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Abstract. We present COBLA—Constrained Optimization Based Low-
rank Approximation—a systematic method of finding an optimal low-
rank approximation of a trained convolutional neural network, subject
to constraints in the number of multiply-accumulate (MAC) operations
and the memory footprint. COBLA optimally allocates the constrained
computation resources into each layer of the approximated network. The
singular value decomposition of the network weight is computed, then a
binary masking variable is introduced to denote whether a particular sin-
gular value and the corresponding singular vectors are used in low-rank
approximation. With this formulation, the number of the MAC opera-
tions and the memory footprint are represented as linear constraints in
terms of the binary masking variables. The resulted 0-1 integer program-
ming problem is approximately solved by sequential quadratic program-
ming. COBLA does not introduce any hyperparameter. We empirically
demonstrate that COBLA outperforms prior art using the SqueezeNet
and VGG-16 architecture on the ImageNet dataset.

Keywords: low-rank approximation, resource allocation, constrained
optimization, integer relaxiation

1 Introduction

The impressive generalization power of deep neural networks comes at the cost
of highly complex models that are computationally expensive to evaluate and
cumbersome to store in memory. When deploying a trained deep neural network
on edge devices, it is highly desirable that the cost of evaluating the network
can be reduced without significantly impacting the performance of the network.

In this paper, we consider the following problem: given a set of constraints
to the number of multiply-accumulate (MAC) operation and the memory foot-
print (storage size of the model), the objective is to identify an optimal low-rank
approximation of a trained neural network, such that the evaluation of the ap-
proximated network respects the constraints. For conciseness, the number of
MAC operation and the memory footprint of the approximated network will be
referred to as computation cost and memory cost respectively.

Our proposed method, named COBLA (Constrained Optimization Based
Low-rank Approximation), combines the well-studied low-rank approximation
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technique in deep neural networks [27, 30, 13, 21, 1, 9, 11, 15, 28] and sequential
quadratic programming (SQP) [2]. Low-rank approximation techniques exploit
linear dependency of the network weights, so the computation cost and the mem-
ory cost of network evaluation can both be reduced. A major unaddressed ob-
stacle of the low-rank approximation technique is in determining the target rank
of each convolutional layer subject to the constraints. In a sense, determining
the target rank of each layer can be considered as a resource allocation problem,
in which constrained resources in terms of computation cost and memory cost
are allocated to each layer. Instead of relying on laborious manual tuning or
sub-optimal heuristics, COBLA learns the optimal target rank of each layer by
approximately solving a constrained 0-1 integer program using SQP. COBLA
enables the user to freely and optimally trade-off between the evaluation cost
and the accuracy of the approximated network.

To the best knowledge of the authors, COBLA is the first systematic method
that learns the optimal target ranks (which define the structure of the approxi-
mated network) subject to constraints in low-rank approximation of neural net-
works. We empirically demonstrate that COBLA outperforms prior art using
SqueezeNet [12] and VGG-16 [26] on the ImageNet (ILSVRC12) dataset [23].
COBLA is independent of how the network weights are decomposed. We per-
formed the experiments using two representative decomposition schemes pro-
posed in [27] and [30]. A distinct advantage of COBLA is that it does not involve
any hyperparameter tuning.

2 Low-rank Approximation and Masking Variable

Matrix multiplication plays a pivotal role in evaluating convolutional neural
networks [16]. The time complexity of exactly computing A ·B where A ∈ R

k×l

and B ∈ R
l×p is O(klp). Here A is some transformation of the weight tensor,

and B is the input to the layer. With a pre-computed rank r approximation
of A, denoted by Â, it only takes O((k + l)pr) operations to approximately

compute the matrix multiplication. The memory footprint of Â is also reduced
to O((k + l)r) from O(kl).

The focus of this paper is in optimally choosing the target rank r for each
layer subject to the constraints. This is a critical issue that was not adequately
addressed in the existing literature.

If the target rank r was known, the rank r minimizer of ||A − Â|| (inde-
pendent of the input data B) could be easily computed by the singular value
decomposition (SVD). Let the SVD of A be A =

∑
∀j σj ·Uj · (Vj)

T , where σj is
the jth largest singular value, Uj and Vj are the corresponding singular vectors.

The rank r minimizer of ||A− Â|| is simply Â =
∑

j≤r σj ·Uj · (Vj)
T . Let the set

Sσ contain the indices of the singlar values and corresponding singular vectors
that are included in the low-rank approximation. In this case Sσ = {j|j ≤ r}.

Unfortunately, identifying the input data dependent optimal value of Â that
minimizes ||A ·B− Â ·B|| is significantly more difficult. As a matter of fact, the
general weighted low-rank approximation problem is NP-hard [31].
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2.1 Low-rank Approximation of Neural Networks

Let the kernel of a convolution layer be W ∈ R
c×m×n×f , where c is the number

of the input channels, m,n are the size of the filter, and f is the number of
output channels. Let an input to the convolution layer be Z ∈ R

c×x×y, where
x × y is the size of the image. The output of the convolution layer T = W ∗ Z
can be computed as

T (x, y, f) = W ∗ Z =

c∑

c′=1

m∑

x′=1

n∑

y′=1

W (c′, x′, y′, f) · Z(c′, x+ x′, y + y′) (1)

Given a trained convolutional neural network, the weight tensor of a con-
volution layers W can be decomposed into tensors G and H. Essentially, a
convolutional layer with weight W is decomposed into two convolutional lay-
ers, whose weights are G and H respectively. The decomposition scheme defines
how a four-dimensional weight tensor is decomposed. We focus on the decom-
position schemes described in [27] and [30], which are representative works in
low-rank approximation of neural networks. The dimensions of the weights of
the decomposed layers are summarized in Table 1.

Decomposition
Scheme

Dimension of G Dimension of H
Compute Decomposed

Weight with

[27] [c,m, 1, r] [r, 1, n, f ] Equation 3

[30] [c,m, n, r] [r, 1, 1, f ] Equation 4

Table 1: Dimension of the decomposed layers in low-rank approximation of neural
networks.

r is the target rank, which dictates how much computation cost and memory
cost are allocated to a layer.

With the dimension of the decomposed weights defined by the target rank
and the decomposition scheme, we now identify the optimal weight of the de-
composed layers. The basic idea is to compute the SVD of some matricization
of the four-dimensional network weight, and only use a subset of the singular
values (together with their corresponding singular vectors) to approximate the
network weight. In [27], the following low-rank approximation is applied to the
weight tensor W ∈ R

c×x×y×f ,

W [c′, :, :, f ′] =
∑

∀j

σj ·U
j
f ′ ·(V

c′

j )T ≈
∑

j∈Sσ,i

σj ·U
j
f ′ ·(V

c′

j )T =
∑

j∈Sσ,i

P
j
f ′ ·(V

c′

j )T (2)

For conciseness, scalar σj is absorbed into the left singular vector Uj such that
Pj = σj · Uj .

Properly choosing Sσ for each layer subject to constraints is critical to the
performance of the approximated network. Note that the target rank ri = |Sσ,i|,
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where | · | denotes the cardinality of a set. The default technique is truncating
the singular values, where Sσ,i is chosen by adjusting a hyperparameter ki such
that Sσ,i = {j|j ≤ ki} [27, 30]. Obviously, truncating the singular values is sub-
optimal considering the NP-hardness of the weighted low-rank approximation
problem [31]. It is worth emphasizing that ki is a hyperparameter that has to
be individually adjusted for each convolution layer in the network. Given the
large number of layers in the network, optimally adjusting the Sσ,i for each layer
constitutes a challenging integer optimization problem by itself. COBLA can be
considered as an automatic method to choose Sσ,i for each layer subject to the
constraints.

Equivalently, Equation 2 can be re-written as

W [c′, :, :, f ′] ≈
∑

j∈Sσ,i

P
j
f ′ · (V

c′

j )T =
∑

∀j

mij · (P
j
f ′ · (V

c′

j )T ) (3)

where mij ∈ {0, 1} is the masking variable of a singular value and its corre-
sponding singular vectors, with mij = 1 indicating the jth singular value of the
ith convolutional layer is included in the approximation, and mij = 0 otherwise.
Obviously, for the ith convolutional layer Sσ,i = {j | mij = 1}. If mij = 1 for
all (i, j), then all the singular values and the corresponding singular vectors are
included in the approximation. If so, the approximated network would be iden-
tical to the original network (subject to numerical error). Let vector m be the
concatenation of all mij . Also, let mi denote the masking variables of the ith
convolutional layer. See Figure 1 for a small example illustrating how masking
variables can be used to select the singular values and the corresponding singular
vectors in low-rank approximation.

[
U1, U2, U3 , U4, U5

]
·




m1 · σ1 0 0 0 0 0
0 m2 · σ2 0 0 0 0
0 0 m3 · σ3 0 0 0
0 0 0 m4 · σ4 0 0
0 0 0 0 m5 · σ5 0



·




V T
1

V T
2

V T
3

V T
4

V T
5

V T
6




Fig. 1: An example of utilizing masking variables to select the singular values and
the corresponding singular vectors in low-rank approximation. In this example
W ∈ R

5×6, the SVD of W is W = UΣV T . The values of the masking variables
m1..5 are [1,1,0,1,0], thus Sσ = {1, 2, 4}. Ŵ = Σj∈{1,2,4}σj ·Uj · (Vj)

T , where Ŵ

is a rank 3 approximation of W .

We can apply the masking variables formulation to the decomposition scheme
described in [30] in a similar fashion. Recall that in most mainstream deep
learning frameworks, the convolution operation is substituted by matrix mul-
tiplication via the im2col subroutine [16]. To compute convolution as matrix
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multiplication, the network weight W ∈ R
c×m×n×f is reshaped into a two di-

mensional matrix WM ∈ R
f×c·m·n. In [30], low-rank approximation is applied to

WM . With a slight abuse of notations,

WM =
∑

∀j

Pj · (Vj)
T ≈

∑

j∈Sσ,i

Pj · (Vj)
T =

∑

∀j

mij · (Pj · (Vj)
T ) (4)

It is worth emphasizing that the input to the layer is not considered in Equa-
tion 3 or Equation 4. Much effort has been made to approximately compute the
optimal weight of the decomposed layers (G and H) conditioned on the distri-
bution of the input to the layer [11, 30, 28]. However, our experiment and prior
work [27] indicate that the accuracy improvement enabled by data dependent
decomposition vanishes after the fine-tuning process. For this reason, we simply
use the data independent decomposition, and focus on identifying an optimal
allocation of the constrained computation resources.

3 Problem Statement and Proposed Solution

Let NC(m) and NM (m) be the computation cost and the memory cost associ-
ated with evaluating the network. Also, let NC,O and NM,O denote the compu-
tation cost and the memory cost of the original convolutional neural network.

Consider a general empirical risk minimization problem,

E(W) =
1

NS

NS∑

n=1

{L(f(In,W), On)} (5)

where L(·) is the loss function, f(·) is the non-linear function defined by the
convolutional neural network, In and On are the input and output of the nth
data sample, NS is the number of training samples, and W is the set of weights
in the neural network.

Assuming that a convolutional neural network has been trained and low-rank
approximation of the weights is performed as in Equation 3 or Equation 4, the
empirical risk of the approximated neural network is

E(m,P,V) =
1

NS

NS∑

n=1

{L(f(In,m,P,V), On)} (6)

where P and V are the sets of P and V vectors of all convolutional layers.
Given a system-level budget defined by the upper limit of computation cost

NC,max and the upper limit of memory costNM,max, the problem can be formally
stated as

minimize
m,P,V

E(m,P,V)

subject to NC(m) ≤ NC,max

NM (m) ≤ NM,max

mi,j ∈ {0, 1}

(7)
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In this 0-1 integer program, the computation cost and the memory cost associ-
ated with evaluating the approximated network are expressed in terms of m.

If we were given an optimal solution {m∗,P∗,V∗} to Equation 7 by an or-
acle, then the optimal target rank r∗i for the ith convolutional layer subject to
the constraints is simply Σm

∗

i
. In other words, with the masking variable for-

mulation, we are now able to learn the optimal structure of the approximated
network subject to constraints by solving a constrained optimization problem.
This is a key innovation of the proposed method.

However, exactly solving the 0-1 integer program in Equation 7 is intractable.
We propose to approximately solve Equation 7 in a two-step process: in the
first step, we focus on m, while keeping P, V as constants. The value of P,
V are computed using SVD as in Equation 3 or Equation 4. To approximately
compute m

∗, we resort to integer relaxation [22], which is a classic method in
approximately solving integer programs. The 0-1 integer variables are relaxed
to continuous variables in the interval [0, 1]. Essentially, we solve the following
program in the first step

minimize
m

EP,V(m)

subject to NC(m) ≤ NC,max

NM (m) ≤ NM,max

0 ≤ mi,j ≤ 1

(8)

A locally optimal solution of Equation 8, denoted by m̂
∗, can be identified

by a constrained non-linear optimization algorithm such as SQP. Intuitively, m̂∗

quantifies the relative importance of each singular value (and its corresponding
singular vectors) in the approximation with a scalar between 0 and 1. The re-
sulted target rank of the ith layer ri = ⌊Σm̂i

∗⌉, where ⌊·⌉ operator randomly
rounds [25] a real number to an integer, such that

⌊x⌉ =

{
⌈x⌉ with probability x− ⌊x⌋

⌊x⌋ otherwise
(9)

Here ⌊Σm̂i
∗⌉ serves as a surrogate for Σm

∗

i
. m̂∗ scales the corresponding sin-

gular values. We therefore let Sσ,i contain the j index of the ri largest elements

in set {m̂∗
i,j · σi,j | ∀j}. A binary solution m

′ due to m̂
∗ can be expressed as

m′
i,j = ✶Sσ,i

(j) where ✶(·) is the indicator function. If m
′ violates the con-

straints, the random rounding procedure is repeated until the constraints are
satisfied.

In the second step, we incorporate the scaling effect of m̂∗ in P as follows:
for the ith convolutional layer, let Pj ← m̂∗

ij · Pj . The resulted low-rank ap-
proximation of the network is defined by {m′, P, V}. With the structure of the
approximated network determined by m

′, P and V can be further fine-tuned by
simply running back-propagation.
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3.1 Sequential Quadratic Programming

In the proposed method, Equation 8 is solved using the SQP algorithm, which is
arguably the most widely adopted method in solving constrained non-linear op-
timization problems [2]. At each SQP iteration, a linearly constrained quadratic
programming (QP) subproblem is constructed and solved to move the current
solution closer to a local minimum. To construct the QP subproblem, the gradi-
ent of the objective function and the constraints, as well as the Hessian have to
be computed. The gradients can be readily computed by an automatic differenti-
ation engine, such as TensorFlow. An approximation of the Hessian is iteratively
refined by the BFGS algorithm [3] using the gradient information.

The scalability of the SQP algorithm is not a concern in our method. The
number of decision variables (masking variables) in Equation 8 is generally on
the order of thousands, which is significantly smaller than the number of the
weight parameters.

With a large training dataset, averaging over the entirety of the dataset to
compute the gradient in each SQP iteration can be extremely time-consuming.
In such cases, an estimation of the gradient by sub-sampling the training dataset
has to be used in lieu of the true gradient. To address the estimation error of the
gradients due to sub-sampling, we employed non-monotonic line search [4]. Non-
monotonic line search ensures the line search iterations in the SQP algorithm can
terminate properly despite the estimation error due to sub-sampled gradients.
Note that a properly regularized Hessian estimation due to BFGS is positive
semidefinite by construction, even with sub-sampled gradients [18]. Thus the
QP subproblem is guaranteed to be convex.

Mathematically rigorous analysis of the convergence property of the SQP
algorithm with sub-sampled gradient is the next step of this research. Recent
theoretical results [6, 7] could potentially provide insights into this problem. We
empirically evaluated the numerical stability of SQP with sub-sampled gradients
in Section 5.2

4 Prior Works

In this section, we thoroughly review the heuristics in the literature that are
closely related to our proposed method. These heuristics will serve as the baseline
to demonstrate the effectiveness of COBLA.

In [27], the target rank for each layer is identified by trial-and-error. Each trial
involves fine-tuning the approximated network, which is highly time-consuming.

The following heuristic is discussed in [27] and earlier works: for the ith
convolutional layer Sσ,i = {j|j ≤ ki} is chosen such that the first ki singular
values and their corresponding singular vectors account for a certain percentage
of the total variations. Thus, for the ith convolutional layer ki is chosen to be
the largest integer subject to

ki∑

j=1

σ2
i,j ≤ β ·

∑

∀j

σ2
i,j (10)
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where β is the proportion of the total variations accounted by the low-rank ap-
proximation, and σi,j is the jth largest singular value of the ith convolutional
layer. It is obvious that the computation cost and the memory cost of the ap-
proximated network are monotonic functions of β. The largest β that satisfies
the constraints in computation cost and memory cost, denoted by β∗, can be eas-
ily computed by bisection. Then the ki value for each layer can be identified by
plugging β∗ into Equation 10. We call this heuristic CPTV (Certain Percentage
of Total Variation).

Another heuristics proposed in [30] identifies Sσ,i = {j|j ≤ ki} by maximizing
the following objective function subject to the constraints in computation cost.

∏

∀i

( ki∑

j=1

σ2
i,j

)
(11)

In [30], a greedy algorithm is employed to approximately solve this program.
We call this heuristic POS-Greedy (Product Of Sum-Greedy). See Section 2.4 of
[30] for details. Due to the use of the greedy algorithm, only a single constraint
can be considered by POS-Greedy.

We can improve the POS-Greedy heuristic by noting that the program in
Equation 11 can be solved with provable optimality and multiple constraints
support by using the masking variable formulation. Equation 11 can be equiva-
lently stated as

maximize
m

∏

∀i

(∑

∀j

mi,j · σ
2
i,j

)

subject to NC(m) ≤ NC,max

NM (m) ≤ NM,max

mi,j ∈ {0, 1}

(12)

Note that the masking variables and the singular values can only take non-
negative values, thus the objective in Equation 12 is equivalent to maximizing
the geometric mean. If the 0-1 integer constraint were omitted, the objective
function and the constraints in Equation 12 are concave in m. Even with the 0-
1 integer constraint, modern numerical optimization engines can efficiently solve
this mixed integer program with provable optimality. The heuristic of exactly
solving Equation 12 is called POS-CVX (Product of Sum-Convex). In our ex-
periment, we observe that the numerical value of the objective function due to
POS-CVX is consistently 1.5 to 2 times higher than that due to POS-Greedy.

In [13], variational Bayesian matrix factorization (VBMF) [20] is employed to
estimate the target rank. Given an observation V that is corrupted by additive
noise V = U+σZ, VBMF takes a Bayesian approach to identify a decomposition
of matrix U whose rank is no larger than r, such that U = BAT . We refer to
this heuristic as R-VBMF (Rank due to VBMF). It is worth emphasizing that
with R-VBMF, the user cannot arbitrarily set NC,max or NM,max. Rather, the
heuristic will decide the computation and the memory cost of the approximated
network.
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We also experimented with the low-rank signal recovery [5] to estimate the
target rank for each layer. This groundbreaking result from the information
theory community states that given a low-rank signal of unknown rank r which
is contaminated by additive noise, one can optimally recover the low-rank signal
in the Minimum-Square-Error (MSE) sense by truncating the singular values of
the data matrix to 2.858 · ymed, where ymed is the median empirical singular
values of the data matrix. This impressive result was not previously applied in
the context of low-rank approximation of neural networks.

5 Numerical Experiments

In this section, we compare the performance of COBLA to the previously pub-
lished heuristics discussed in Section 4. Image classification experiments are
performed using the SqueezeNet and the VGG-16 architecture on the Ima-
geNet dataset [23]. SqueezeNet is a highly optimized architecture that achieves
AlexNet-level accuracy with 50X parameter reduction. Further compressing such
a compact and efficient architecture is a challenging task. We report the results
using the decomposition scheme in both Equation 3 and Equation 4.

The constraints to the computation cost and the memory cost of the ap-
proximated network, NC,max and NM,max, are expressed in terms of the cost of
the original network, denoted by NC,O and NM,O. In the experiment NC,max =
η · NC,O and NM,max = η · NM,O, for η = {0.5, 0.6, 0.7}. The results in Figure
2 are compiled by evaluating the approximated network due to each methods,
before any fine-tuning is performed.

5.1 Effect of Fine-Tuning

We fine-tune the resulted network approximation due to POS-CVX and COBLA
for 50 epochs. The experiment is repeated using the decomposition schemes in
Equation 3 and Equation 4. The hyperparameters used in the training phase
are re-used in the fine-tuning phase, except for learning rate and momentum,
which are controlled by the YellowFin optimizer [29]. The fine-tuning results are
reported in Table 2.

Before fine-tuning, COBLA performs much better using the decomposition
scheme in Equation 3 (Figure 2 (a)(c)) than Equation 4 (Figure 2 (b)(d)). Inter-
estingly, the difference is reduced to within 1% after fine-tuning. This observation
not only demonstrates that the effectiveness of COBLA is independent of the de-
composition scheme, but also suggests that the choice of decomposition scheme
is not critical to the success of low-rank approximation techniques.

5.2 Comparison with R-VBMF and Low-rank Signal Recovery

Section 3.2 of [13] suggests that R-VBMF could function as a general solution
for identifying the target rank of each layer in low-rank approximation of neural
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Fig. 2: Comparison of Top-1 and Top-5 accuracy of the network approximation of
SqueezeNet before fine-tuning. The right-hand side of the constraints in Equation
8 are set toNC,max = η·NC,O andNM,max = η·NM,O, whereNC,O andNM,O are
the computation cost and the memory cost of the original network without low-
rank approximation. The Top-1 and Top-5 accuracy of the original SqueezeNet
are 57.2% and 80.0% respectively.

networks. We compared COBLA to R-VBMF. In our experiment, low-rank ap-
proximation is applied to all layers. This is different from the experiment setup
in [13], where low-rank approximation is applied to a manually selected subset of
layers. The reasoning behind applying R-VBMF to all layers is that if R-VBMF
was indeed capable of recovering the true rank of the weight, it would just return
the full rank of the weight if no low-rank approximation should be applied to a
layer.

R-VBMF returns NC,max = 0.25 · NC,O and NM,max = 0.19 · NM,O on
SqueezeNet using the decomposition scheme in Equation 3. With such tight
constraints, the accuracy of the approximated networks due to R-VBMF and
COBLA both dropped to chance level before fine-tuning. Even after 10 epochs of
fine-tuning, R-VBMF is still stuck close to chance level, while COBLA achieves a
Top-1 accuracy of 15.9% and Top-5 accuracy of 36.2%. This experiment demon-
strates that COBLA is a more effective method, even with severely constrained
computation cost and memory cost. The low-rank signal recovery technique [5]
also dramatically underestimated the target ranks.
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NC,max NM,max
Decomposition

Scheme
Top-1

COBLA
Top-1

Baseline
Top-5

COBLA
Top-5

Baseline

1 0.7 ·NC,O 0.7 ·NM,O Equ. 3 55.7% -2.0% 79.2% -1.1%

2 0.7 ·NC,O 0.7 ·NM,O Equ. 4 55.4% -2.4% 78.8% -1.6%

3 0.6 ·NC,O 0.6 ·NM,O Equ. 3 54.4% -4.1% 78.2% -2.7%

4 0.6 ·NC,O 0.6 ·NM,O Equ. 4 54.3% -3.8% 77.9% -2.7%

5 0.5 ·NC,O 0.5 ·NM,O Equ. 3 52.6% -7.4% 77.0% -5.7%

6 0.5 ·NC,O 0.5 ·NM,O Equ. 4 51.7% -5.5% 76.2% -4.1%

Table 2: Accuracy of the approximated network at various constraint conditions
using the SqueezeNet architecture on ImageNet dataset after 50 epochs of fine-
tuning. The baseline method is POS-CVX. The Top-1 and Top-5 accuracy of
the original SqueezeNet are 57.2% and 80.0% respectively.

The ineffectiveness of these rigorous signal processing technique in estimating
the target rank in neural networks is not surprising. First of all, the non-linear
activation functions between the linear layers are crucial to the overall dynamic
of the network, but they cannot be easily considered in R-VBMF or low-rank
signal recovery. Also, the low-rank approximation problem is not equivalent to
recovering a signal from noisy measurements. Some unjustified assumptions have
to be made regarding the distribution of the noise. More importantly, the tar-
get rank of each layer should not be analyzed in an isolated and layer-by-layer
manner. It would be more constructive to study the approximation error with
the dynamic of the entire network in mind. COBLA avoids the aforementioned
pitfalls by taking a data-driven approach to address the unique challenges in this
constrained optimization problem.

5.3 Effect of Sub-sampled Gradients in SQP Iterations

As discussed in Section 3.1, when the dataset is large, it is computationally
prohibitive to exactly compute the gradient in each SQP iteration, and a sub-
sampled estimation of the gradient has to be used. To investigate the effect of
sub-sampled gradients in SQP, we conducted experiments using the NIN archi-
tecture [17] on the CIFAR10 dataset [14].

CIFAR10 is a small dataset on which we can afford to exactly compute the
gradient in each SQP iteration. Although the CIFAR10 dataset is no longer
considered a state-of-the-art benchmark, the 11-layer NIN architecture we used
is relatively recent and ensures that the experiment is not conducted on a trivial
example.

In Figure 3, we compare the accuracy of the approximated network due to
previously published heuristics and COBLA. The experiment using COBLA is
conducted under two conditions. In the first case, labeled COBLA (sub-sampled
gradient), 5% of the training dataset is randomly sampled to estimate the gradi-
ent in each SQP iteration. In the second case, labeled COBLA (exact gradient),
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Fig. 3: Comparision of Top-1 accuracy of NIN architecture on the CIFAR10
dataset. The constraints are NC,max = η · NC,O and NM,max = η · NM,O, for
η = {0.1, 0.2, 0.3}. The accuracy of the original CIFAR-10 NIN is 91.9%.

the entire training dataset is used to exactly compute the gradient in each SQP
iteration. As shown in Figure 3, accuracies in the two cases are very similar
(within 1%). This experiment provides some empirical evidence for the numeri-
cal stability of SQP with sub-sampled gradients.

5.4 COBLA on VGG-16

We compared COBLA to [27] using the VGG-16 architecture. We make the note
that VGG-16 is an architecture that is over-parameterized by design. Such over-
parameterized architectures are not suitable for studying model compression
methods, as the intrinsic redundancy of the architecture would allow ineffective
methods to achieve significant compression as well [10]. Optimized architectures
that are designed to be computationally efficient (e.g. SqueezeNet) are more
reasonable benchmarks [10]. The purpose of this experiment is to demonstrate
the scalability of COBLA (VGG-16 is 22X larger than SqueezeNet in terms of
computation cost). This experiment also provides a side-by-side comparison of
COBLA to the results reported in [27].

In [27], the computation cost and the memory cost of the approximated
network are 0.33 · NC,O and 0.36 · NM,O respectively. The resource allocation
defined by the target rank of each layer is identified manually by trial-and-error.
As shown in Table 3, COBLA further reduces the computation and the memory
cost of the compressed VGG-16 in [27] by 12% with no accuracy drop (by 30%
with negligible accuracy drop).

6 System Overview of COBLA

In Figure 4, we present the system overview of COBLA. The centerpiece of
COBLA is the SQP algorithm (which solves Equation 8). The two support-
ing components are TensorFlow for computing gradients (of the empirical risk
w.r.t. the masking variables) and MOSEK [19] for solving the convex QP in
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Computation
(Reduction)

Memory
(Reduction)

Top-5
Accuracy

Target Rank of
Decomposed Layers

Baseline
[27]

0.33 ·NC,O

-
0.36 ·NM,O

-
89.8%

-
5, 24, 48, 48, 64, 128, 160

192, 192, 256, 320, 320, 320

COBLA
0.29 ·NC,O

(-12%)
0.32 ·NM,O

(-12%)
89.8%

(+0.0%)
5, 17, 41, 54, 77, 109, 133

155, 180, 239, 274, 283, 314

COBLA
0.23 ·NC,O

(-30%)
0.25 ·NM,O

(-30%)
88.9%
(-0.9%)

5, 16, 32, 48, 64, 81, 95

116, 126, 203, 211, 215, 232

Table 3: Comparision of COBLA to [27] using the VGG-16 architecture on Im-
ageNet. The Top-5 accuracy of the original VGG-16 is 89.8%.

TensorFlow
(Automatic Differentiation)

SQP

Trained Network

Decomposition Scheme

Constraints

Training Dataset

MOSEK 
(QP Solver)

Fig. 4: System overview of COBLA. m(k) is the value of the masking variables
at the kth SQP iteration. f(m(k)) is the loss, g(m(k)) is the gradient of the
loss with respect to the masking variables, c(m(k)) is the value of the constraint
functions, and a(m(k)) is the Jacobian of the constraints.

each SQP step. Given m
(k), the value of the masking variables at the kth

SQP iteration, TensorFlow computes the loss and the gradients based on the
trained network and user-defined decomposition scheme. COBLA is available at
https://github.com/chongli-uw/cobla

6.1 Quantifying Parameter Redundancy of Each Layer

Given an approximated network identified by COBLA subject to the constraint
of NC,max = 0.5 ·NC,O and NM,max = 0.5 ·NM,O, we visualize the topology of
the SqueezeNet and label the reduction of the computation cost of each layer in
Figure 5. For example, 28.9% of the computation cost of layer conv1 is reduced
by COBLA, so the computation cost of conv1 in the approximated network is
71.1% of that in the original SqueezeNet network.
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Fig. 5: Per-layer
computation cost
reduction in the
approximated
SqueezeNet.

In the approximated network identified by COBLA,
the allocation of the constrained computation resources
is highly inhomogeneous. For most of the 1x1 layers, in-
cluding the squeeze layers and the expand/1x1 layers, the
computation cost is not reduced at all. This indicates that
there is less linear dependency in the 1x1 layers. However,
the output layer conv10 is an exception. conv10 is a 1x1
layer that maps the high-dimensional output from previ-
ous layers to a vector of size 1000 (the number of classes
in ImageNet). As shown in Figure 5, 66% of the compu-
tation in conv10 can be reduced. This coincides with the
design choice that was identified manually in [8], where
the author found that the output layer has high parame-
ter redundancy.

In [24], it is hypothesized that the parameter redun-
dancy of a layer is dependent on its relative position in the
network and follows certain trends (increasing, decreasing,
convex and concave are explored). Figure 5 indicates that
the parameter redundancy of each layer is more complex
than previously hypothesized and has to be analyzed on
a case-by-case basis.

7 Conclusion

In this paper, we presented a systematic method named
COBLA, to identify the target rank of each layer in low-
rank approximation of a convolutional neural network,
subject to the constraints in the computation cost and the
memory cost of the approximated network. COBLA op-
timally allocates constrained computation resources into
each layer. The key idea of the COBLA is in applying a
binary masking variable to the singular values of the net-
work weights to formulate a constrained 0-1 integer pro-
gram. We empirically demonstrate that our method out-
performs previously published works using the SqueezeNet
and VGG-16 on the ImageNet dataset.
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