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Abstract. Despite decades of research, offline handwriting recognition
(HWR) of degraded historical documents remains a challenging problem,
which if solved could greatly improve the searchability of online cultural
heritage archives. HWR models are often limited by the accuracy of
the preceding steps of text detection and segmentation. Motivated by
this, we present a deep learning model that jointly learns text detection,
segmentation, and recognition using mostly images without detection
or segmentation annotations. Our Start, Follow, Read (SFR) model is
composed of a Region Proposal Network to find the start position of
text lines, a novel line follower network that incrementally follows and
preprocesses lines of (perhaps curved) text into dewarped images suitable
for recognition by a CNN-LSTM network. SFR exceeds the performance
of the winner of the ICDAR2017 handwriting recognition competition,
even when not using the provided competition region annotations.

Keywords: Handwriting Recognition, Document Analysis, Historical
Document Processing, Text Detection, Text Line Segmentation.

1 Introduction

In offline handwriting recognition (HWR), images of handwritten documents
are converted into digital text. Though recognition accuracy on modern printed
documents has reached acceptable performance for some languages [28], HWR
for degraded historical documents remains a challenging problem due to large
variations in handwriting appearance and various noise factors. Achieving ac-
curate HWR in this domain would help promote and preserve cultural heritage
by improving efforts to create publicly available transcriptions of historical doc-
uments. Such efforts are being performed by many national archives and other
organizations around the world, but typically use manual transcriptions, which
are costly and time-consuming to produce. While this work focuses discussion
on one of the most difficult HWR domains, i.e. historical documents [9], our
proposed methods are equally applicable to other HWR domains.

For most HWR models, text lines must be detected and segmented from the
image before recognition can occur. This is challenging for historical documents
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Fig. 1: Start, Follow, Read on two document snippets. Red circles and arrows
show the Start-of-Line finder network’s detected position, scale, and direction.
Blue lines show the path taken by the Line Follower network to produce nor-
malized text lines; three lines are shown with the HWR network’s transcription.

because they may contain significant amounts of noise, such as stains, tears,
uneven illumination, and ink fade, seepage, and bleed-through. Errors in the de-
tection or segmentation of text propagate to the recognition stage, and as noted
in [25], the majority of errors in complete HWR systems are due to incorrect
line segmentation rather than incorrect character or word recognition. Despite
this, line detection and segmentation are commonly performed by separate algo-
rithms in an independent fashion and many HWR models are designed, trained,
and evaluated only in the context of ground truth line segmentations [18,29].

A few works have attempted to combine detection, segmentation, and recog-
nition. Bluche et al. proposed a recurrent model that detects and recognizes
text lines using a soft-attention mechanism [3]. However, this method is slow
because the model processes the whole image twice to transcribe each text line.
Furthermore, the method does not allow for preprocessing detected lines of text
(e.g. normalize text height), which is shown to improve HWR performance [11].
In contrast, our proposed model efficiently detects all text lines in a single pass
and uses learned preprocessing before applying the HWR model on each line
independently, allowing each line to be recognized in parallel.

In this work, we present Start, Follow, Read (SFR), a novel end-to-end full-
page handwriting recognition model comprised of 3 sub-models: a Start-of-Line
(SOL) finder, a Line Follower (LF), a line-level HWR model. The SOL finder
is a Region Proposal Network (RPN) where the regions proposed are the start
positions and orientations of the text lines in a given document image. The LF
model starts at each predicted SOL position, incrementally steps along the text
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line, following curvature, and produces a normalized text image. Finally, a state-
of-the-art HWR model predicts a transcription from the normalized line image.
Fig. 1 shows how the SOL, LF, and HWR networks process document images.

One main contribution is our novel LF network, which can segment and
normalize curved text (e.g. Fig. 1 bottom) that cannot be segmented with a
bounding box. Though [19] previously used a SOL network, we propose a new
architecture and a new training scheme that optimizes recognition performance.
Another contribution is the joint training of the three components on a large
collection of images that have transcriptions only, which allows the SOL finder,
LF, and HWR to mutually adapt to, and supervise, each other. In particular, we
demonstrate that the LF and HWR networks can be used to derive and refine
latent targets for the SOL network; this method only requires pre-training on a
small number of images (e.g. 50) with additional segmentation labels.

We demonstrate state-of-the-art performance on the ICDAR2017 HWR com-
petition dataset [25]. This competition represents a common scenario where a
collection is manually transcribed, but segmentations are not annotated. While
the best previous result is 71.5 BLEU score using the provided region annota-
tions (57.3 BLEU without), SFR achieves 73.0 BLEU with region annotations,
and performs only slightly worse with a 72.3 BLEU score without regions.

2 Related Work

Though segmentation and recognition are critical components of HWR, most
prior works solve these problems independently: text lines are detected, seg-
mented, and preprocessed into rectangular image snippets before being tran-
scribed by a recognition model. Errors in the detection, segmentation, or pre-
processing steps often lead to poor recognition. In contrast, SFR jointly performs
detection, segmentation, preprocessing, and recognition in an end-to-end model.

Text Line Detection/Segmentation. Often, peaks in vertical projection
profiles (summing pixels along rows) are used to detect transitions from dark
text to lighter inter-line space [13,1,26]. However, these methods are sensitive to
images with noise and curved handwriting (e.g. the image in Fig 1). Additionally,
such methods assume that distinct text lines cannot be horizontally adjacent,
an assumption that is violated in practice. The recursive XY cut algorithm also
considers the horizontal projection profile to make vertical image cuts along
detected white space, but requires manually tuning of threshold values [14].

Seam carving [2] based methods improve on projection profile methods be-
cause seams can follow the curves of text lines. Boiangiu et al. use a pixel infor-
mation measure for computing an energy map for seam carving [5], while Saabni
and El-Sana use a signed distance transform to compute the energy [24]. The
winner of the ICDAR2017 handwriting recognition competition [25] corrected
the output of a seam carving method by using a Convolutional Neural Network
(CNN) to predict if lines were over-segmented or under-segmented.

Tian et al. [31] use a Region Proposal Network (RPN), similar to Faster-
RCNN [23], to predict bounding boxes for text in the wild detection. However,
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unlike Faster-RCNN, their RPN predicts many small boxes along the text line
in order to follow skewed or curved lines. These boxes must be clustered in a
separate step, which may result in over- or under-segmentation.

Handwriting Recognition. Some early handwriting recognition models
used machine learning models such as neural networks and Support Vector Ma-
chines (SVM) to learn whole word, character and stroke classifiers using hand-
crafted features [32,17]. However, such methods required further segmentation
of text line images into primitives such as characters or strokes, which itself was
error prone. Hidden Markov Model (HMM) approaches similar to those used
in speech recognition then became popular because they were able to perform
alignment to refine segmentation hypotheses [20]. These approaches are often
combined with a Language Model (LM) or lexicon to refine predictions to more
closely resemble valid natural language [6].

The introduction of the Connectionist Temporal Classification (CTC) loss [10]
allowed recurrent neural network (RNN) character classifiers to perform align-
ment similar to HMMs, which led to the current dominance of RNN approaches
for HWR. Long-Short Term Memory (LSTM) networks combined with convolu-
tional networks, CTC, and LM decoding represent the current state-of-the-art
in HWR [11]. Additional improvements, such as Multi-Dimensional LSTMs [12],
neural network LMs [34], and warp based data augmentation [33] have also been
proposed. Preprocessing text lines to deslant, increase contrast, normalize text
height, and remove noise is also a critical component of many HWR systems [11].

Combined Segmentation and Recognition. Moysset et al. proposed
predicting SOL positions with a RPN and then applying a HWR network to axis-
aligned bounding boxes beginning at the SOL [19]. However, the two models are
trained independently and bounding box segmentations cannot handle curved
text. Recurrently computing an attention mask for recognizion has been applied
at the line-level [3] and the character level [4] and though these methods are
computationally expenseive, they have been shown to successfully follow slanted
lines on clean datasets of modern handwriting with well-separated text lines.
In contrast, we demonstrate our work on a more challenging dataset of noisy
historical handwritten documents.

3 Proposed Model: Start, Follow, Read

In order to jointly learn text detection, segmentation, and recognition, we pro-
pose the SFR model with three components: the Start of Line (SOL) network,
the Line Follower (LF) network, and the Handwriting Recognition (HWR) net-
work. After pre-training each network (Sec. 3.3) individually, we jointly train the
models using only ground truth (GT) transcriptions (with line breaks) (Sec. 3.3).

3.1 Network Description

Start-of-Line Network Our Start-of-Line (SOL) network is a RPN that de-
tects the starting points of text lines. We formulate the SOL task similar to [19],
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Fig. 2: The SOL network densely predicts x and y offsets, scale, rotation angle,
and probability of occurrence for every 16x16 input patch. Contrary to left-right
segmentation methods, this allows detection of horizontally adjacent text lines.

(a) SOL position and first viewing window (b) Predicted next position

(c) Next viewing window (d) Resulting LF center line path

(e) Normalized handwriting line

Fig. 3: The LF begins at a SOL (a) and regresses a new position indicated by
the second blue dot in (b). The next input is a new viewing window (c). This
process repeats until it reaches the image edge. The purple and green lines in
(d) show the segmentation that produces the normalized handwriting line (e).

but we use a truncated VGG-11 architecture [27] instead of an MDLSTM archi-
tecture to densely predict SOL positions (Fig. 2). For an image patch, we regress
(x0, y0) coordinates, scale s0, rotation θ0, and probability of occurrence p0. For
image patches with a SOL (e.g. red box in Fig. 2), the network should predict
p0 = 1, otherwise 0. We remove the fully connected and final pooling layers of
VGG-11 for a prediction stride of 16x16 and, similar to Faster R-CNN [23], pre-
dicted (x, y) coordinates are offsets relative to the patch center. The scale and
rotation correspond to the size of handwriting and slant of the text line.

Line Follower After identifying the SOL position, our novel LF network follows
the handwriting line in incremental steps and outputs a dewarped text line image
suitable for HWR (see Fig. 3). Instead of segmenting text lines with a bounding
box (e.g. [19]), the LF network segments polygonal regions and is capable of
following and straightening arbitrarily curved text.

The LF is a recurrent network that given a current position and angle of
rotation (xi, yi, θi), resamples a small viewing window (red box in Fig. 3a) that
is fed to a CNN to regress (xi+1, yi+1, θi+1) (Fig. 3b). This process is repeated
until the image edge (Figs. 3c and 3d), and during training we use the HWR
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Fig. 4: Using the current transformation Wi (a), we resample a 32×32 patch (b)
from the input image. A CNN regresses a transform change (d) used to compute
the next transformation (e). Using the upper and lower points (f,g) of the LF
path, we resample a 60× 60 patch to be part of the normalized, segmented line.

network to decide where the text line ends. The initial position and rotation is
determined by a predicted SOL. The size of the viewing window is determined
by the predicted SOL scale and remains fixed.

Resampling the input image to obtain the viewing window is done similarly
to the Spatial Transform Network [15] using an affine transformation matrix that
maps input image coordinates to viewing image coordinates (see Fig. 4). This
allows LF errors to be backpropagated through viewing windows. The first view-
ing window matrix, W0 = AWSOL, is the composition of the mapping defined
by a transformation SOL matrix WSOL (defined by values of the SOL network
prediction) and a look-ahead matrix A:

WSOL =





1

s0
0 0

0 1

s0
0

0 0 1









cos(θ0) − sin(θ0) 0
sin(θ0) cos(θ0) 0

0 0 1









1 0 −x0

0 1 −y0
0 0 1



 , A =





0.5 0 −1
0 0.5 0
0 0 1



 (1)

The look-ahead matrix gives the LF network enough context to correctly follow
lines. For each step i, we extract a 32× 32 viewing window patch by resampling
according to Wi. When resampling, the (x, y) coordinates in the patch are nor-
malized to the range (−1, 1). Given the (i− 1)th viewing window patch, the LF
network regresses xi, yi and θi, which are used to form the prediction matrix Pi.
We then compute Wi = PiWi−1 with

Pi =





cos(θi) − sin(θi) 0
sin(θi) cos(θi) 0

0 0 1









1 0 −xi

0 1 −yi
0 0 1



 (2)

To obtain the output image for HWR, we first represent the normalized hand-
writing line path as a sequence of upper and lower coordinate pairs, pu,i and pℓ,i
(green and purple lines in Fig 3d), which are computed by multiplying the upper
and lower midpoints of predicted windows by their inverse transformations:

pu,i, pℓ,i =





xu,i xℓ,i

yu,i yℓ,i
1 1



 = W−1
i A





0 0
−1 1
1 1



 (3)
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We extract the handwriting line by mapping each pu,i, pℓ,i, pu,i+1, and pℓ,i+1 to
the corners of a 60 × 60 patch. We concatenate all such patches to form a full
handwriting line of size 60s× 60 where s is the number of LF steps.

The architecture of the LF is a 7-layer CNN with 3x3 kernels and 64, 128,
256, 256, 512, and 512 feature maps on the 6 convolution layers. We apply Batch
Normalization (BN) after layers 4 and 5 and 2x2 Max Pooling (MP) after layers
1, 2, 4, and 6. A fully connected layer is used to regress the X, Y, θ outputs with
initial bias parameters for X initialized to 1 and biases for Y and θ initialized to
0. This initialization is a prior that lines are straight and read left-to-right.

Handwriting Recognition After the LF network produces a normalized line
image, it is fed to a CNN-LSTM network to produce a transcription. The CNN
part of the HWR network learns high level features that are vertically collapsed
to create a horizontal 1D sequence that is fed to a Bidirection LSTM model. In
the BLSTM, learned context features propagate forward and backwards along
the sequence before a character classifier is applied to each output time step.

The output sequence of character predictions is much longer than the GT
transcriptions, but includes a blank character for use in the CTC decoding
step [10]. Decoding is performed by first collapsing non-blank repeating char-
acters and then removing the blanks, e.g. the output --hh--e-lll-l----oo--
is decoded as hello. While the CTC loss does not explicitly enforce alignment
between predicted characters and the input image, in practice, we are able to
exploit this alignment to refine SOL predictions (see Sec. 3.3).

The architecture of our HWR network is on a CNN-LSTM HWR network [33]
and is similar to our LF network. The input size is W × 60, where W , can
dynamically vary. There are 6 convolutional layers with 3x3 filters with 64, 128,
256, 256, 512, and 512 feature maps respectively. BN is applied after layers 4
and 5, and 2x2 MP (stride 2) is applied after layers 1, 2. To collapse features
vertically we use 2x2 MP with a vertical stride of 2 and a horizontal stride of
1 after layers 4 and 6. Features are concatenated vertically to form a sequence
of 1024-dimensional feature vectors that are fed to a 2-layer BLSTM with 512
hidden nodes and 0.5 probability of node dropout. A fully connected layer is
applied at each time step to produce character classifications.

The HWR also serves an additional function. LF always runs to the edge
of the page and in many cases intersects other columns or SOL positions. The
HWR implicitly learns during training when to stop reading (similar to [19]) and
as a result we do not need additional post processing to determine when the line
ends.

3.2 Post Processing

We introduce a novel non-maximal suppression method for the SOL and LF
networks. Given any two LF path prediction we consider the first N steps (we
used N = 6). We form a polygon by joining start and end points of the center
lines. If the area of the resulting polygon is below a threshold proportional to
its length, we suppress the line with the lowest SOL probability.
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Fig. 5: Our network is first pre-trained on a small training set with segmentation
and transcription annotations. The three phase training process is performed
over a much larger training set that has only transcription annotations.

To correct recognitions errors we employ an HMM-based 10-gram character-
level language model (LM) that has been trained on the training set transcrip-
tions using the Kaldi toolkit [21]. Character-level LMs typically correct out-of-
vocabulary words better than word-level LMs [16].

3.3 Training

Fig. 5 summarizes the full training process: (1) Networks are pretrained using a
small number of images with GT SOL, segmentations, and line-level transcrip-
tions (Sec. 3.3); (2) Alignment (Sec. 3.3) on a large number of training images
with only GT transcriptions produces bootstrapped targets for the SOL and LF
networks; (3) Individual networks are trained using SOL and LF targets from
alignment and GT transcriptions for the HWR network; (4) Validation is per-
formed over the entire validation set using the best individual weights of each
network. Steps 2-4 are repeated until convergence.

Start-of-Line Network We create the training set for our SOL network by
resizing images to be 512 pixels wide and sampling 256x256 patches, with half
the patches containing SOLs. Patches are allowed to extend outside the image
by padding with each edge’s average color. We use the loss function proposed for
the multibox object detection model [8], which performs an alignment between
the highest probability predicted SOL positions and the target positions.

L(l, p; t) =

N
∑

n=0

M
∑

m=0

Xnm(α‖ln − tm‖22 − log(pn))− (1−Xnm)log(1− pn) (4)

where tm is a target position, pn is the probability of SOL occurrence, and ln is
a transformation of the directly predicted (xn, yn, sn, θn):

ln = (− sin(θn)sn + xn, − cos(θn)sn + yn, sin(θn)sn + xn, cos(θn)sn + yn), (5)

Xnm is a binary alignment matrix between the N predictions and M target
positions, while α weights the relative importance of the positional loss and the
confidence loss. In our experiments, α = 0.01 and we compute the Xnm that
minimizes L given (l, p, t) using bipartite graph matching as in [8].
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(a) Initial forward steps (b) Backward steps

(c) Complete forward steps (d) Refined SOL prediction.

Fig. 6: SOL refinement process. In (b), the LF does not backtrack to the initial
(incorrect) SOL. The LF passes through the correct SOL in (c), which is iden-
tified using the alignment (d) induced by CTC decoding in the HWR network.

Line Follower While the LF outputs a normalized text line image, the defining
image transformation is piece-wise affine and is parameterized by a sequence of
upper and lower coordinate points. Thus, for supervision we construct pairs of
target coordinate points that induce the desired piece-wise affine transformation
and train the LF using a Mean-Square Error (MSE) loss.

loss =
∑

i=0

‖pu,i − tu,i‖
2
2 + ‖pℓ,i − tℓ,i‖

2
2 (6)

The LF starts at the first target points, tu,0 and tℓ,0, and every 4th step resets to
the corresponding target points. This way, if the LF deviates from the handwrit-
ing it can recover without introducing large and uninformative errors into the
training procedure. To help the LF be robust to incorrect previous predictions,
after resetting to a target position we randomly perturb the LF position by a
translation of ∆x,∆y ∈ [−2, 2] pixels and a rotation of ∆θ ∈ [−0.1, 0.1] radians.

Handwriting Recognition We train the HWR network on line images with
the aligned GT transcription using CTC loss [10]. For data augmentation, we
apply Random Warp Grid Distortions (RWGD) [33] to model variations in hand-
writing shape, contrast augmentation [30] to learn invariance to text/background
contrast, and global hue perturbation to handle different colors of paper and ink.

Pre-training Before joint training can be effective, each network needs to
achieve a reasonable level of accuracy. Individual networks are pre-trained on
a small number of images that have SOL, segmentation, and line-level transcrip-
tion annotations. This follows the same procedure as described in the previous
three subsections, but the actual GT is used for targets.

Alignment After the networks are pre-trained, we perform an alignment be-
tween SFR predicted line transcriptions with GT line transcriptions for images
with only transcription annotations, i.e. no corresponding spatial GT informa-
tion. The main purpose of this alignment is to create bootstrapped training
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targets for the SOL and LF networks because the images lack GT for detection
and segmentation. For each GT text line, we keep track of the best predicted
SOL and segmentation points, where best is defined by the accuracy of the
corresponding predicted line transcription produced by the HWR network.

Alignment and training are alternated (see Fig. 5) as better alignment im-
proves network training and vice versa. To perform the alignment, we first run
the SOL finder on the whole image and obtain dense SOL predictions. On pre-
dicted SOLs with probability above a threshold, we then apply the LF and
HWR networks to obtain a predicted segmentation and transcription. For each
GT line, we find the predicted transcription that minimizes the Character Error
Rate (CER), which is equivalent to string edit distance. If the CER is lower than
the best previous prediction for that GT line, we update that line’s target SOL
and segmentation points to be those predicted by the SOL and LF networks.

The final step in alignment is to refine the SOL position using spatial infor-
mation extracted from the LF and HWR networks. To refine a SOL target, we
run the LF forward s = 5 steps from the current best SOL (Fig. 6a), and then
backwards for s + 1 steps (Fig. 6b). We then move the current best SOL up or
down to align with the backwards path. This works because even if the LF does
not start on the text line, it quickly finds the text line in the forward steps and
then can follow it back to its start using backwards steps. Next, we run the LF
and HWR from this new SOL and find the first non-blank predicted character
before CTC decoding (Fig. 6d). We then shift the SOL left and right to align
with the image location of this character.

To find the end of the handwriting line, we find the last non-blank character
during CTC decoding. Once we have identified line ends, we no longer run the
LF past the end of lines, which helps speed training.

End-to-end Training Though our SFR model is end-to-end differentiable in
that the CTC loss can backpropagate through the HWR and LF networks to the
SOL network, in practice we observed no increase in performance when using
end-to-end training on the dataset used in this work. End-to-end training is
much slower, and the three networks take significantly different amounts of time
to train, with the HWR network taking the most time by far. We have concluded
that the majority of errors made by our SFR model are not likely to be fixed
by end-to-end error backpropagation because (1) the transcription CTC loss
cannot fix very bad segmentations and (2) our joint training provides adequate
supervision when predicted SOL and segmentations are reasonably good.

4 Results

We evaluate our SFR model on the 2017 ICDAR HWR full page competition
dataset [25] of 1800s German handwriting, which has two training sets. The
first set has 50 fully annotated images with line-level segmentations and tran-
scriptions. The second set of 10,000 images has only transcriptions (containing
line breaks). This dataset, to our knowledge, is the largest and most challenging
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Table 1: ICDAR 2017 HWR Competition results [25] compared to our method.

Method BLEU with ROIs BLEU without ROIs

Start, Follow, Read (ours) 73.0 72.3
BYU 71.5 57.3
ParisTech 48.3 -
LITIS 37.2 -

Table 2: Line-level dataset results. ∗ indicates non-standard train/test split.

Method Page-level
RIMES IAM

CER WER CER WER

Start, Follow, Read (ours) X 2.1 9.3 6.4 23.2
Bluche[3] X 2.9 12.6 7.9 24.6
Puigcerver [34] 2.3 9.6 5.8∗ 18.4∗

public HWR benchmark with 206,161 handwriting lines and 1,769,195 words.
The test data is not public, so we use the BLEU score metric reported by the
public evaluation server3. The competition test data provides multiple regions of
interest (ROIs) per image to facilitate text line segmentation, and the evaluation
server protocol requires that all predicted text lines be assigned to a ROI. We
also evaluate on the IAM and Rimes line-level datasets.

4.1 Quantitative Results

The fully annotated 50 images are used to pre-train the network (see Fig. 5). We
then jointly train on 9,000 images (1,000 for validation) by alternating alignment,
training, and validation steps. We then submitted two sets of predictions to the
evaluation server: one set exploiting the ROI information and one set without.
To exploit ROI information, we mask out all other parts of the image using the
median image color before running SFR.

Though we also evaluate without ROIs, the evaluation server still requires
each line to be assigned to a ROI. After running SFR on full pages (no masking),
we simply assign each line prediction to the region in which it has the most
overlap. Predictions mostly outside any ROI are discarded, though sometimes
these are real unannotated text lines that are completely outside the given ROIs.

The competition systems made predictions over each ROI by first cropping
to the ROI bounding box [25]. The BYU system was evaluated without ROIs
using the same process as SFR except lines are only discarded if they intersect no
ROI. This difference was necessary because their segmentations span the entire
image and too many good text lines would have been discarded.

Table 1 compares SFR with the competition results. Our SFR model achieves
the highest BLEU score at 73.0 using ROI annotations, but performance only

3 https://scriptnet.iit.demokritos.gr/competitions/~icdar2017htr/

https://scriptnet.iit.demokritos.gr/competitions/~icdar2017htr/
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(a) LF on warped IAM lines with upper and lower lines as dis-
traction. SOL positions were provided.

(b) Deskewed line. Upper left (c) Deskewed line. Lower left

Fig. 7: Results from warped IAM dataset.

degrades slightly to 72.3 without ROIs. This shows that the SOL and LF net-
works perform well and do not benefit much from a priori knowledge of text
line location. In contrast, the winning competition system scores 71.5 using the
ROIs, but its performance drops significantly to 57.3 without the ROIs.

Table 2 shows results for the IAM (English) and RIMES (French) line-level
datasets. Like [3], we evaluated our page-level method on line-level datasets
where we do not use the provided line segmentation annotations during training
or evaluation, except for 10 pretraining images. We achieved state-of-the-art re-
sults on RIMES, outperforming [22] which uses the segmentation annotations for
training and evaluation. On IAM, we outperformed the best previously proposed
page-level model [3], and we note that [22] used a non-standard data split, so
their results are not directly comparable. Results shown in Table 2 are without
LM decoding, so that the raw recognition models can be fairly compared.

4.2 Qualitative Results

We produced a synthetic dataset to test the robustness of the LF on very curved
lines. To generate the data we randomly warped real handwriting lines from
the IAM dataset [18] and added distracting lines above and below. We provided
the SOL position and did not employ the HWR. Fig. 7 shows results from the
validation set. Even when text lines are somewhat overlapping (Fig 7b), the LF
is able to stay on the correct line. Though the synthetic warping is exaggerated,
this suggests the LF can learn to follow less extreme real-world curvature.

Fig. 9 shows some results on our ICDAR2017 HWR dataset validation set.
On clean images, SFR often produces a perfect transcription (Fig. 9a), and
only minor errors on noisy handwriting (Fig. 9b). The LF performs well on
complicated layouts, such as horizontally adjacent lines (Fig. 9c). However, some
noisy lines cause the LF to jump between lines. (Fig. 9d).

We also applied the trained SFR model to other image datasets and found
that the SOL and LF networks generalize even to documents in different lan-
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(a) Document written in the 1400s
from the 2016 ICFHR HWR com-
petition [29]

(b) English document from the
ICDAR competition on baseline
detection[7]

Fig. 8: Images from other collections applied to our trained model

guages. Fig. 8a shows that SFR correctly segments a document written in Early
Modern German and we see similar results on a English document (Fig. 8b). Of
course, the HWR network would need to be retrained to handle other languages,
though due to the modularity of SFR, the HWR network can be retrained while
preserving the previous SOL and LF networks. Additional images can be viewed
in the supplementary material.

5 Conclusion

We have introduced a novel Start, Follow, Read model for full-page HWR and
demonstrated state-of-the-art performance on a challenging dataset of histori-
cal handwriting, even when not exploiting given ROI information. We improved
upon a previous SOL method and introduced a novel LF network that learns
to segment and normalize handwriting lines for input to a HWR network. Af-
ter initial pre-training, our novel training framework is able to jointly train the
networks on documents using only line-level transcriptions. This is significant be-
cause when human annotators transcribe documents, they often do not annotate
any segmentation or spatial information.

We believe that further improvements can be made by predicting the end-
of-line (EOL), in addition of SOL, and applying the LF backwards. Then, the
SOL and EOL results can mutually constrain each other and lead to improved
segmentation. Also, we did not extensively explore network architectures, so per-
formance could increase with improved architectures such as Residual Networks.
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(a) No errors

(b) Noisy lines, few transcription errors

(c) Complex layout, few transcription errors

(d) Noisy lines, LF error. HWR stopped reading after the error.

Fig. 9: Results from the ICDAR 2017 competition dataset. Colored lines repre-
sent different detected lines. Green, red, and purple characters represent inser-
tion, substitution, and omission errors respectively.
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