing feature matching strategies and different
numbers of RANSAC iterations. Active Search uses a very strict ratio test, which
causes problems in challenging scenes. CSL was evaluated on CMU Seasons
by keeping all detected features (no ratio test), resulting in several thousand
matches per image. CSL may have yielded better results with a ratio test.

In addition, we also compare our approach to two methods based on P3P
RANSAC. The first is PROSAC [13], a RANSAC variant that uses a determin-
istic sampling strategy, where correspondences deemed more likely to be correct
are given higher priority during sampling. In our experiments, the quality mea-
sure used was the Euclidean distance between the descriptors of the observed
2D point and the corresponding matched 3D point.

The second RANSAC variant employs a very simple single-match semantic
outlier rejection strategy: all 2D-3D matches for which the semantic labels of the
2D feature and 3D point do not match are discarded before pose estimation.

As can be seen in Tables 3 and 4, all three methods perform similarly well on
the relatively easy daytime queries of the RobotCar Seasons dataset. However,
our approach significantly outperforms the other two methods under all other
conditions. This clearly validates our idea of semantic consistency scoring.

5 Conclusion

In this paper, we have presented a method for soft outlier filtering by using the
semantic content of a query image. Our method ranks the 2D-3D matches found
by feature-based localization pipelines depending on how well they agree with
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Fig. 6. Illustrations of the result of our method on the CMU Seasons dataset. Rows
1 and 3 show query images that our method successfully localizes (error < .25 m)
while DenseVLAD and AS fail (error > 10 m) and rows 2 and 4 the vice versa. Green
boxes indicate true correspondences, while gray circles indicate false correspondences.
White/red crosses indicate correctly/incorrectly detected inliers, respectively.

the scene semantics. Provided that the gravity direction and camera height are
(roughly) known, the camera is constrained to lie on a circle for a given match.
Traversing this circle and projecting the semantically labelled scene geometry
into the query image, we calculate a semantic consistency score for this match
based on the fit between the projected and observed semantic labels. The scores
are then used to bias sampling during RANSAC-based pose estimation.

Experiments on two challenging benchmarks for long-term visual localization
show that our approach outperforms state-of-the-art methods. This validates our
idea of using scene semantics to distinguish correct and wrong matches and shows
the usefulness of semantic information in the context of visual localization.
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