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Abstract. Robust cost optimization is the challenging task of fitting a
large number of parameters to data points containing a significant and
unknown fraction of outliers. In this work we identify three classes of
deterministic second-order algorithms that are able to tackle this type of
optimization problem: direct approaches that aim to optimize the robust
cost directly with a second order method, lifting-based approaches that
add so called lifting variables to embed the given robust cost function
into a higher dimensional space, and graduated optimization methods
that solve a sequence of smoothed cost functions. We study each of these
classes of algorithms and propose improvements either to reduce their
computational time or to make them find better local minima. Finally,
we experimentally demonstrate the superiority of our improved gradu-
ated optimization method over the state of the art algorithms both on
synthetic and real data for four different problems.

1 Introduction

Robust cost optimization aims to fit parameters to data containing outliers.
This generic optimization problem arises in a large number of applications in
computer vision such as bundle adjustment [23], optical flow [4], SLAM [8],
registration of 3D surfaces [30], etc. In applications where the data contains a
small number of outliers, using a convex kernel3, such as the L1 kernel or the
Huber kernel, sufficiently reduces influence of outliers to obtain a good fit of
the parameters to inlier data points. However, when the observations contain a
large number of potentially gross outliers, a convex kernel is not “robust” enough
and a quasi-convex kernel, such as Tukey’s biweight kernel, has to be employed.
Optimizing over a sum of quasi-convex kernels produces a highly non-convex
cost function with many local minima. In low-dimensional parameter problems
poor local minima can be escaped using stochastic/sampling approaches, such
as RANSAC [10] or simulated annealing [16]. Nevertheless, such methods are
impractical for applications that have a large number of parameters and data
points (such as bundle adjustment or optical flow). For these large scale problems
deterministic second-order approaches are generally considered to be a good
compromise between efficiency and accuracy. In return, special care must be
taken to escape poor local minima.

3 In this paper, the word “kernel” refers to a loss function.
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Contributions: In this paper, we start with identifying three classes of such
algorithms: direct approaches, lifting-based approaches and graduated optimiza-
tion methods. Then, we study each of these classes of algorithms and propose
improvements either to reduce their computational time or to make them find
better local minima. More precisely, we make the following contributions: (i)
We show that the direct approaches only differ in their quadratic approxima-
tion of the quasi-convex kernel. This analysis allows us to outline the limitations
and numerical instabilities of some of these algorithms. (ii) We propose to use
a convexified Newton approximation to implement lifting-based approaches and
experimentally demonstrate that this modification leads to better local min-
ima than the classical Gauss-Newton approximation. (iii) We design a novel
stopping criterion that allows to significantly speed-up graduated optimization
methods without harming their ability to avoir poor local minima. (iv) We exper-
imentally demonstrate the superiority of our improved graduated optimization
method over the state of the art algorithms both on synthetic and real data for
three different problems.

Organization of the paper: The rest of the paper is organized as follows: Sec-
tion 2 discusses the related work and Section 3 introduces our notations as well
as some fundamental definitions. Our contributions are gathered in Sections 4,
5 and 6, where we study three different types of algorithms and make several
recommendations to improve their performances. In Section 7 numerical evalu-
ations of the methods discussed in the previous three sections are presented. A
summary of our recommendations and future work are provided in Section 8.

2 Related work

In this section, we describe the state of the art approaches for robust cost opti-
mization (e.g. redescending m-estimation [15]) and how they are related to the
novel method we propose in this paper. We focus on deterministic second-order
methods because they are generally considered to be a good compromise be-
tween efficiency and accuracy for problems with large numbers of parameters
and data points (such as bundle adjustment). In the following literature review
we distinguish direct approaches, graduated optimization methods and lifting-
based approaches4.

Direct approaches aim to optimize the original robust objective, usually by
utilizing a surrogate model suitable for a second-order method. IRLS [13], the
Triggs correction [23] and “square rooting the kernel” [9] are well-known in-
stances of this class of methods. Consequently, these approaches find the local
minimum corresponding to the basin of convergence they were initialized in.

Graduated optimization is a meta-algorithm explicitly designed to avoid poor
local minima by building a sequence of successively smoother (and therefore eas-
ier to optimize) approximations of the original objective. The optimization algo-

4 The “Variable Projection” (VarPro) approach, which can be interpreted as the “op-
posite” of lifting, was recently shown to be successful for matrix factorization [14].
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rithm consists in successively optimizing the sequence of cost functions (e.g. by
using one of the direct approaches), with the solution from the previous objec-
tive used as starting point for the next one. Homotopy optimization methods
(e.g. [7]) and continuation methods (e.g. [20]) are other terms for the same meta-
algorithm. Graduated non-convexity [5], multi-scale methods and Gaussian ho-
motopies [19], and deterministic annealing (e.g. [21]) are specific constructions
that belong to this family of methods. One drawback of graduated optimiza-
tion is that they appear to be inefficient as an entire sequence of optimization
problems has to be solved.

Instead of explicitly building a sequence of smoothed cost functions, lifting
approaches5 [31, 29, 26] add so called lifting variables (which can be interpreted
as confidence weights) to embed the original robust cost function into a higher
dimensional space of unknowns. Initializing the lifting variables to a large value
corresponds to smoothing the robust cost function while setting them to their op-
timal values produces the original robust cost function. The algorithm consists
in jointly optimizing over the parameters of interest and the lifting variables.
Lifting-based methods can be interpreted as “self-tuned” graduated optimiza-
tion. One drawback of these methods is, that their performance significantly
depends on the initialization of the lifting variables (as demonstrated in our
numerical experiments).

3 Background and notations

Robust cost optimization consists in minimizing functions of the form:

min
θ

Ψ(θ) with Ψ(θ) =

N
∑

i=1

ψ(‖fi(θ)‖), (1)

where θ ∈ R
p are the parameters of interest, fi(θ) : Rp → R

d is the i-th vec-
torial residual function and ψ (·) is a robust kernel function (that will be for-
mally defined hereinafter), that allows to reduce the influence of outlying data
points. ‖·‖ is the usual L2-norm (leading to isotropic penalization of large resid-
uals). The arguably simplest application of Eq.(1) arises when robustly fitting a
“mean” vector θ to data points yi ∈ R

d which leads to the following problem:
minθ

∑N
i=1 ψ (‖yi − θ‖). From a practical point of view, we would like a robust

kernel function to convey the idea that large residuals should always have a
smaller influence than smaller residuals when estimating the optimal parame-
ters θ∗. We will now translate this idea into formal properties of a robust kernel
function: A robust kernel function ψ : R → R

+
0 is a symmetric function suffi-

ciently smooth near 0 with the following properties: 1) ψ(0) = 0 and ψ′′(0) = 1.
2) The mapping φ : R+

0 → R
+
0 with φ(z) := ψ(

√
2z) (or φ(r2/2) = ψ(r)) is

concave and monotonically increasing.

5 Here, the term ”lifting” refers to the ”multiplicative” version of lifting [11, 29]. We
do not consider other types of lifting such as the “additive” version of lifting [12, 28].
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In robust cost functions such as Eq. 1 the robust kernel ψ is applied only to
non-negative arguments, but it is customary to extend its domain to the entire
real line R. The “normalization” property (property 1) allows to compare the
robustness of different kernels. Concerning property 2, the fact that φ should be
monotonically increasing is obvious but the necessity of its concavity requires
some justification. To so do, we examine the weight function ω associated with
a robust kernel ψ that describes how ψ weighs the influence of residuals6:

ω(r) := ψ′(r)/r = φ′(r2/2). (2)

Since we aim for large residuals having a smaller influence than smaller residu-
als, ω(·) should be monotonically decreasing in |r|, which is guaranteed by the
concavity of φ. Let us note that this definition of a robust kernel includes both
convex and quasi-convex kernels. However, as stated in the introduction, in the
experiments we will only consider quasi-convex kernels.

4 Direct methods: IRLS, Triggs correction,
√

ψ

In this section, we review the approaches that aim to (iteratively) minimize the
objective Ψ(θ) (see Eq. 1) without explicitly modifying the objective, and we
outline that each of these approaches can be interpreted as methods trying to
locally approximate ψ with a quadratic function. In order to be computationally
efficient, these methods try to cast the original problem in a way that allows non-
linear least-squares solvers, such as Gauss-Newton or Levenberg-Marquardt, to
be employed. As a consequence, at each iteration these approaches perform the
following steps:
1. perform a first order approximation of the vectorial residual function around
the current value of the parameters θ = θ̄: fi(θ̄ +∆θ) ≈ f̄i + Ji∆θ where Ji is
the Jacobian of fi(θ̄ +∆θ) w.r.t. the increment ∆θ evaluated at ∆θ = 0 and f̄i
is a short hand notation for fi(θ̄),

2. approximate ψ(‖f̄i+Ji∆θ)‖) with a quadratic function ψ̆ s.t. ψ(‖f̄i‖) = ψ̆(‖f̄i‖).
While step 1 is the same for all the approaches, step 2 turns out to be very
different for each of them.

IRLS [13]: One way to derive the IRLS methods is to interpret it as instance of
the majorize-minimize principle (e.g. [17]): given the current solution θ̄, IRLS

uses a quadratic majorizer of ψ, i.e ψ(r) ≤ ψ̆IRLS(r):

ψ̆IRLS(‖f̄i + Ji∆θ)‖) = ω(‖f̄i‖)
(

‖f̄i + Ji∆θ)‖2/2− ‖f̄i‖2/2
)

+ ψ(‖fi(θ̄)‖). (3)

Since robust kernels are by construction sub-quadratic, a non-degenerate quadratic
majorizer always exists. The IRLS algorithm iteratively builds and minimizes the
quadratic surrogates, which yields a sequence of solutions θ(k) with monotoni-
cally decreasing costs Ψ(θ(k)).

6 For instance, for the quadratic kernel (which does not try to reduce the influence of
large residuals), we have ω(r) = 1.
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Triggs correction [23]: Contrary to IRLS, the Triggs correction performs a second
order expansion of Fi(∆θ) := φ(‖fi + Ji∆θ‖2/2) around ∆θ = 0. The resulting
approximation of ψ is given by

ψ̆Triggs(‖f̄i + Ji∆θ)‖) = ψ(‖f̄i‖) +∇∆θFi(0)
⊤∆θ +∆θ⊤HFi

(0)∆θ (4)

with the following expressions for the gradient and Hessian at ∆θ = 0:

∇∆θFi(0) = ω(‖fi‖)J⊤i fi HFi
(0) = J

⊤
i

(

ω′(‖fi‖)
‖fi‖

fif
⊤
i + ω(‖fi‖)I

)

Ji.

where we used Eq. 2 as well as φ′′(z) = (ω(
√
2z))′ = ω′(

√
2z)√

2z
. Note that fi is an

eigenvector for ω′

‖fi‖ fif
⊤
i + ωI (omitting arguments to ω and ω′):

(

ω′

‖fi‖
fif

⊤
i + ωI

)

fi = ω′‖fi‖fi + ωfi = (ω′‖fi‖+ ω)fi.

Hence, if ω+‖fi‖ω′ < 0, then HFi
(0) is negative-definite and the Triggs correction

approach cannot be applied. The popular Ceres solver [1], which supports the
Triggs correction for robust cost optimization, reverts to IRLS for the current
step in this case.

Square-rooting ψ [9]: A third option consists in square-rooting ψ and performing
a first order Taylor expansion of it around ∆θ = 0. Defining Gi(∆θ) := g(f̄i +
Ji∆θ) where g(v) =

√

ψ(‖v‖) · v/‖v‖, we obtain:

ψ̆√ (‖f̄i + Ji∆θ)‖) =
(

g(f̄i) + JGi
(0)∆θ

)2
(5)

with

JGi
(0) = Jgi(f̄i)Ji and Jgi(v) =

√

ψ(‖v‖)‖v‖2I − γ(ω(v))√
ψ(‖v‖)

vv⊤

‖v‖3 .

where we defined γ(ω(v)) = ψ(v)−ω(v)‖v‖
2

2 (more details about that function γ
will be provided in Section 5). Despite ‖v‖ appearing in the denominator, g(v) is
smoothly behaving near 0. The v/‖v‖ term cancels out the non-differentiability
induced by the square root. Observe that

√

ψ(‖v‖) behaves like ‖v‖/
√
2 near

v = 0, hence g(v) ≈ v/
√
2 for v ≈ 0. Consequently, limv→0 Jgi(v) = I/

√
2.

In Fig.1, we plot the different approximations of ψ(‖f̄i+Ji(θ̄)∆θ)‖) for the 1-
D linear function fi(θ) = θ and θ̄ = 1. One can see that both “Square-rooting ψ”
and the Triggs correction do not preserve the symmetry of ψ, whereas IRLS does.
Moreover, the IRLS approximation is the only function that has its minimum
at 0 whereas “Square-rooting ψ” has a tendency to overshoot with a minimum
at ≈ −0.7 and the Triggs correction produces a negative second-order derivative.
Contribution: Our analysis shows that the underlying quadratic models are
very different and that the IRLS model has desirable properties which supports
what is pointed out in [29]: the Triggs correction performs poorly and “Square-
rooting ψ” is often inferior to IRLS. Nevertheless, the direct approaches have a
major drawback: their limited ability to escape poor local minima. This leads
us to studying fundamentally different approaches in the following sections.
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Fig. 1. Quadratic surrogate models used by direct approaches at θ̄ = 1 (the x-axis
corresponds to θ = θ̄ +∆θ): IRLS (Eq. 3), second order expansion used in the Triggs
correction (Eq. 4) (which is concave at θ̄) and “Square-rooting ψ” (Eq. 5). Observe
that only the IRLS model preserves the symmetry of ψ and has its minimum at the
zero residual.

5 Half-quadratic lifting-based methods

In this section we review the lifting approach for robust cost minimization pro-
posed in [29], and we unify the formulation with a convexified Newton approxi-
mation7. In analogy with half-quadratic lifting [11] the robust kernel ψ is refor-
mulated as point-wise minimum over a family of convex parabolas,

ψ(x) = min
v∈[0,1]

v
x2

2
+ γ(v), (6)

where γ : [0, 1] → R
+
0 is a convex and monotonically decreasing “bias” function

in [0, 1]. For many interesting choices of ψ the bias function γ can be continuously
extended to the domain R

+
0 (see e.g. [26]). γ is convex but generally increasing

in R≥1. In order to avoid the constraint v ∈ [0, 1] (or v ≥ 0, respectively) we
reparametrize v = w(u), where w : R → [0, 1] or w : R → R

+
0 . Three sensible

choices for w are w(u) = u2, w(u) = eu and w = sigmoid(u), where sigmoid is the
sigmoid function, e.g. sigmoid(u) = 1/(1+e−u). Note that in the objective Eq. 1
one has to introduce an auxiliary unknowns ui for each term in the sum, but
this only induces a moderate increase in run-time in a second order minimization
method (e.g. by leveraging the Schur complement [29]).

Using Eq. 6 we can reformulate Eq. 1 as

Ψ(θ) = min
u1,...,uN

∑

i

(

w(ui)
‖fi(θ)‖2

2
+ γ(w(ui))

)

=: min
u1,...,uN

Ψ̃(θ, (ui)i) (7)

For notational brevity we will write wi for w(ui), w
′
i for w

′(ui) etc. in the fol-
lowing.

7 This is different to a so-called “Lifted Newton method” [3], which addresses “deeply
nested functions” and thus is not directly applicable to robust optimization.
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Gauss-Newton: After linearizing the residual fi(θ̄ + ∆θ) ≈ f̄i + Ji∆θ we can
rewrite each term of Ψ̃ as

Fi(∆θ, ∆ui) :=
wi

2

∥

∥f̄i + Ji∆θ
∥

∥

2
+ γ(wi) =

∥

∥

∥

∥

∥

√
wi√
2
(Ji∆θ + f̄i)
√

γ(wi)

∥

∥

∥

∥

∥

2

. (8)

After taking first order derivatives we obtain the Gauss-Newton model for Ψ̃ ,

Ψ̃GN (∆θ, (∆ui)i) =
1

2

∑

i

(

∆θ
∆ui

)⊤(
wiJ

⊤
i Ji

w′

i

2 J
⊤
i f̄i

w′

i

2 f̄⊤i Ji
(w′

i
)2

4wi
‖f̄i‖2 + (w′

i
γ′

i
)2

2γi

)

(

∆θ
∆ui

)

+
∑

i

(

wiJ
⊤
i f̄i

w′

i

2 ‖f̄i‖2 + w′
iγ

′
i

)⊤(
∆θ
∆ui

)

+ const. (9)

By construction the matrices

(

wiJ
⊤
i Ji

w′

i

2 J
⊤
i f̄i

w′

i

2 f̄⊤i Ji
(w′

i
)2

4wi
‖f̄i‖2 + (w′

i
γ′

i
)2

2γi

)

(10)

are positive semi-definite. The bottom right element has two problematic points:
when wi → 0 (then (w′

i)
2/wi is indeterminate) and when wi → 1 (in this case

(γ′i)
2/γi is indeterminate as γ(1) = 0). It can be shown [27] that the first order

Taylor expansions of (w′)2/w and (γ′(v))2/γ(v) at the problematic points are
given by

(w′(∆u))2

w(∆u)
≈ 2w′′(0) + 4

3w
′′′(0)∆u

(γ′(1 +∆v))2

γ(1 +∆v)
≈ 2γ′′(1) + 4

3γ
′′′(1)∆v

for ∆u and ∆v small. Consequently, a Gauss-Newton based method can be
implemented generically by providing γ and w and the corresponding derivatives.

Newton: The Newton approximation of Fi (Eq. 8) around θ̄ and ui is given by

FNi (∆θ, ∆ui) ≈
1

2

(

∆θ
∆ui

)⊤(wiJ⊤i Ji w′
iJ

⊤
i f̄i

w′
if̄

⊤
i Ji

w′′

i

2 ‖f̄i‖2 + w′′
i γ

′
i + (w′

i)
2γ′′i

)(

∆θ
∆ui

)

+

(

wiJ
⊤
i f̄i

w′

i

2 ‖f̄i‖2 + w′
iγ

′
i

)(

∆θ
∆ui

)

+ const. (11)

In this case the Hessian matrices

ANi :=

(

wiJ
⊤
i Ji w′

iJ
⊤
i f̄i

w′
if̄

⊤
i Ji

w′′

i

2 ‖f̄i‖2 + w′′
i γ

′
i + (w′

i)
2γ′′i

)

=:

(

wiJ
⊤
i Ji w

′
iJ

⊤
i f̄i

w′
if̄

⊤
i Ji αi

)

(12)

are not guaranteed to be p.s.d. We also denote the bottom right element of ANi
by αi :=

w′′

i

2 ‖f̄i‖2 + w′′
i γ

′
i + (w′

i)
2γ′′i . Assuming that wiJ

⊤
i Ji is strictly positive
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definite (not just p.s.d. guaranteed by construction)8, we obtain via the Schur

complement that ANi is p.s.d. iff αi − (wi)
′2

wi
f̄⊤i Ji(J

⊤
i Ji)

−1
J
⊤
i f̄i ≥ 0. In order to

enforce that ANi is p.s.d., we add a non-negative value δi to αi

αi + δi −
(wi)

′2

wi
f̄⊤i Ji(J

⊤
i Ji)

−1
J
⊤
i f̄i ≥ 0. (13)

Since Ji(J
⊤
i Ji)

−1
J
⊤
i is a projection matrix into a respective subspace (the column

space of Ji), we deduce that f̄⊤i Ji(J
⊤
i Ji)

−1
J
⊤
i f̄i ≤ ‖f̄i‖2. Hence, setting δi =

max{0, (wi)
′2

wi
‖f̄i‖2 − αi} is a sufficient condition for Eq. 13 to be satisfied. Note

that αi + δi = max
{

αi,
(wi)

′2

wi
‖f̄i‖2

}

and therefore the convexified matrix ĂNi is
given by

ĂNi :=

(

wiJ
⊤
i Ji w′

iJ
⊤
i f̄i

w′
if̄

⊤
i Ji max

{

αi,
(wi)

′2

wi
‖f̄i‖2

}

)

. (14)

Thus, the (convexified) Newton model for Ψ̃ finally reads as

Ψ̃N (∆θ, (∆ui)i) =
1

2

∑

i

(

∆θ
∆ui

)⊤(wiJ⊤i Ji w′
iJ

⊤
i f̄i

w′
if̄

⊤
i Ji max

{

αi,
(wi)

′2

wi
‖f̄i‖2

}

)

(

∆θ
∆ui

)

+
∑

i

(

wiJ
⊤
i f̄i

w′

i

2 ‖f̄i‖2 + w′
iγ

′
i

)⊤(
∆θ
∆ui

)

+ const. (15)

Contribution: Our novel Newton-based approach (Eq. 15) suggests different
updates for ∆θ and (∆ui)i=1,...,N than the Gauss-Newton approach (Eq. 9).
This is due to the fact that our Newton-based solver leverages second order
information. Thus one may expect it to reach better local minima than the
Gauss-Newton based solver.

6 Graduated optimization

Graduated optimization aims to avoid poor local minima usually returned by
local optimization methods (such as the direct methods presented in Section 4)
by iteratively optimizing successively better approximations of the original ob-
jective. It therefore relies on a sequence of objectives (Ψ0, . . . , Ψkmax) such that
Ψ0 = Ψ and Ψk+1 is in some sense easier to optimize than Ψk. To our knowledge
graduated optimization has not been explored much in the geometric computer
vision literature (besides graduated non-convexity, which was specifically de-
veloped for a robust and edge-preserving image smoothing method), although
it is frequently used in image matching (by leveraging a scale space or image
pyramid e.g. [24, 18]). Algorithm 1 illustrates the basic graduated optimization
method. The construction of Ψk and the choices for a stopping criterion are left
unspecified and will be described in the following.

8 which will be guaranteed in the implementation as we use a damped Newton ap-
proach.
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Algorithm 1 A generic graduated optimization method.

θ̂[kmax]← θ
0

for all k = kmax, . . . , 0 do ⊲ Traverse towards original cost
if k < kmax then θ̂[k]← θ̃[k + 1] ⊲ Propagate solution downwards
repeat

θ̂[k]←STEP(Ψk, θ̂[k]) ⊲ assuming descent steps
until a stopping criterion or iteration limit is reached

end for

return θ̂[0]

Choice of Ψk: For robust costs the natural approach to construct the sequence
(Ψ0, . . . , Ψkmax) is by appropriate scaling of the kernels. Let (sk)

kmax

k=0 be a se-
quence of scaling parameters with s0 = 1 and sk < sk+1. Define

ψk(r) := s2kψ(r/sk) and Ψk(θ) :=
∑

i
ψk(‖fi(θ)‖). (16)

In most cases one will choose sk = τk for a user-specified value τ (a typical
choice also used in our experiments is τ = 2). Due to the following lemma this
construction of (Ψk)kmax

k=0 is not only natural, but also has a solid justification:

Lemma 1. Let ψ be a robust kernel and s ≥ 1. The following statements hold:

1. ψ(r/s) ≤ ψ(r) ≤ s2ψ(r/s) for all r.
2. Let 0 ≤ r′ ≤ r. Then we have inequality ψ(r)−ψ(r′) ≤ s2

(

ψ(r/s)−ψ(r′/s)
)

.

Proof. ψ(r/s) ≤ ψ(r) follows from monotonicity of ψ and that r/s ≤ r for s ≥ 1,
yielding one part of the first claim. Since ψ is a robust kernel, then the associated
mapping φ(z) = ψ(

√
2z) is concave and monotonically increasing in its domain

R
+
0 . Further, ψ is normalized such that ψ(0) = φ(0) = 0. From the concavity of

φ we deduce that

φ(αz) = φ
(

αz + (1− α) · 0
)

≥ αφ(z) + (1− α)φ(0) = αφ(z)

for all α ∈ [0, 1]. Now set α = 1/s2 for s ≥ 1, and we obtain

φ(z/s2) = ψ(
√
2z/s) ≥ φ(z)/s2 = ψ(

√
2z)/s2.

Substituting z = r2/2 (or r =
√
2z) yields ψ(r/s) ≥ ψ(r)/s2 or equivalently

s2ψ(r/s) ≥ ψ(r). This proves the first claim.
The inequality in the second claim is equivalent to s2ψ(r′/s) − ψ(r′) ≤

s2ψ(r/s) − ψ(r). The function d(r) := s2ψ(r/s) − ψ(r) ≥ 0 is monotonically
increasing, since d′(r) = sψ′(r/s)−ψ′(r) = r(ω(r/s)−ω(r)) ≥ 0 (as ω is mono-
tonically decreasing). This verifies the second claim.

The first statement implies that Ψk(θ) ≤ Ψk+1(θ) for all θ, and optimizing Ψk

means that an upper bound of Ψ0 = Ψ is minimized.9 The second statement in

9 Note that Ψk is upper bounding Ψ , but generally it is not a majorizer of Ψ (which
would additionally require Ψk(θ̄) = Ψ(θ̄) at the current solution θ̄).
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the lemma shows that Ψk is in a certain sense easier than Ψ ℓ for ℓ < k: if θ̄ and
θ+ are solutions such that ‖fi(θ+)‖ ≤ ‖fi(θ̄)‖ for all i (i.e. going from θ̄ to θ+

decreases all residuals), then Ψ ℓ(θ̄)−Ψ ℓ(θ+) ≤ Ψk(θ̄)−Ψk(θ+). Thus, Ψk is not
only an upper bound of Ψk−1, but also tends to be steeper.

Stopping criterion: We propose to utilize a relative stopping criterion. Let θ̄ be
the current solution and θ+ := θ̄ +∆θ be a new solution. Define

I> :=
{

i : fi(θ
+) > fi(θ̄)

}

, (17)

i.e. I> indexes the strictly increasing residuals after updating the solution. Fur-
ther, let

Ψk>(θ) :=
∑

i∈I>

ψk(fi(θ)) Ψk≤(θ) :=
∑

i/∈I>

ψk(fi(θ)) (18)

(analogously we introduce Ψk−1
≤ (θ) and Ψk−1

> (θ)). We have Ψk(θ) = Ψk≤(θ) +

Ψk>(θ) by construction, and Ψ ℓ>(θ̄) ≤ Ψ ℓ>(θ
+) and Ψ ℓ≤(θ

+) ≤ Ψ ℓ≤(θ̄) for all ℓ ∈
{0, . . . , kmax}. We also introduce

∆ℓ
≤ := Ψ ℓ≤(θ̄)− Ψ ℓ≤(θ

+) ≥ 0 and ∆ℓ
> := Ψ ℓ>(θ

+)− Ψ ℓ>(θ̄) ≥ 0 (19)

for all ℓ ∈ {0, . . . , kmax} (note the different positions of θ̄ and θ+ in ∆ℓ
≤ and

∆ℓ
>). Now if θ̄ is close to a stationary point of Ψk, then ∆k

≤ ≈ ∆k
>. Since θ

+

is assumed to improve Ψk, we read ∆k
≤ ≥ ∆k

>0 and therefore ∆k
≤ − ∆k

> ≤ η̄

(for a small value η̄ > 0) indicates that θ̄ is close to a stationary point. Since
the functions Ψk are scaled differently across the hierarchy, we suggest to use a
relative stopping criterion,

ρk∆ :=
∆k

≤ −∆k
>

∆k
≤ +∆k

>

=
Ψk(θ̄)− Ψk(θ+)

∆k
≤ +∆k

>

≤ η (20)

for a user-specified value of η. Due to Lemma 1 the denominator monotonically
increases with k, hence the criterion becomes looser for larger k.
Contribution: The novel stopping criterion we derived (Eq. 20) allows to speed
up particularly the early stages of graduated optimization. Interestingly, there
is a connection between the above stopping criterion and the gain ratio

ρkΨ :=
Ψk−1(θ̄)− Ψk−1(θ+)

Ψk(θ̄)− Ψk(θ+)
, (21)

that is commonly used in trust region methods (e.g. [25]) to evaluate the quality
of a surrogate model (here Ψk) w.r.t. a target cost (Ψk−1):

Lemma 2. Let η ∈ (0, 1). If ρkΨ ≥ η+1
2η > 0 or ρkΨ ≤ η−1

2η < 0 then ρk∆ ≤ η.

The lemma asserts that if Ψk−1 either increases or decreases sufficiently faster
than Ψk, then we are near a stationary points of Ψk (according to the stopping
criterion Eq. 20). It is less relevant in practice, but tells us that Ψk and Ψk−1 (or
Ψ ℓ for any ℓ < k) cannot behave too different when far from a local minimum.
The proof uses Lemma 1 and is given in [27].
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7 Numerical Results

In this section we compare the performance of the different approaches for robust
cost optimization, and we are mostly interested in the quality (i.e. achieved
objective value) that is reached after a sensible amount of run-time.

Implementation remarks: The core of our implementations is a sparse but direct
Cholesky solver from the SuiteSparse libraries [6]. We apply Levenberg-type
damping J

⊤
J+λI to (i) ensure the system matrix is sufficiently positive definite

for a direct solver and (ii) to obtain a dampled Newton/Gauss-Newton method
for non-linear problems. The damping parameter is adjusted using the classical
×10/÷10 rule. In the graduated optimization method we used 6 scale levels (i.e.
kmax = 5), where the scale parameter is doubled at each level. The r.h.s. η in
the stopping criterion Eq. 20 is set to η = 1/5. In the figures we abbreviate
lifted Gauss-Newton and lifted Newton by l-G-N and l-Newton, respectively.
GOM refers to graduated optimization with an uniform allocation of iterations
at each level, and GOM+ leverages Eq. 20 as stopping criterion. We use IRLS as
direct method inside GOM. We allow 100 iterations (i.e. 100 times solving the
underlying system equation for the update ∆θ) for each method, which results
in rather similar wall-clock runtimes for all methods.

7.1 Synthetic data: Robust mean and Image smoothing

Estimating the mode (i.e. robust mean) of data points is arguably the simplest
robust optimization problem. We follow [26] and create Gaussian distributed
inliers and uniformly distributed outliers in a [−20, 20]D domain. The mean of
the Gaussian inlier distribution is also uniformly sampled from the same domain,
hence in most cases the outliers will not be symmetrically distributed around
the inlier points. Let (y1, . . . ,yN ) be the entire set of data points, then the
task is to estimate θ∗ = argminθ Ψ

mean(θ) = argminθ
∑

i ψ(‖θ − yi‖), where
our choice of ψ is the Welsch kernel, ψ(r) = 1

2 (1 − e−r
2

). The initial value θ0

provided to the optimization methods is uniformly sampled as well. We depict in
Fig. 2 the average objective values (and corresponding standard deviation using
100 runs) reached by several methods for different choices of inlier ratios and
D = 3. The included methods are standard IRLS, the accelerated graduated
optimization method (GOM+), the lifted Gauss-Newton and Newton methods
parametrizing either w(u) = u2 (l-G-Na, l-Newtona) or w(u) = sigmoid(u) (l-
G-Nb, l-Newtonb). Graduated optimization (GOM+) is a clear winner, and the
lifted Newton method dominates the corresponding lifted Gauss-Newton version.
Using the sigmoid parametrization is clearly beneficial, and we will use this
parametrization from now on in the lifting-based methods.

Since θ has very small dimension in the robust mean example, these types of
low-parametric robust estimation problems are easily solved by random sampling
methods such as RANSAC and variants (e.g. [10, 22]). Therefore we now consider
a problem with a high dimensional vector of unknowns. We selected the weak
membrane energy for image smoothing (e.g. [5]), which is a prototypical instance
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Fig. 2. Final objective values for robust mean instances at varying inlier ratios.

Method IRLS l-G-N l-Newton GOM+

Objective 231.8133±1.9040 45.0811±0.0861 45.0496±0.0446 45.0463±3.66e-13
Table 1. Final objective values for the weak membrane energy.

of a difficult low-level image processing problem. Given an observed image u the
weak membrane energy is given by ΨMembrane(θ;u) =

∑

i∈V ψ
data(θi − ui) +

∑

(i,j)∈E ψ
smooth(θi − θj). The node set V corresponds to pixels, and the edge

set E is induced by the 4-neighborhood. ψdata and ψsmooth are based on the
smooth truncated kernel (see [27]). Table 1 lists the reached average objectives
(and standard deviation over 25 runs) for the different methods for the 256 ×
256 “Lena” image. The initial guesses θ0 are uniformly sampled images from
[0, 1]|V|. Only IRLS falls clearly behind in terms of reported optimal value. More
interesting is the evolution of objective values shown in Fig. 3, that allows to
make two observations: the lifted Gauss-Newton method is the fastest to achieve
a near optimal value, and the stopping criterion leveraged in GOM+ significantly
accelerates convergence of graduated optimization. Further (also visual) results
are provided in [27].

7.2 Real data: Robust bundle adjustment

One of the main applications of robust cost minimization in computer vision
is bundle adjustment (BA). We took 10 problem instances (the list is provided
in [27]) from the “bundle adjustment in the large collection” [2]. The robust

−10 0 10 20 30 40 50 60 70 80 90 100
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Iteration
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l-Newton Ψ
GOM+
GOM

l-G-N: Ψ̃

l-Newton: Ψ̃

Fig. 3. Evolution of ΨMembrane w.r.t. the number of iterations. For the lifting based
methods we plot the original cost Ψ and lifted one Ψ̃ (Eq. 7).



Descending, lifting or smoothing 13

1 2 3 4 5 6 7 8 9 10
3

4

5

6
·10−2

Dataset number

O
b
je
ct
iv
e

Initial IRLS l-G-N l-G-N∗ l-Newton GOM+

Fig. 4.Objective values (normalized w.r.t. the number of image measurements) reached
by the different methods for linearized BA.

bundle objective is given by

ΨBA({Ri}, {ti}, {Xj}) :=
∑

i,j
ψ
(

‖π(RiXj + ti)− qij‖
)

, (22)

where qij ∈ R
2 is the observed image observation of the j-th 3D point Xj ∈ R

3

point in the i-th image (which has associated parameters Ri ∈ SO(3) and
ti ∈ R

3). π(X) = X/X3 is the projection function of a pinhole camera model.
qij is measured on the image plane, i.e. the original pixel coordinates are pre-
multiplied by the (provided) inverse calibration matrix. ψ is chosen to be the
smooth truncated kernel with parameter ➼, i.e. ψ(r) = 1

16

(

1− [1− 4r2]2+
)

. This
choice makes the problem instances sufficiently difficult, as the initial inlier ratio
of image observations ranges between 14% and 50% (depending on the dataset).
The inlier ratios obtained after robust cost minimization cluster around 60% for
the best obtained local minima.

First, we focus on a linearized version of bundle adjustment, where the resid-
uals fij = π(RiXj + ti) − qij are replaced by their linearized versions w.r.t.
the provided initial values. The non-robust objective is therefore convex, and
the performance differences depicted in Fig. 4 indicate how well each method es-
capes poor local minima. In order to obtain similar objective values regardless of
the dataset size, the objective values are normalized w.r.t. the number of image
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Fig. 5. Evolution of ΨBA w.r.t. the number of iterations for the Venice-427 instance.
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Fig. 6.Objective values (normalized w.r.t. the number of image measurements) reached
by the different methods for metric BA.

measurements. The unnormalized BA objective values Eq. 22 are approximately
between 6000 and 60000 (depending on the dataset and method). Thus, none
of the methods is in its respective comfort zone. IRLS is clearly inferior to the
other methods, and GOM+ is slightly ahead of the lifted formulations. l-G-N∗

is the lifted Gauss-Newton method, but the lifted parameters ui are initialized
to their optimal value (given the initial values θ0). The resulting performance is
between IRLS and l-G-N. If we take a closer look on the evolution of objectives
(Fig. 5), then the lifted Gauss-Newton method reduces the actual cost ΨBA very
quickly, although graduated optimization eventually reaches a better minimum.

Fig. 6 illustrates the reached objectives (normalized w.r.t. the number of
image measurements) by the different methods for non-linear metric bundle ad-
justment. Due to the additional non-linearity introduced by the non-robust ob-
jective, the results are more diverse than the ones in Fig. 4. In particular, the
lifted Newton method shows an unstable behavior. Details and results for dense
disparity estimation are provided in [27].

8 Conclusion and future work

In this work we first unified several direct and lifting-based methods for robust
cost minimization. We also demonstrated that a graduated optimization method
has very competitive performance in terms of the reached objective values and
in terms of speed of convergence. Hence, our recommendation is as follows: a
lifted Gauss-Newton method is a very strong candidate when very fast decrease
of objectives is desired, and the proposed graduated optimization approach is
the method of choice when reaching the best objective is the main interest—
especially when the quality of the initial solution is unknown.

The fact that the best performing methods “forget” to a large extend the
given initial solution is not very satisfactory. Future work will investigate whether
methods adapting to the quality of the provided starting point result in faster
overall convergence.
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