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Abstract. This paper proposes a real-time dynamic scene reconstruc-
tion method capable of reproducing the motion, geometry, and segmenta-
tion simultaneously given live depth stream from a single RGB-D camera.
Our approach fuses geometry frame by frame and uses a segmentation-
enhanced node graph structure to drive the deformation of geometry in
registration step. A two-level node motion optimization is proposed. The
optimization space of node motions and the range of physically-plausible
deformations are largely reduced by taking advantage of the articulated
motion prior, which is solved by an efficient node graph segmentation
method. Compared to previous fusion-based dynamic scene reconstruc-
tion methods, our experiments show robust and improved reconstruction
results for tangential and occluded motions.
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1 Introduction

Dynamic scene reconstruction is a very important topic for digital world build-
ing. It includes capturing and reproducing geometry, appearance, motion, and
skeleton, which enables more realistic rendering for VR/AR scenarios like Holo-
portation [5]. An example is that the reconstructed geometry can be directly
used for a virtual scene, and the articulated motion can be retargeted to new
models to generate new animations, making scene production more efficient.

Although many efforts have been devoted to this research field, the problem
remains challenging due to extraordinarily large solution space but real-time
rendering requirements for VR/AR applications. Recently, volumetric depth fu-
sion methods for dynamic scene reconstruction, such as DynamicFusion [17],
VolumeDeform [10], Fusion4D [5] and albedo based fusion [8] open a new gate
for people in this field. This type of method enables quality improvements over
temporal reconstruction models in terms of both accuracy and completeness of
the surface geometry. Among all these works, fusion methods by a single depth
camera [17, 10] are more promising for popularization, because of their low cost
and easy setup. However, this group of methods still faces some challenging is-
sues, like high occlusion from the single view, limited computational resource to
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achieve real-time performance, and no geometry/skeleton prior knowledge, and
thus are restricted to limited motions. DoubleFusion [30] can reconstruct both
the inner body and outer surface for faster motions by adding body template as
prior knowledge. Later, KillingFusion [21] and SobolevFusion [22] is proposed to
reconstruct dynamic scenes with topology changes and fast inter-frame motions.

DynamicFusion is the pioneering work acheiving template-less non-rigid re-
construction in real time from single depth camera. However, its robustness can
be significantly improved by utilizing skeleton prior, as been shown in work
of BodyFusion [29]. In this paper, we propose to add articulated motion prior
into the depth fusion system. Our method contributes to this field by pushing
the limitation from skeleton-prior-based methods to skeleton-less ones. The mo-
tions of many objects in our world including human motion follows articulated
structures. Thus, articulated motions can be represented by skeleton/cluster-
based motion and can be extracted from non-rigid motion as a prior. Our self-
adaption segmentation inherits the rigid feature of traditional skeleton structure
while does not require any pre-defined skeleton. The segmentation constrains all
nodes labeled to the same segment having transformation as close as possible
and can reduce the solution space of the optimization problem. Therefore, the
self-adapted segmentation can result in better reconstruction results.

Our method iteratively optimizes the motion field of a node graph and its seg-
mentation, which helps each other to get a better reconstruction performance. In-
tegrating the articulated motion prior into the reconstruction framework assists
in the non-rigid surface registration and geometry fusion, while surface registra-
tion results improve the quality of segmentation and its reconstructed motion.
Although the advantages of such unification is obvious, in practice, designing
a real-time algorithm to take advantage of both merits of these two aspects is
still an unstudied problem, especially on how to segment a node graph based on
its motion trajectory in real-time. We have carefully designed our Articulated-
Fusion system, to achieve simultaneous reconstruction of motion, geometry, and
segmentation in real-time, given a single depth video input. The contributions
in this paper are as follows:

1. We present ArticulatedFusion, a system that involves registration, segmen-
tation, and fusion, and enables real-time reconstruction of motion, geometry,
and segmentation for dynamic scenes of human and non-human subjects.

2. A two-level registration method which can narrow down the optimization so-
lution space, and result in better reconstructed motions in many challenging
cases, with the help of node graph segmentation.

3. A novel real-time segmentation method to solve the clustering of a set of
deformed nodes based on their motion trajectories by merging and swapping
operations.

2 Related Work

The most popular dynamic 3D scene reconstruction method is to use a prede-
fined model or skeleton as prior knowledge. Most of these methods focus on the
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reconstruction of human body parts such as face [14, 3], hands [24, 25], and body
[20, 27]. Other techniques are proposed to reconstruct general objects by using
a pre-scanned geometry [13, 32] as a template instead of predefined models.

To further eliminate the dependency on geometry priors, some template-less
methods were proposed to utilize more advanced structure to merge and store
geometry information across the motion sequence. Wand et al. [28] proposed an
algorithm to align and merge pairs of adjacent frames in a hierarchical fashion to
gradually build the template shape. Recently, fine 3D models have been recon-
structed without any shape priors by gradually fusing multi-frame depth images
from a single view depth camera [18, 17, 10, 5]. Innmann et al. [10] proposed to
add SIFT features to the ICP registration framework, thereby improving the
accuracy of motion reconstruction.

Our method is partly inspired by Pekelny and Gotsman’s method [19], How-
ever their method requires the user to manually segment a range scan in ad-
vance, whereas we automatically solve for the segmentation in real-time. Chang
and Zwicker’s method [4] is also lack of real data of human motions and takes
much time to reconstruct for each frame. Tzionas and Gall’s recent work [26] in-
troduces an algorithm to build rigged models of articulated objects from depth
data of a single camera. But it requires to pre-scan the target object as the
geometry prior knowledge.

Guo et al. [6] proposes an L0 regularizer to constrain local non-rigid defor-
mation only on joints of articulated motion, which reduces the solution space
and yields a physically plausible and robust deformation. However, our method
is designed to achieve real-time performance while their method requires around
60s for the L0 optimization of each frame [7]. Ours directly solves the segmen-
tation of human body in the proposed energy function while theirs implicitly
involves the articulated motion property in an L0 regularizer. Their method also
needs a pre-scaned shape as a template. Yu et al.s method [29] is the one most
related to our work, but it requires the skeleton information of the first frame as
initialization while our method does not need any prior information. Our method
can estimate the segmentation of dynamic scene during the reconstruction pro-
cess. Therefore, it also works for non-human objects where a predefined skeleton
is not available, as illustrated in Fig. 6 and Fig. 8. There is also a rich body of
work proposed on articulated decomposition of animated mesh sequences [11,
12]. Both of these methods can only work on animated sequences with fixed
mesh connectivity, and cannot meet our real-time reconstruction requirement.

3 Overview

Fig. 1 illustrates the pipeline of processing one frame given the geometry, mo-
tion and segmentation reconstructed from earlier frames. [17, 10, 8], our system
runs in a frame-by-frame manner. Two main data structures are used in our
system. The geometry is represented in a volume with the Truncated Signed
Distance Function (TSDF), while the segmentation and motions are defined in
an embedded graph of controlling nodes similar to DynamicFusion [17].
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Fig. 1. Overview of our pipeline. The orange box represents our two-level node motion
optimization, and the blue box represents fusion of depth and node graph segmentation.

The first frame is selected as the canonical frame. The first step of our system
is two-level node motion optimization (Sec. 4.2). In this step, motions of control-
ling nodes from the canonical frame to the current frame are estimated. This is
achieved by first warping a mesh using reconstructed motion and segmentation
from earlier frames, and followed by solving a two-level optimization problem
to fit this mesh with the current depth image. The mesh is extracted from the
TSDF volume by marching cube algorithm [15]. The first level of our node mo-
tion optimization is run on each segmented cluster, thus can reduce the solution
space and make optimization converging faster. The second level of optimiza-
tion is run on each individual node, so it can keep track of the high-frequency
details of the target object. The depth is fused into the TSDF volume to obtain
a new integrated geometry (Sec. 4.3). The final step is node graph segmentation,
in which nodes are segmented by our novel clustering method to minimize the
error between the articulated cluster deformation of nodes and their non-rigid
deformation (Sec. 4.4). This segmentation makes the node motion estimation of
next frame to perform better than employing non-rigid estimation only.

4 Method

4.1 Preliminaries and Initialization

Only a single depth camera is used to capture the depth information in our
system. The input to our pipeline is a depth image sequence {Dt}. The output
of our pipeline includes a fused geometry V of the target object, the embedded
graph segmentation C, and the two-level warping field {Wt}, where Wt repre-
sents the non-rigid node motion from the canonical frame to each live frame t.
The TSDF volume and level-two warping field in our system is the same as those
described in DynamicFusion [17].

For the first frame, we directly integrate the depth information into the
canonical TSDF volume, extract a triangular mesh M from the canonical vol-
ume using the marching cube algorithm, uniformly sample deformation nodes
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on the mesh and construct a node graph to describe the non-rigid deformation.
To search for nearest-neighboring nodes, we also create a dense k-NN field in
the canonical volume. Because our segmentation method is based on the motion
trajectory from canonical frame to a live frame, we cannot get a segmentation
result for the first frame. Therefore, we employ the non-rigid registration method
of DynamicFusion [17] to align the mesh to the second frame.

4.2 Registration

As mentioned above, the first step of our system is to fit the canonical mesh M
to the depth image Dt of live frame t. We have the current mesh M (obtained
by fusing the depth from earlier frames), the segmentation C, and the motion
field Wt−1. Using the newly captured depth in frame t, the algorithm presented
in this section estimates Wt to fit M with Dt. For this purpose, we propose a
two-level optimization framework based on Linear Blend Skinning (LBS) model
and node graph motion representation. The optimization is solved by minimizing
the following energy function first in LBS model and then in node graph model:

Etotal(W
t) = ωfEfit + ωrEreg, (1)

where Efit is the data term to minimize the fitting error between deformed vertex
and its corresponding point on depth image, and Ereg regularizes the motion to
be locally as rigid as possible. ωf and ωr are controlling weights to balance the
influence of two energy terms. In all of our experiments, we set ωf = 1.0 and
ωr = 10.0

Before solving the energy function, we build the two-level deformation model
based on the node graph and its segmentation by defining the following skinning
weight for each vertex vi on mesh M:

w
(l)
i =

{

1
Λ

∑k

j=1 λi,jgj l = 1,
1
Λ

∑k

j=1 λi,jhj l = 2,
(2)

where l denotes the level, and λi,j is the weight describing the influence of the

j-th node xj on vertex vi and is defined as λi,j = exp
(

−‖vi − xj‖
2
2/ (2σj)

2
)

.

Λ is a normalization coefficient, the summation of all spatial weights λi,j for
the same i. Here, σj is the given influence radius of controlling node xj . When
level l = 1, gj = (gj,1, gj,2, ..., gj,m) is the binding of controlling node xj to m
clusters. Because each node only belongs to one cluster, only one element of gj is

1 and all other elements are 0. w
(1)
i =

(

w
(1)
i,1 , w

(1)
i,2 , ..., w

(1)
i,m

)

includes the skinning

weights of vertex vi w.r.t. m clusters. When level l = 2, hj = (hj,1, hj,2, ..., hj,k)
is the binding of vi’s neighboring node xj to itself. Thus only hj,j is 1 and all

other elements are 0. w
(2)
i =

(

w
(2)
i,1 , w

(2)
i,2 , ..., w

(2)
i,k

)

includes the skinning weight

of vertex vi w.r.t. its k-NN controlling nodes.
The fitting term Efit represents the point-to-plane energy, as follows:

Efit(W
t) =

∑

i

(

n
⊤

u
t

i

(

v̂i − u
t
i

)

)2

, (3)
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where v̂i is the transformed vertex defined by the formula:

v̂i =
∑

j

w
(l)
i,j

(

R
t
jvi + t

t
j

)

. (4)

Here vi is a vertex on M, and {Rt
j , t

t
j} are the unknown rotation and translation

of either the j-th cluster (level l = 1) or the j-th node (level l = 2), which will
be solved during the optimization process. ut

i is the corresponding 3D point on
depth frame Dt for vi, and n

u
t

i
represents its normal. To obtain the pair of such

correspondences, we render the deformed mesh M with the current warping field
to exclude occluded vertices and project visible vertices onto the screen space of
Dt . Then we look up the corresponding pixel with the same coordinates. For
vertices lying on the silhouette of projected 2D image, we employ Tagliasacchi et
al.’s method [24] – using 2D Distance Transform (DT) to locate the correspond-
ing pixel and back-projecting it to 3D camera space. This correspondence search
mechanism can guarantee better convergence when meeting large deformations
in the direction perpendicular to the screen space (tangential motions) between
two adjacent frames. Fig.2 shows a comparison of results with and without dis-

(a) DT of the 2nd frame (b) Without DT (c) With DT

Fig. 2. Tracking results comparison from one frame to its next frame without and with
Distance Transform (DT) correspondences.

tance transform correspondences. Fig.2 (a) are point clouds from two adjacent
frames. The subfigure on the right illustrates the computed distance transform
based on depth image contour. Fig.2 (b) represents the tracking reconstruction
result without using distance transform correspondences for silhouette points
while Fig. 2 (c) represents the result with distance transform correspondences
search which is converged better than the one in Fig. 2 (b).

The regularity term Ereg is an as-rigid-as-possible constraint:

Ereg(W
t) =

∑

j1

∑

j2∈N (j1)

α
(l)(gj1 ,gj2) · ‖Rt

j1xj2 + t
t
j1 − R

t
j2xj2 − t

t
j2‖

2
, (5)

where N (j1) denotes the set of neighboring nodes of the j1-th node. α(l)(gj1 ,gj2)
is a clustering-awareness weight. In level l = 1, α(1)(gj1 ,gj2) = 1 when the j1-
th node and the j2-th node belong to the same cluster, and α(1)(gj1 ,gj2) = 0
otherwise. In level l = 2, α(2)(gj1 ,gj2) is always equal to 1. This regularization
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term is important to ensure that all vertices will move with the visible regions as
rigidly as possible if some object regions are occluded due to our single-camera
capture environment.

The minimization of Eq. (1) is a nonlinear problem. In level l = 1, we solve
the transformations of each cluster, while in level l = 2, we solve the transfor-
mations of each node. Both levels are solved through Gauss-Newton iterations.
In each iteration, the problem is linearized around the transformations from the
previous iteration: J⊤Jx̂ = J⊤f , where J is the Jacobian of function f(x̂) from
the energy decomposition: Etotal(x̂) = f(x̂)⊤f(x̂). Then, a linear system is solved
to obtain the updated transformations of x̂ for the current iteration with the
twist representation [16] to represent the 6D motion parameters of each cluster
or node. In order to meet the real-time requirement, we use the same method as
in Fusion4D [5]: J⊤J and J⊤f is constructed on GPU, and then Preconditioned
Conjugate Gradient (PCG) method is employed to solve the transformations.

4.3 Depth Fusion

After solving for the deformation of each node, we integrate the depth informa-
tion into the TSDF volume of canonical frame and uniformly sample the newly
added surface to update the nodes [17]. However, this integration method may
result in issues due to voxel collision: if several voxels are warped to the same
position in the live frame, then the TSDF of all these voxels will be updated.
To resolve this ambiguity, we modify the method presented in Fusion4D [5] to
a stricter strategy. If two or more voxels in the canonical frame are warped to
the same position, we reject their TSDF integration. This method avoids the
generation of erroneous surfaces due to voxel collisions.

4.4 Segmentation

The optimal articulated clustering of node graph C = {Cn} can be solved based
on the motion trajectory from the canonical frame to live frame t. We assume
that each cluster is associated with a rigid transformation {Rt

n, t
t
n}. The fol-

lowing energy function measures the error between rigidly transformed node
positions to their non-rigidly warped positions in live frame t:

Eseg =
m
∑

n=1

∑

x∈Cn

‖Rt
nx+ t

t
n − y

t‖
2
, (6)

where t is the index of the live frame, n is the index of clusters, m is the total
number of clusters, x is position of a node in the canonical frame and yt is
its corresponding node position after being warped into frame t. x and yt have
one-to-one correspondence because yt are all deformed from the canonical frame.

The minimization of Eq. (6) implicitly includes the information of the motion
trajectory – nodes with similar motions will be merged into the same cluster. By
using our following method, the unknown clustering {Cn} and per-cluster trans-
formation {Rt

n, t
t
n} can be solved simultaneously and efficiently. Although they
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are correlated, we find that {Rt
n, t

t
n} has a closed-form solution for fixed cluster-

ing in Eq. (6) [9, 23]. In this paper, we employ the merging and swapping idea
as proposed by Cai et al. [1, 2] to solve for {Cn} and {Rt

n, t
t
n} simultaneously.

Now we formulate the optimal clustering by minimizing the energy of Eq.
(6) while keeping their rigid transformation {Rt

n, t
t
n} fixed:

{Cn}
m

n=1 = min
Cn

m
∑

n=1

∑

x∈Cn

‖Rt
nx+ t

t
n − y

t‖2. (7)

For each cluster Cn, we define its centroid in the canonical frame as cn:

cn =

∑

x∈Cn
x

∑

x∈Cn
1
, (8)

and so is its corresponding vertex centroid ctn in live frame t. Then Eq. (7) can
be rewritten by applying the closed-form solution of {Rt

n, t
t
n}:

{Cn}
m

n=1 = min
Cn

m
∑

n=1

E
∗(Cn), (9)

where:

E
∗(Cn) =

∑

x∈Cn

[(x − cn)
⊤(x − cn) + (yt − c

t
n)

⊤(yt − c
t
n)] − 2

3
∑

q=1

σ
t
nq, (10)

and σt
nq is the singular value of cross covariance matrix At(Cn):

A
t(Cn) =

∑

x∈Cn

(x− cn)(y
t − c

t
n)

⊤
. (11)

Eq. (9) can be solved in two stages: initial clustering by merging operations,
and clustering optimization by swapping operations.

Initial Clustering by Merging Operations: Inspired by the surface sim-
plification idea of Cai et al. [2], we define merging operations to partition the
nodes of the canonical frame into m clusters as initialization. It will result in a
good initial clustering for the next stage of swapping-based optimization.

In the first step of the merging operation, each node is treated as an individual
cluster, which forms potential merging pairs with its neighboring clusters. When
a pair of clusters is merged to a new cluster, a merge cost is calculated and
associated with this merge operation. For a merging operation (Ci, Cj) → Ck,
the merging cost is defined as: E∗(Ck) − E∗(Ci) − E∗(Cj). Fig. 3 shows the
concept of such an operation.

A heap is maintained to store all possible merging operations in the current
clustering, paired with the corresponding costs as the key value. Next, the least-
cost merging is performed. Each time after the least-cost pair is selected from
the heap, only a local update is needed to maintain the validity of the merging
heap: the remaining pairs of the two merged clusters in the heap are deleted,
and the potential merging between the new cluster and its direct neighbors are
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(a) (b) (c) (d)

Fig. 3. Merging and swapping operation for a pair of clusters. Ci and Cj is merged to
Ck. (a) Before merging. (b)After merging, the centroid of new cluster ck is different
from both ci and cj . (c) The center node xl is swapped from Ci to Cj . Clustering
before swapping: region Blue is Ci, and region Green is Cj . Circle represents nodes
in clusters. (d) Clustering after swapping: region Blue is Ci′ , and region Green is Cj′ .
After the swapping operation, the belonging of node xl is changed from Ci′ to Cj′ .

inserted. This step is iteratively performed until the number of clusters reaches
m. As shown in Supplementary Material, the merging cost can be computed with
O(1) complexity, which is independent of the number of nodes in each cluster.

Clustering Optimization by Swapping Operations:Only greedily merg-
ing the least-cost pair of clusters as initialization cannot guarantee the optimal
solution for Eq. (9). The second stage of swapping operations can continue to
optimize it based on the above initialization. In the greedy merging process, each
time a pair of clusters is merged, nodes from both clusters are bound to reside
in the same new cluster. Those nodes cannot freely decide where to go, so a
swapping operation is necessary to relax the binding between nodes and clusters
from the above initialization.

The swapping operation is defined as swapping a boundary node from its
belonged cluster Ci to swapping-available clusters. A boundary node xl is the
node which resides in Ci and has at least a neighboring node xj ∈ N (xl) that
does not belong to Ci. We denote the set of clusters that N (xl) reside in as
swapping-available clusters NCxl

. Whether swapping xl from Ci to Cj ∈ NCxl

is determined by the sign of energy change after the swapping operation. We call
this energy change as swapping cost.

If the swapping cost is less than 0, it means this swapping can decrease the
energy of our objective function Eq. (6). Otherwise, the current clustering is best
suitable for the tested node, and there is no further operation needed. If there
is more than one cluster in NCxl

that can optimize the clustering, we select the
one that leads to the largest decrease of energy. To be more precise, as shown in
the Supplementary Material, the swapping cost can be efficiently computed with
O(1) complexity, which is independent of the number of nodes in each cluster.
Fig. 3 (c) and (d) illustrates a typical swapping operation by swapping the center
node xl from Ci to Cj which results in new clusters Ci′ and Cj′ .

In order to achieve real-time reconstruction, we need to accelerate the seg-
mentation step. We only employ the merging operation after registering the
mesh of canonical frame with the second frame. For the segmentation step of
later frames, we initialize the clustering with the previous result and then per-
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form swapping based on such initialization. For newly added nodes after depth
fusion, their cluster belongings are determined by their closest existing neighbor
nodes. Because of such initialization, the maintenance of heap structure is no
longer needed. We can use GPU to compute the cross covariance matrix At(Cn)
and the energy E∗(Cn) in parallel according to Eqs. (10) and (11).

Fig. 4. Segmentation improves the reconstruction result for fast inter-frame motion in
direction parallel to the screen. In each group from left to right: input depth image, the
reconstructed result of our method, and the result of DynamicFusion with only DT.

Fig. 4 shows a comparison example between our method and DynamicFusion
with DT in the registration step. Although both cases employ the DT-based
correspondences computing, the reconstruction result of our method is much
better because the introduction of segmentation.

The number of clusters can be given as a constant, or can be estimated
dynamically by adding an energy threshold in the merging step. When the in-
creased energy after one merging operation is bigger than the threshold, the
merging step stops. This mechanism can automatically determine the number of
clusters. Considering real-time performance, we can break any cluster with error
higher than a given threshold into two new clusters and adjust the boundaries of
new clusters in the swapping step. Cluster breaking can be achieved by merging
all original nodes into two new clusters. Because only a small number of nodes in
that cluster needs to be re-merged, the real-time performance can still hold. Due
to the space limit of the paper, details about dynamic clustering such as how the
number of clusters influences the results, and the comparison of reconstruction
results can be found in our Supplementary Material.

5 Results

In this section, we describe the performance of our system and details of its imple-
mentation, followed by qualitatively comparisons with state-of-the-art methods
and evaluations. We captured more than 10 sequences with persons perform-
ing natural body motions like “Boxing”, “Dancing”, “Body turning”, “Rolling
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(a) Body turning (b) Boxing (c) Rolling arms

Fig. 5. Selected human motion reconstruction results by our system. From left to right
for each motion: input depth, reconstructed geometry, segmentation.

(a) Bending cloth pipe (b) Playing “donkey” hand puppet

Fig. 6. Selected non-human reconstruction results by our system. (a) shows our recon-
structed results of bending a cloth pipe at the 1/4 location; (b) shows our results of
playing a “donkey” hand puppet.

arms”, and “Crossing arms”, etc. We have also experimented our algorithm on
an existing dataset for articulated model reconstruction [26].

Fig. 5 shows some of our reconstruction results for motions “Body turning”,
“Boxing”, and “Rolling arms”. Our ArticulatedFusion system enables simulta-
neous geometry, motion, and segmentation reconstruction. As shown in Fig. 5
(c), the human body is segmented by deformation clustering so hands, arms and
head are segmented out because of their articulated motion property.

Fig. 6 shows that our system can also reconstruct geometry, motion, and
segmentation for non-human motion sequences without any prior skeleton infor-
mation or template. It automatically learns the segmentation from control nodes
clustering. As shown in the 2nd and 4th columns of Fig. 6 (a) and (b), faithful
segmentation can be automatically generated during the reconstruction process
with motions and fine geometry.

5.1 Performance

Our system is fully implemented on a single NVIDIA GeForce GTX 1080 graph-
ics processing unit using both the OpenGL API and the NVIDIA CUDA API.
The pipeline runs at 34–40 ms per frame on average. The time breaking of main
steps is as follows (Table 1): the preprocessing of the depth information (includ-
ing bilateral filtering and calculation of the depth normals) requires 1 ms; the
rendering of the results requires 1 ms. For two-level node motion optimization,
we run 5 and 2 iterations respectively . In each iteration, to solve the linear equa-
tion, we run 10 iterations of PCG. The voxel resolution is 5 mm. For each vertex,
8 nearest nodes is used as its control node. The number of segments ranges from
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Table 1. Average computation time per frame for several motions (ms). Column “Init”
is the time to initialize and update node graph. Column “DT” is the time to calculate
distance transform. Columns “Level 1” and “Level 2” represent the time to solve level-
1 and level-2 registration. Column “TSDF” represents the time to perform TSDF
integration. Column “Seg” is the time of segmetation.

# of
Segs

# of
Nodes

Init
(ms)

DT
(ms)

Level 1
(ms)

Level 2
(ms)

TSDF
(ms)

Seg
(ms)

Total
(ms)

Boxing 20 1442 2.7 4.9 8.3 13.9 4.7 2.5 37.0

Rolling arms 20 1914 3.4 4.6 8.5 15.0 4.9 2.7 39.1

Crossing arms 12 1130 2.5 4.6 7.1 13.4 5.1 1.9 34.6

Dancing 30 1569 3.0 4.7 9.0 14.4 5.2 3.0 39.3

Body turning 20 2002 3.5 4.7 8.6 14.5 4.8 2.8 38.9

(a) Input depth (b) Our method

(c) DynamicFusion (d) VolumeDeform

Fig. 7. Visual comparisons of the results between: (b) our method, (c) DynamicFu-
sion [17], and (d) VolumeDeform [10], with input depth images shown in (a).

6 to 40. In all examples, we capture the depth stream using a Kinect v2 with
512× 424 depth image resolution.

5.2 Comparisons and Evaluations

We compare our ArticulatedFusion with two state-of-the-art methods Dynamic-
Fusion [17] and VolumeDeform [10]. Fig. 7 shows visual comparisons on motion
“Dancing”. We can see both DynamicFusion and VolumeDeform fail in the left
and right arms region. Our method generates more faithful results for motions
in tangential direction or motions having large occlusions.

To further quantitatively evaluate our reconstructed segmentation and mo-
tion, we compare our results with the other state-of-the-art methods by using the
Vicon-captured groundtruth data from BodyFusion [29]. In Fig. 9, it is noted that
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Fig. 8. Non-human object reconstruction comparison on “donkey” hand puppet.

Fig. 9. Quantitative comparison: max marker errors of our method, BodyFusion, Dy-
namicFusion and VolumeDeform for a motion sequence.

our reconstruction error is comparative to BodyFusion (slightly higher though),
but our method is more general and can be applied to dynamic scenes where
Kinect-based skeleton is not available, such as non-human-body motions (Fig. 6,
Fig. 8, and Fig. 10 (b)) and human-body motions without initial skeleton in-
formation (Fig. 10 (a)). In Fig. 10 (a), the skeleton of the person on the back
cannot be provided by Kinect because of high occlusion in the body. It is noted
that the highlighted head and leg part is well reconstructed with the help of our
segmentation, while they are not correctly tracked by DynamicFusion.

We compare our method with two other reconstruction methods that can
reconstruct non-human objects. Fig. 8 shows a detailed comparison of the near-
articulated example “donkey” hand puppet with the template-based reconstruc-
tion result in Tzionas and Gall’s work [26]. The first column of Fig. 8 shows
two input depth images. From both the error map and the error histogram,
we can find our method has better error distribution than theirs. In order to
have a fair comparison in error histogram, we only count visible vertices in both
cases. Because of the introduction of segmentaion in the registration step, our
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(a) (b)

Fig. 10. (a) Reconstruction result comparison of our method and DynamicFusion [17].
(b) Reconstruction result of the failure case in VolumeDeform [10] (shown in their Fig.
9) for 5x speed input (skipping 5 frames).

method is more robust for fast motion. Fig. 10 (b) shows another example of
non-human object reconstruction. In VolumeDeform [10], their reconstruction
fails when skipping 4 or more frames before next frame. But our method can
still get a good result, while every petal of the sunflower is clustered as one
segment.

6 Conclusion and Future Work

In this paper, we have seen that our two-level node optimization equipped effi-
cient node graph segmentation enables better reconstructions for tangential and
occluded motions, for non-rigid human and non-human motions captured with
a single depth camera. We believe that our system represents a step forward
towards a wider adoption of depth cameras in real-time applications, and opens
the door for leveraging the high-level semantic information in reconstruction,
e.g. differentiating dynamic and static scenes as shown in MixedFusion [31].

Our system still has limitations in the reconstruction of very fast motions be-
cause of the blurred depth and our reliance on ICP-based local correspondence
matching. Topological change of surfaces is also difficult to handle. In the future
we would like to consider the integration of color information [10, 8] for further
improvement on the motion optimization, and extracting a consistent tree-based
skeleton structure from our segmentation.
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