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Abstract. Current video generation/prediction/completion results are
limited, due to the severe ill-posedness inherent in these three problems.
In this paper, we focus on human action videos, and propose a general,
two-stage deep framework to generate human action videos with no con-
straints or arbitrary number of constraints, which uniformly addresses
the three problems: video generation given no input frames, video predic-
tion given the first few frames, and video completion given the first and
last frames. To solve video generation from scratch, we build a two-stage
framework where we first train a deep generative model that generates
human pose sequences from random noise, and then train a skeleton-to-
image network to synthesize human action videos given the human pose
sequences generated. To solve video prediction and completion, we ex-
ploit our trained model and conduct optimization over the latent space to
generate videos that best suit the given input frame constraints. With our
novel method, we sidestep the original ill-posed problems and produce
for the first time high-quality video generation/prediction/completion
results of much longer duration. We present quantitative and qualita-
tive evaluations to show that our approach outperforms state-of-the-art
methods in all three tasks.

Keywords: Video Generation · Generative Models

1 Introduction

In this paper we propose a general, two-stage deep framework for human video
generation (i.e. generating video clips directly from latent vectors), prediction
(i.e. predicting future frames of a short clip or single frame), and completion
(i.e. completing the intermediate content given the beginning and the ending),

⋆ Equal Contribution.
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Fig. 1. (a) Video generation, (b) prediction and (c) completion of human action videos
using our general two-stage deep framework. (d) In all cases, a complete human pose
skeleton sequence is generated in the first stage

Fig. 2. Real-world examples. We use reference images in the first column (arbitrary
unrelated actions) to generate Direction/Greeting actions. 1st and 2nd row: UCF-101
results. 3rd row: Forrest Gump results. See full videos in supplemental material

where each problem was previously addressed as separate problems (Fig. 1).
Previous video generation capitalizing state-of-the-art deep convolutional neural
network (CNN), such as [35], has demonstrated the significant difficulty of the
problem, where their first results were still far from photorealism. Current future
prediction [19] in the form of video prediction [37, 34] generates a short video
from a given frame to predict future actions in a very limited scope with blurry
results. Lastly, while there exist deep learning works on image completion [45],
there is no known representative deep learning work on video completion.

To better address the general video synthesis problem, we need to understand
how pixels change to generate a full temporal object action. With a higher level
of uncertainty in the exact movement between frames of the moving object on
pixel level, as observed in [37, 34], the problem is more tractable by modeling the
uncertainty with underlying structure of the moving objects. Hence, we utilize
this idea and conduct our experiments on human action videos, which is a well-
studied and useful class of videos in various computer vision applications, and in
this case the natural choice of underlying structure is human poses (or skeletons).
Thus we divide the video generation task into human pose sequence generation
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(pose space) followed by image generation (pixel space) from the generated hu-
man pose sequences. Then, for the prediction and completion problems, we can
solve them using the same model by regarding them as constrained generation.

Specifically, our general deep framework for video generation has two stages:
first, a new conditional generative adversarial network (GAN) to generate plausi-
ble pose sequences that perform a given category of actions; second, a supervised
reconstruction network with feature matching loss to transfer pose sequences to
the pixel space. Our general video generation framework can be specialized to
video prediction/completion (i.e. constrained generation) by optimizing in the la-
tent space to generate video results closest to the given input constraints. Hence
our approach can either generate videos from scratch, or complete/predict a
video with arbitrary number of input frames available given the action class. We
provide extensive qualitative and quantitative experimental results to demon-
strate that our model is able to generate and complete natural human motion
videos. We also test our model on real-world videos (Fig. 2).

2 Related Work

We review here recent representative state-of-the-art works related to this paper.
Video Prediction/Generation In video prediction, research has been done
to model uncertain human motion in pose space [37, 34]. Attempts have also
been made to learn the deep feature representation [19, 36, 16, 43]. For video
generation, work has been done to generate videos directly in pixel space [35,
18] or generate from caption [18]. While these works shed light on how to model
the uncertain temporal information in videos, the results are suboptimal. Our
proposed method achieves higher quality, and more importantly, aims at a higher
goal: video completion, prediction and generation in the same framework.
Image/Video Completion Much work has been focusing on image comple-
tion with Generative Models [45], but video completion with deep learning has
remain unexplored despite its importance [13, 42]. If the temporal distance to be
completed is small, e.g., [23] then video frame interpolation can be performed to
fill in the in-between frames. However, we are dealing with a different problem
where input frames are far apart from each other. The modeling of such uncer-
tainty increases the difficulty of this task. In our paper, we aim to perform video
completion by optimizing the latent space under the constraint of input frames.
Human Pose Estimation Various research efforts [4, 33, 41, 6, 22] have been
made to produce state-of-the-art human pose estimation results, providing us
with reliable human pose extractor. In our paper, we leverage the reliable human
pose estimation results by [22, 4] as input to our completion pipeline.
Generative Models Our work is based on Generative Adversarial Networks
(GAN). Goodfellow et al [10] first proposed GAN that can implicitly gener-
ate any probabilistic distribution. Then conditional GAN [20] was proposed to
enable generation under constraint. Subsequent works include usage of convo-
lution neural networks [26], improvement of training stability [28] followed by
WGAN [1] and Improved WGAN [11] which further made GAN reliable. In our
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Fig. 3. Overview of our two-stage video generation. In the first stage we generate
skeleton motion sequences by G from random noise, while in the second stage we use
our skeleton-to-image transformer F to transform skeleton sequence to image space

paper, we first train a conditional WGAN to generate single frame human pose,
then we train a conditional sequence GAN to generate latent vector sequences
for the single frame model to output human action sequences.

Optimization over Input Data To specialize to video prediction and com-
pletion, we model them as constrained video generation and update input latent
vector to find the motion sequence that best matches the input frames. Recently,
back-propagation on input data is performed on image inpainting [45] to generate
the best match of corrupted image. Zhu et al [48] utilized such method to enable
generative visual manipulation. Google DeepDream [21] also used optimization
on latent manifold to generate dream-like images. Earlier, similar method has
been employed to perform texture synthesis and style transfer [8, 9, 15].

Skeleton to Image Transformation Our two-stage model involves a sec-
ond stage that transforms human poses to pixel level images, which has been
attempted by various deep learning methods. Recent works [44, 17, 37, 34, 46]
utilize GAN or multi-stage method to complete this task. We propose a simple
yet effective supervised learning framework comparable to state-of-the-arts.

3 Methodology

We present a general generative model that uniformly addresses video genera-
tion, prediction and completion problems for human motions. The model itself
is originally designed for video generation, i.e., generating human action videos
from random noise. We split the generation process into two stages: first, we
generate human skeleton sequences from random noise, and then we transform
from the skeleton images to the real pixel-level images (Fig. 3). In Section 3.1
we will elaborate the model and methods we use to generate human skeleton
motion sequences, and in Section 3.2 we will present our novel method for solv-
ing the skeleton-to-image transformation problem. Lastly, in Section 3.3, we will
show that we can specialize this model without modification to accomplish video
prediction and completion by regarding them as constrained video generation.
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Fig. 4. Illustration of our two-step generation pipeline. In step one (left) G0 takes a
random noise vector and outputs the generated pose vector. The D0 then differentiate
between real and fake pose vectors. Both inputs to G0 and D0 are concatenated with
conditional class vector. In step two (right), GPS takes the random noise z conditioned
on the latent vector of the first frame and the class vector, and generates a sequence
of latent vectors which can be transformed to pose vectors via G0. Then DPS takes as
input real/fake frames to determine P (Real)

3.1 General Generative Model

We propose a two-step generation model that generates human skeleton motion
sequences from random noise.

Let J be the number of joints of human skeleton, and we represent each joint
by its (x,y) location in image space. We formulate a skeleton motion sequence V
as a collection of human skeletons across T consecutive frames in total, i.e., V ∈
R

T×2J , where each skeleton frame Vt ∈ R
2J , t ∈ {1 · · ·T} is a vector containing

all (x, y) joint locations. Our goal is to learn a function G : Rn → R
T×2J which

maps an n-dimensional noise vector to a joint location vector sequence.
To find this mapping, our experiments showed that human pose constraints

are too complicated to be captured by an end-to-end model trained from direct
GAN method [10]. Therefore, we switch to our novel two-step strategy, where we
first train a Single Pose Generator G0 : Rm → R

2J which maps a m-dimensional
latent vector to a single-frame pose vector, and then train a Pose Sequence

Generator GPS : Rn → R
T×m which maps the input random noise to the latent

vector sequences, the latter of which can be transformed into human pose vector
sequences through our Single Pose Generator in a frame-by-frame manner.

Fig. 4 shows the overall pipeline and the results for each step. The advantage
of adopting this two-step method is that by training the single-frame generator,
we enforce human pose constraints on each frame, which alleviate the difficulty
compared to end-to-end training and thus enable the model to generate longer
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Fig. 5. Two-step generation architecture. Detailed architecture configuration of step
one (on the left) and step two (on the right) are shown respectively. Here

⊕
stands

for element wise addition and © stands for an LSTM cell

sequences. Additionally, in order to generate different types of motions, we em-
ploy the Conditional GAN [20] method and concatenate an one-hot class vector
indicating the class of motion to the input of our generators.

Single Pose Generator In the first step, we employ the improved WGAN [11]
method with gradient penalty for our adversarial training. We build a multilayer
perceptron for both our generator and critic with similar structures and add
condition to the input of both of them according to Conditional GAN [20]. Our
generator G0 takes as input anm-dimensional latent vector z0 concatenated with
a one-hot class vector c and outputs a pose vector G0(z0|c). Our critic D0 takes
as input a real pose vector x0 or a generated one, concatenated with c, yielding
a critic score. The detailed architecture configurations are shown in Fig. 5, and
are detailed in supplementary materials. Thus the WGAN objective is:

min
G0

max
D0∈D

Ec∼pc
[Ex0∼ppose

[D0(x0|c)]− Ez0∼pz0
[D0(G0(z0|c)|c)]] (1)

where D is the set of 1-Lipschitz functions, pc is the distribution of different
classes, ppose is the distribution of the real pose data, and pz0 is the uniform
noise distribution.

Pose Sequence Generator In the second step, we use the normal GAN [10]
method instead for training our Pose Sequence Generator, since in our exper-
iments normal GAN performs better than WGAN for this specific task. The
generator GPS generates a sequence of latent vectors, which are then fed into
the Single Pose Generator resulting in a sequence of pose vectors V̂ , from a
random noise vector z conditioned on z0 and c. Note that z0 is a random noise
vector describing the initial condition of the generated pose.

In our implementation we generate latent vector sequences by generating
the shifts between two consecutive frames, namely, the output of the network is
s0, s1, ..., sT−2 where zt+1 = st + zt for all t ∈ {0...T − 2} and zt is the latent
vector for the t-th frame (z0 is given from the noise distribution).
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Fig. 6. Left: Transferring target pose to a real image. Right: Skeleton-to-Image Net-
work. Image sizes and feature dimensions are shown in the figure. Note that the input
has 18 channels, which consist of 3 RGB channels of reference image and 15 joint heat
maps

For the discriminator, we employ a bi-directional LSTM structure, whose
input of each time step t is the shift of consecutive frames ∆V̂t = V̂t+1 − V̂t

conditioned on V̂t and c. The structural details are shown in Fig. 5. The objective
function for the training in this step is:

min
GPS

max
DPS

Ec∼pc
[EV∼pvideo

[logDPS(V |c)]+

Ez0∼pz0
,z∼pz

[log(1−DPS(GPS(z0|z, c)|c))]]
(2)

where Pc is the distribution of different classes, pvideo is the distribution of
the real video sequence data, pz0 is the uniform noise distribution and pz is
the Gaussian noise distribution. We also add an L2 regularization term on the
generated latent vector shifts for temporal smoothness.

3.2 Skeleton to Image Transformation

In this stage, we train a skeleton-to-image transformation to convert pose space
to image space. Formally, given an input pose vector x ∈ R

2J and a reference
image y0 ∈ R

w×h×3 where h and w are the width and height of images, we
need to transform x to a pixel-level image y ∈ R

w×h×3. In order to make the
dimensions of inputs well-aligned, we first convert the pose vector x to a set of
heat maps S = (S1, S2, ..., SJ), where each heat map Sj ∈ R

w×h, j ∈ {1...J} is a
2D representation of the probability that a particular joint occurs at each pixel
location. Specifically, let lj ∈ R

2, (lj = (x2j , x2j+1)) be the 2D position for joint
j. The value at location p ∈ R

2 in the heat map Sj is then defined as,

Sj(p) = exp(−
‖p− lj‖

2
2

σ2
) (3)

where σ controls the variance. Then our goal is to learn a function F : Rw×h×J →
R

w×h×3 that transforms joint heat maps into pixel-level human images, condi-
tioned on the input reference image. We train a supervised network here.

Skeleton-to-Image Network To learn our function F , we employ a U-Net like
network [27, 17] (i.e., convolutional autoencoder with skip connections as shown
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in Fig. 6) that takes, as input, a set of joint heat maps S and a reference image
y0 and produces, as output, a human image ŷ. For the encoder part, we employ
a convolutional network which is adequately deep so that the final receptive
field covers the entire image. For the decoder part, we use symmetric struc-
ture to gradually generate the image. To avoid inherit checkerboard artifact in
transposed convolution layers, there has been several papers proposing solutions
including sub-pixel convolution, resize and convolution etc [24, 29, 7]. In our case
we apply nearest neighbor up-sampling followed by convolution layer in decoder.

Loss Function To train our skeleton-to-image network, we compare the output
image with the corresponding ground truth image by binary cross entropy loss.
We calculate the binary cross entropy loss for intensity values at each pixel, i.e.

Lbce = −
1

k

∑
(1− y) log(1− F (x|y0)) + y log(F (x|y0)) (4)

where y is the ground truth image, x is pixel and k is the number of pixels. Our
experiments show that only using binary cross entropy loss tends to produce
blurry results. Hence, in order to enforce details in the produced images, we fur-
ther employ a feature-matching loss (in some papers also referred as perceptual
loss), as suggested in [5, 14]. We match the activations in a pre-trained visual
perception network that is applied to the ground truth image and the generated
image respectively. Different layers in the network represent different levels of
abstraction, providing comprehensive guidance towards more realistic images.

Specifically, let Φ be the visual perception network (VGG-19 [30]), and Φl be
the activations in the l-th layer. Our feature-matching loss is defined as,

L2 =
∑

l

λl‖Φl(F (x|y0))− Φl(y)‖1 (5)

where λl is the weight for the l-th layer, which are manually set to balance the
contribution of each term. For layers Φl, we use ‘conv1 2’, ‘conv2 2’, ‘conv3 2’,
‘conv4 2’ and ‘conv5 2’ in VGG-19 [30].

The overall loss for our skeleton-to-image network is therefore defined as

L = L1 + λL2 (6)

where λ denotes the regularization factor of feature matching loss.

3.3 Prediction and Completion

To uniformly address video completion and video prediction, we model them
as constrained video generation, which is ready to be defined by the general
generative model. We optimize on the latent space to achieve our goal. For
simplicity, the optimization is conducted on generated pose sequence, and we
can transform to complete video by our skeleton-to-image transformer using the
completed pose sequence. We utilize state-of-the-art human pose estimator like
[22] to obtain pose sequences.
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Fig. 7. Our completion/prediction pipeline. (a) Initialization: we randomly sample
from the latent space and compare L1 error with the constraint frames. Dashed box
shows the best initialization chosen. (b) We run BFGS optimization algorithms starting
at our initialization, then finally blend the constraints and the generated results

Video Completion To fill in missing frames of a video, our method utilizes the
generator G trained with full-length human pose sequence. The learned latent
space z is effective in representing pdata. We perform video completion by finding
the latent vector ẑ on the manifold that best fits the input frames constraint.
As illustrated in Fig. 7, we can generate the missing content using the trained
generative model G. The constraints can be arbitrary number of frames.

Objective Function: We regard this problem as an optimization problem.
Let I ∈ R

t×2J be the input frame constraints and z denote the learned latent
space of G. We define the optimal completion encoding ẑ by:

ẑ = argmin
z

{Lc(z|I) + α× Lp(z)}, (7)

where Lc denotes the contextual L1 loss between the constrained frames and
corresponding generated frames and Lp denotes the perceptual loss of generated
frames, i.e. “realness” of the pose sequence. α denotes a regularization factor of
the perceptual loss. Lc and Lp are defined as follows:

Lc(z|I) =
∑

i∈I

|G(z)i − Ii| (8)

Lp(z) = − log(D(G(z))) (9)

where I is the set of constrained frames, z is latent vector, i denotes the index
of frames in I; i can be arbitrary numbers subject to the given constraints. By
optimizing Eq. (7), we obtain a full generated sequence G(ẑ) ∈ R

T×2J which is
the “closest” match to the input frames.

Two-Step Optimization: In order to optimize Eq. (7), we employ a two-
step method illustrated in Fig.7. To address the optimization of such highly
non-convex latent space, we first randomly sample from the latent space and
compare the loss of Eq. (7) to find the best initialization, namely z0.
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As proposed in [48], taking the initialization z0 as the starting point, we
apply Limited Broyden-Fletcher-Goldfarb-Shanno optimization (L-BFGS-B) [3]
on the (n+m)-dimension latent space to find the optimal completion result ẑ.

Video Blending: Ideally, G(ẑ) should be the result. However, slight shift
and distortion from input constraints are observed as our method does not guar-
antee perfect alignment with the input. To address this, we use Poisson blend-
ing [25] to make our final pose sequence consistent with the input constraints.
The key idea is to maintain the gradients on the temporal direction of G(ẑ) to
preserve motion smoothness while shifting the generated frames to match the
input constraint. Our final solution, x̂, can be obtained by

x̂ = argmin
x

‖∇tx−∇tG(ẑ)‖22, s.t. xi = Ii for i ∈ R
t×2J (10)

where ∇t is the gradient operator on the temporal dimension. This blending
preserves the naturalness of the videos while better aligning with the input
frame constraints.

Video Prediction Video prediction can be solved under the same general
framework (same as in Fig. 7) as it can be essentially interpreted as video gen-
eration with first few frames as constraints.

Formally, let I ∈ R
t×2J be consecutive frames at time step 0 to t as input, we

generate future frames Gt, Gt+1, · · ·GT so that I0, I1, · · · , It, Gt+1, · · ·GT form
a natural and semantically meaningful video. To achieve such goal, we model
video prediction as video generation with first few frames as constraint. In other
words, we perform the same steps as in the previous section with the input
described above to obtain a completed video sequence.

4 Experiments

4.1 Dataset

We evaluate our model primarily on Human3.6m dataset [12]. The dataset
provides ground truth 2D human poses. In our experiments, in order to reduce
redundant frames and encourage larger motion variations, we subsample the
video frames to 16 fps. The action classes we select are ‘Direction’, ‘Greeting’,
‘Sitting’, ‘Sitting Down’, ‘Walking’, all of which contain large human motions.

For our skeleton sequence generation task, we randomly select 5 subjects
as training set and reserve 2 subjects as test set. For our skeleton-to-image
transformation task, we treat the unchosen action classes as training set, and
our chosen 5 action classes as test set.

Since our major concern is human motion, we thus subtract all the back-
grounds and generate the foreground human figure only for this dataset. To test
our method under real-world setting with background, we further train our net-
works on UCF-101 [32] training set, and test the model using UCF-101 [32] test
set as well as real-world movie footages from Forrest Gump (1995).
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4.2 Evaluation

Evaluating the quality of synthesized videos is a difficult problem for video gen-
eration due to no corresponding ground truth. For video prediction and com-
pletion, one can measure the difference from the ground truth frames by Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) [40], but
we argue that, since videos tend to have multiple possible futures, it is not advis-
able to compare predicted results against one ground truth. Furthermore, they
do not measure the temporal smoothness and human-likeness.

In order to evaluate the visual quality of our results, we measure whether
our generated videos are adequately realistic such that a pre-trained recognition
network can recognize the object and action in the generated video. This method
is inherently similar to Inception Score in [37, 28], object detection evaluation in
[39] and Semantic Interpretability in [47]. Though Inception Score has its limi-
tations [2], it remains the best systematic metric for video generation. Current
state-of-the-art video action recognition model is the two-stream network pro-
posed by Yan et al. [31] and improved by Wang et al [38]. We employ [38] and
fine-tune it on our dataset, and evaluate the following two scores measuring the
visual quality of generated image frames and video sequences respectively:

Inception Score for frames One criterion for video evaluation score is
that they should reflect if the video contains natural images along the sequence.
Thus we calculate the inception score [28] based on the output classification
result of the RGB stream [38] for each frame generated as the evaluation metric.
The average score across the whole video should reflect the overall image quality.
Additionally, we also show the Inception Score obtained at each time step, which
gives us a detailed snapshot of how the quality of video vary over time.

Inception Score for videos As proposed in [37], we evaluate the inception
score [28] based on the fused classification results from our two-stream action
classifier. By taking in to consideration the motion flow across the whole video,
the output classes serve as an accurate indicator of the actions perceived in the
video. Thus such score can give an overall quality of the full video sequence.

4.3 Baselines

We present several baseline methods to provide comparisons of our results with
results from previous methods.

For Video Generation, our baseline is Video-GAN (VGAN) [35]. This ap-
proach trains a GAN that generates videos in pixel space. It is first successful
attempt on video generation with deep learning methods.

For Video Prediction, the first baseline is PredNet [16], one of the latest re-
sults in video prediction. The second baseline is Multi-Scale GAN (MS-GAN)
proposed by Mathieu et al. [19]. This approach has been successful in various
video prediction tasks including human action videos. The third baseline is Po-
seVAE, a sequential model proposed in [37], which utilized pose representation
and have produced state-of-the-art results.
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Fig. 8. Qualitative comparisons. Each image-pair column corresponds to a generation
method (the first column is real data), and columns are grouped together in the order
of generation, prediction and completion, respectively. Each row corresponds to an
action class, from top to bottom: Direction, Greeting, Sitting, Sitting Down, Walking.
For each method we show the 10th and the 40th frames. For our method we also show
the generated pose results

For Video Completion, our baseline is Conditional Video-GAN (cond-VGAN)
[35]. The model can predict next frames given input as in the paper, therefore
we adapt it to video completion by changing its input to the first and last frame.

5 Results

For video generation, we generate videos from random noise vectors with di-
mensions consistent with the proposed models. For video prediction, we feed the
first 4 frames as inputs, i.e. the baselines make prediction based on the input 4
frames, and our model generates videos with the first 4 frames as constraints.
For video completion, we fix the the first and the last frames as constraints.
In order to calculate the proposed metrics, we randomly generate 320 50-frame
video samples for each method (except for the Video-GAN method [35] which
is fixed by architecture to generate only 32 frames).

5.1 Qualitative Results

In Fig. 8 we show the qualitative results of our model on Human3.6m dataset
[12], in comparison with other state-of-the-art methods. Since the results are
videos, we strongly suggest readers to check our supplementary materials. The
baseline methods are all fine-tuned/re-trained on our Human3.6m dataset [12].
We show generated results for each of our selected classes. Due to the page limit,
we only show the beginning and the middle frames in the result videos.

By examining the results, we find that our model is capable of generating
plausible human motion videos with high visual quality. In terms of image qual-
ity, we find that our model generates the most compelling human images, while
other models tend to generate noisy (particularly Video-GAN) and blurry results
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Fig. 9. Real-world results on UCF-101. For each task, we display 8 frames of our
generated videos for the JumpingJack (1st row) and TaiChi (2nd row) actions. (a) is
generated from random noise, (b) is generated given the first four frames (we only show
the first frame in the first column), and (c) is generated given the first and last frames
(shown in the first two columns). See full videos in supplemental material

due to their structural limitations. By examining the video sequences (provided
in supplementary materials), we find that our model can generate natural and
interpretable human motions. A key distinction is that we are able to produce
large-scale and detailed motion. Another important observation is that, our re-
sults maintain high quality over the entire time interval, while the others’ quality
(especially prediction models) tend to degrade quickly over time.

In Fig. 9 we show the qualitative results for all three tasks on real-world video
scenes from UCF-101 [32] to demonstrate our model’s capability under real-world
environments with background. As shown in the results, we successfully generate
videos with high visual quality and interpretability. Additionally, we also test
our model on real-world movie footages from the famous Forrest Gump scenes,
as shown in Fig. 2. We generate a Directing action conducted by the little boy
using the running scene as a reference.

5.2 Quantitative Results

Table 1 tabulates our quantitative evaluation results, “frame-IS” stands for In-
ception Score for frames, and “video-IS” stands for Inception Score for videos.
While the ground truth (real) videos have the largest Inception Scores of both
types, which matches our intuition, our generated videos have the highest scores
among all the competing methods. This suggests that our model generates videos
that possess meaningful visual features closer to real videos in both image and



14 H. Cai*, C. Bai*, Y.-W. Tai and C.-K. Tang

Table 1. Frame and Video Inception Score (IS)

Method Real VGAN [35] Ours PoseVAE [37] PredNet [16] MS-GAN [19] Ours cond-VGAN Ours

frame-IS 4.53± 0.01 1.53± 0.04 3.99± 0.02 1.91± 0.01 2.60± 0.04 1.48± 0.01 3.87± 0.02 2.35± 0.02 3.91± 0.02

video-IS 4.63± 0.09 1.40± 0.16 3.99± 0.18 2.17± 0.11 2.94± 0.15 1.88± 0.10 4.09± 0.15 2.00± 0.06 4.10± 0.07
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Fig. 10. Left three figures: Frame-by-Frame Inception Score for generation, completion
and prediction, respectively. Right two figures: Frame-by-Frame PSNR and SSIM for
prediction

video (temporal) domains, thus further indicating that our videos are more re-
alistic. We also observe that other methods have much lower scores than ours,
and VGAN [35] and MS-GAN [19] are even worse than PredNet [16]. All the
statistics are consistent with our qualitative results.

Fig. 10 (left three figures) shows a comparison of frame-by-frame Inception
Score. We find that the ground truth videos maintain the highest scores at all
time steps, and our results have considerably high scores closest to the ground
truth quality. A more important observation is that, for the compared prediction
models, PredNet [16] and MS-GAN [19], the scores tend to fall across time, indi-
cating that the image quality is deteriorating over time. Although PoseVAE [37]
does not decline, its overall image quality is much lower than ours. This observa-
tion is consistent with our qualitative evaluation. We also show in Fig. 10 (right
two figures) the frame-by-frame PSNR and SSIM (though these are not encour-
aged). Our methods still outperform others by a large margin in longer timespan.
This further illustrates our improvement over current state-of-the-arts.

6 Conclusion

We present a general generative model that addresses the problem of video gen-
eration, prediction and completion uniformly. By utilizing human pose as inter-
mediate step with our novel generation strategy, we are able to generate large-
scale human motion videos with longer duration. We are then able to solve the
later two problems by constrained generation using our model. We find that our
model can generate plausible human action videos both from scratch and under
constraint, which surpasses current methods both quantitatively and visually.
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