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Abstract. We present a method that leverages the complementarity of
event cameras and standard cameras to track visual features with low-
latency. Event cameras are novel sensors that output pixel-level bright-
ness changes, called “events”. They offer significant advantages over stan-
dard cameras, namely a very high dynamic range, no motion blur, and a
latency in the order of microseconds. However, because the same scene
pattern can produce different events depending on the motion direction,
establishing event correspondences across time is challenging. By con-
trast, standard cameras provide intensity measurements (frames) that do
not depend on motion direction. Our method extracts features on frames
and subsequently tracks them asynchronously using events, thereby ex-
ploiting the best of both types of data: the frames provide a photometric
representation that does not depend on motion direction and the events
provide low-latency updates. In contrast to previous works, which are
based on heuristics, this is the first principled method that uses raw in-
tensity measurements directly, based on a generative event model within
a maximum-likelihood framework. As a result, our method produces fea-
ture tracks that are both more accurate (subpixel accuracy) and longer
than the state of the art, across a wide variety of scenes.

Multimedia Material

A supplemental video for this work is available at https://youtu.be/A7UfeUnG6c4

1 Introduction

Event cameras, such as the Dynamic Vision Sensor (DVS) [1], work very dif-
ferently from traditional cameras (Fig. 1). They have independent pixels that
send information (called “events”) only in presence of brightness changes in the
scene at the time they occur. Thus, their output is not an intensity image but
a stream of asynchronous events. Event cameras excel at sensing motion, and
they do so with very low-latency (1 microsecond). However, they do not provide
absolute intensity measurements, rather they measure only changes of intensity.
Conversely, standard cameras provide direct intensity measurements for every
pixel, but with comparatively much higher latency (10–20ms). Event cameras
and standard cameras are, thus, complementary, which calls for the development

https://youtu.be/A7UfeUnG6c4


2 D. Gehrig, H. Rebecq, G. Gallego, D. Scaramuzza

of novel algorithms capable of combining the specific advantages of both cam-
eras to perform computer vision tasks with low-latency. In fact, the Dynamic
and Active-pixel Vision Sensor (DAVIS) [2] was recently introduced (2014) in
that spirit. It is a sensor comprising an asynchronous event-based sensor and a
standard frame-based camera in the same pixel array.

We tackle the problem of feature tracking using both events and frames, such
as those provided by the DAVIS. Our goal is to combine both types of intensity
measurements to maximize tracking accuracy and age, and for this reason we
develop a maximum likelihood approach based on a generative event model.

Feature tracking is an important research topic in computer vision, and has
been widely studied in the last decades. It is a core building block of numer-
ous applications, such as object tracking [3] or Simultaneous Localization and
Mapping (SLAM) [4–7]. While feature detection and tracking methods for frame-
based cameras are well established, they cannot track in the blind time between
consecutive frames, and are expensive because they process information from
all pixels, even in the absence of motion in the scene. Conversely, event cameras
acquire only relevant information for tracking and respond asynchronously, thus,
filling the blind time between consecutive frames.

In this work we present a feature tracker which works by extracting corners in
frames and subsequently tracking them using only events. This allows us to take
advantage of the asynchronous, high dynamic range and low-latency nature of
the events to produce feature tracks with high temporal resolution. However, this
asynchronous nature means that it becomes a challenge to associate individual
events coming from the same object, which is known as the data association
problem. In contrast to previous works which used heuristics to solve for data
association, we propose a maximum likelihood approach based on a generative
event model that uses the photometric information from the frames to solve the
problem. In summary, our contributions are the following:

• We introduce the first feature tracker that combines events and frames in a
way that (i) fully exploits the strength of the brightness gradients causing
the events, (ii) circumvents the data association problem between events
and pixels of the frame, and (iii) leverages a generative model to explain
how events are related to brightness patterns in the frames.

• We provide a comparison with state-of-the-art methods [8,9], and show that
our tracker provides feature tracks that are both more accurate and longer.

• We thoroughly evaluate the proposed tracker using scenes from the publicly
available Event Camera Dataset [10], and show its performance both on
man-made environments with large contrast and in natural scenes.

2 Related Work

Feature detection and tracking with event cameras is a major research topic [8,
9, 12–18], where the goal is to unlock the capabilities of event cameras and use
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(a) (b)

Fig. 1: Fig. 1(a): Comparison of the output of a standard frame-based camera
and an event camera when facing a black dot on a rotating disk (figure adapted
from [11]). The standard camera outputs frames at a fixed rate, thus sending
redundant information when there is no motion in the scene. Event cameras
respond to pixel-level brightness changes with microsecond latency. Fig. 1(b):
A combined frame and event-based sensor such as the DAVIS [2] provides both
standard frames and the events that occurred in between. Events are colored
according to polarity: blue (brightness increase) and red (brightness decrease).

them to solve these classical problems in computer vision in challenging scenar-
ios inaccessible to standard cameras, such as low-power, high-speed and high
dynamic range (HDR) scenarios. Recently, extensions of popular image-based
keypoint detectors, such as Harris [19] and FAST [20], have been developed for
event cameras [17,18]. Detectors based on the distribution of optical flow [21] for
recognition applications have also been proposed for event cameras [16]. Finally,
most event-based trackers use binary feature templates, either predefined [13] or
built from a set of events [9], to which they align events by means of iterative
point-set–based methods, such as iterative closest point (ICP) [22].

Our work is most related to [8], since both combine frames and events for
feature tracking. The approach in [8] detects patches of Canny edges around
Harris corners in the grayscale frames and then tracks such local edge patterns
using ICP on the event stream. Thus, the patch of Canny edges acts as a tem-
plate to which the events are registered to yield tracking information. Under
the simplifying assumption that events are mostly generated by strong edges,
the Canny edgemap template is used as a proxy for the underlying grayscale
pattern that causes the events. The method in [8] converts the tracking problem
into a geometric, point-set alignment problem: the event coordinates are com-
pared against the point template given by the pixel locations of the Canny edges.
Hence, pixels where no events are generated are, efficiently, not processed. How-
ever, the method has two drawbacks: (i) the information about the strength of
the edges is lost (since the point template used for tracking is obtained from a bi-
nary edgemap) (ii) explicit correspondences (i.e., data association) between the
events and the template need to be established for ICP-based registration. The
method in [9] can be interpreted as an extension of [8] with (i) the Canny-edge
patches replaced by motion-corrected event point sets and (ii) the correspon-
dences computed in a soft manner using Expectation-Maximization (EM)-ICP.
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(a) Frame. (b) Left-right motion. (c) Up-down motion. (d) Diagonal motion.

Fig. 2: Result of moving a checkerboard (a) in front of an event camera in differ-
ent directions. (b)-(d) show brightness increment images (Eq. (2)) obtained by
accumulating events over a short time interval. Pixels that do not change inten-
sity are represented in gray, whereas pixels that increased or decreased intensity
are represented in bright and dark, respectively. Clearly, (b) (only vertical edges),
(c) (only horizontal edges), and (d) cannot be related to each other without the
prior knowledge of the underlying photometric information provided by (a).

Like [8, 9], our method can be used to track generic features, as opposed to
constrained edge patterns. However, our method differs from [8,9] in that (i) we
take into account the strength of the edge pattern causing the events and (ii) we
do not need to establish correspondences between the events and the edgemap
template. In contrast to [8,9], which use a point-set template for event alignment,
our method uses the spatial gradient of the raw intensity image, directly, as a
template. Correspondences are implicitly established as a consequence of the
proposed image-based registration approach (Section 4), but before that, let us
motivate why establishing correspondences is challenging with event cameras.

3 The Challenge of Data Association for Feature Tracking

The main challenge in tracking scene features (i.e., edge patterns) with an event
camera is that, because this sensor responds to temporal changes of intensity
(caused by moving edges on the image plane), the appearance of the feature
varies depending on the motion, and thus, continuously changes in time (see
Fig. 2). Feature tracking using events requires the establishment of correspon-
dences between events at different times (i.e., data association), which is difficult
due to the above-mentioned varying feature appearance (Fig. 2).

Instead, if additional information is available, such as the absolute intensity
of the pattern to be tracked (i.e., a time-invariant representation or “map” of the
feature), such as in Fig. 2(a), then event correspondences may be established in-
directly, via establishing correspondences between the events and the additional
map. This, however, additionally requires to continuously estimate the motion
(optic flow) of the pattern. This is in fact an important component of our ap-
proach. As we show in Section 4, our method is based on a model to generate a
prediction of the time-varying event-feature appearance using a given frame and
an estimate of the optic flow. This generative model has not been considered in
previous feature tracking methods, such as [8, 9].
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(a) ∆L(u) given by the events (2). (b) ∆L̂(u) predicted using the frame (3).

Fig. 3: Brightness increments given by the events (2) vs. predicted from the frame
and the optic flow using the generative model (3). Pixels of L(u) that do not
change intensity are represented in gray in ∆L, whereas pixels that increased or
decreased intensity are represented in bright and dark, respectively.

4 Methodology

An event camera has independent pixels that respond to changes in the con-
tinuous brightness signal1 L(u, t). Specifically, an event ek = (xk, yk, tk, pk) is
triggered at pixel uk = (xk, yk)

⊤ and at time tk as soon as the brightness incre-
ment since the last event at the pixel reaches a threshold ±C (with C > 0):

∆L(uk, tk)
.
= L(uk, tk)− L(uk, tk −∆tk) = pkC, (1)

where ∆tk is the time since the last event at the same pixel, pk ∈ {−1,+1} is
the event polarity (i.e., the sign of the brightness change). Eq. (1) is the event
generation equation of an ideal sensor [23, 24].

4.1 Brightness-Increment Images from Events and Frames

Pixel-wise accumulation of event polarities over a time interval ∆τ produces an
image ∆L(u) with the amount of brightness change that occurred during the
interval (Fig. 3a),

∆L(u) =
∑

tk∈∆τ

pkC δ(u− uk), (2)

where δ is the Kronecker delta due to its discrete argument (pixels on a lattice).
For small ∆τ , such as in the example of Fig. 3a, the brightness increments (2)

are due to moving edges according to the formula2:

∆L(u) ≈ −∇L(u) · v(u)∆τ, (3)

1 Event cameras such as the DVS [1] respond to logarithmic brightness changes, i.e.,
L

.
= log I, with brightness signal I, so that (1) represents logarithmic changes.

2 Eq. (3) can be shown [24] by substituting the brightness constancy assumption (i.e.,
optical flow constraint) ∂L

∂t
(u(t), t)+∇L(u(t), t) · u̇(t) = 0, with image-point velocity

v ≡ u̇, in Taylor’s approximation ∆L(u, t)
.
= L(u, t)− L(u, t−∆τ) ≈ ∂L

∂t
(u, t)∆τ .
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Fig. 4: Illustration of tracking for two independent patches. Events in a space-
time window at time t > 0 are collected into a patch of brightness increments
∆L(u) (in orange), which is compared, via a warp (i.e., geometric transforma-
tion) W against a predicted brightness increment image based on L̂ (given at
t = 0) around the initial feature location (in blue). Patches are computed as
shown in Fig. 5, and are compared in the objective function (6).

that is, increments are caused by brightness gradients ∇L(u) =
(

∂L
∂x

, ∂L
∂y

)⊤
mov-

ing with velocity v(u) over a displacement ∆u
.
= v∆τ (see Fig. 3b). As the

dot product in (3) conveys, if the motion is parallel to the edge (v ⊥ ∇L), the
increment vanishes, i.e., no events are generated. From now on (and in Fig. 3b)
we denote the modeled increment (3) using a hat, ∆L̂, and the frame by L̂.

4.2 Optimization Framework

Following a maximum likelihood approach, we propose to use the difference be-
tween the observed brightness changes ∆L from the events (2) and the predicted
ones ∆L̂ from the brightness signal L̂ of the frames (3) to estimate the motion
parameters that best explain the events according to an optimization score.

More specifically, we pose the feature tracking problem using events and
frames as that of image registration [25, 26], between images (2) and (3). Effec-
tively, frames act as feature templates with respect to which events are registered.
As is standard, let us assume that (2) and (3) are compared over small patches
(P) containing distinctive patterns, and further assume that the optic flow v is
constant for all pixels in the patch (same regularization as [25]).

Letting L̂ be given by an intensity frame at time t = 0 and letting ∆L be
given by events in a space-time window at a later time t (see Fig. 4), our goal
is to find the registration parameters p and the velocity v that maximize the
similarity between ∆L(u) and ∆L̂(u;p,v) = −∇L̂(W(u;p)) · v∆τ , where W
is the warping map used for the registration. We explicitly model optic flow v
instead of approximating it by finite differences of past registration parameters to
avoid introducing approximation errors and to avoid error propagation from past
noisy feature positions. A block diagram showing how both brightness increments
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Fig. 5: Block diagram showing how the brightness increments being compared are
computed for a patch of Fig. 4. Top of the diagram is the brightness increment
from event integration (2). At the bottom is the generative event model from
the frame (3).

are computed, including the effect of the warp W, is given in Fig. 5. Assuming
that the difference ∆L−∆L̂ follows a zero-mean additive Gaussian distribution
with variance σ2 [1], we define the likelihood function of the set of events E .

=
{ek}Ne

k=1 producing ∆L as

p(E |p,v, L̂) = 1√
2πσ2

exp

(

− 1

2σ2

∫

P

(

∆L(u)−∆L̂(u;p,v)
)2
du

)

. (4)

Maximizing this likelihood with respect to the motion parameters p and v (since
L̂ is known) yields the minimization of the L2 norm of the photometric residual,

min
p,v

‖∆L(u)−∆L̂(u;p,v)‖2L2(P) (5)

where ‖f(u)‖2
L2(P)

.
=

∫

P
f2(u)du. However, the objective function (5) depends

on the contrast sensitivity C (via (2)), which is typically unknown in prac-
tice. Inspired by [26], we propose to minimize the difference between unit-norm
patches:

min
p,v

∥

∥

∥

∥

∥

∆L(u)

‖∆L(u)‖L2(P)
− ∆L̂(u;p,v)

‖∆L̂(u;p,v)‖L2(P)

∥

∥

∥

∥

∥

2

L2(P)

, (6)

which cancels the terms in C and ∆τ , and only depends on the direction of
the feature velocity v. In this generic formulation, the same type of parametric
warpsW as for image registration can be considered (projective, affine, etc.). For
simplicity, we consider warps given by rigid-body motions in the image plane,

W(u;p) = R(p)u+ t(p), (7)

where (R, t) ∈ SE(2). The objective function (6) is optimized using the non-
linear least squares framework provided in the Ceres software [27].
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Algorithm 1 Photometric feature tracking using events and frames

Feature initialization:
- Detect Harris corners [19] on the frame L̂(u), extract intensity patches around
corner points and compute ∇L̂(u).
- Set patches ∆L(u) = 0, set initial registration parameters p to those of the identity
warp, and set the number of events Ne to integrate on each patch.
Feature tracking:
for each incoming event do
- Update the patches containing the event (i.e., accumulate polarity pixel-wise (2)).
for each patch ∆L(u) (once Ne events have been collected (2)) do
- Minimize the objective function (6), to get parameters p and optic flow v.
- Update the registration parameters p of the feature patch (e.g., position).
- Reset the patch (∆L(u) = 0) and recompute Ne.

4.3 Discussion of the Approach

One of the most interesting characteristics of the proposed method (6) is that it
is based on a generative model for the events (3). As shown in Fig. 5, the frame
L̂ is used to produce a registration template ∆L̂ that changes depending on v
(weighted according to the dot product) in order to best fit the motion-dependent
event data ∆L, and so does our method not only estimate the warping param-
eters of the event-feature but also its optic flow. This optic flow dependency
was not explicitly modeled in previous works, such as [8, 9]. Moreover, for the
template, we use the full gradient information of the frame ∇L̂, as opposed to
its Canny (i.e., binary-thresholded) version [8], which provides higher accuracy
and the ability to track less salient patterns.

Another characteristic of our method is that it does not suffer from the prob-
lem of establishing event-to-feature correspondences, as opposed to ICP meth-
ods [8,9]. We borrow the implicit pixel-to-pixel data association typical of image
registration methods by creating, from events, a convenient image representa-
tion. Hence, our method has smaller complexity (establishing data association
in ICP [8] has quadratic complexity) and is more robust since it is less prone to
be trapped in local minima caused by data association (as will be shown in Sec-
tion 5.3). As optimization iterations progress, all event correspondences evolve
jointly as a single entity according to the evolution of the warped pixel grid.

Additionally, monitoring the evolution of the minimum cost values (6) pro-
vides a sound criterion to detect feature track loss and, therefore, initialize new
feature tracks (e.g., in the next frame or by acquiring a new frame on demand).

4.4 Algorithm

The steps of our asynchronous, low-latency feature tracker are summarized in
Algorithm 1, which consists of two phases: (i) initialization of the feature patch
and (ii) tracking the pattern in the patch using events according to (6). Multiple
patches are tracked independently from one another. To compute a patch∆L(u),
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(2), we integrate over a given number of events Ne [28–31] rather than over a
fixed time ∆τ [32,33]. Hence, tracking is asynchronous, as soon as Ne events are
acquired on the patch (2), which typically happens at rates higher than the frame
rate of the standard camera (∼ 10 times higher). The supplementary material
provides an analysis of the sensitivity of the method with respect to Ne and a
formula to compute a sensible value, to be used in Algorithm 1.

5 Experiments

To illustrate the high accuracy of our method, we first evaluate it on simulated
data, where we can control scene depth, camera motion, and other model pa-
rameters. Then we test our method on real data, consisting of high-contrast
and natural scenes, with challenging effects such as occlusions, parallax and il-
lumination changes. Finally, we show that our tracker can operate using frames
reconstructed from a set of events [34, 35], which have higher dynamic range
than those of standard cameras, thus opening the door to feature tracking in
high dynamic range (HDR) scenarios.

For all experiments we use patches ∆L(u) of 25 × 25 pixel size3 and the
corresponding events falling within the patches as the features moved on the
image plane. On the synthetic datasets, we use the 3D scene model and camera
poses to compute the ground truth feature tracks. On the real datasets, we use
KLT [25] as ground truth. Since our feature tracks are produced at a higher
temporal resolution than the ground truth, interpolating ground truth feature
positions may lead to wrong error estimates if the feature trajectory is not linear
in between samples. Therefore, we evaluate the error by comparing each ground
truth sample with the feature location given by linear interpolation of the two
closest feature locations in time and averaging the Euclidean distance between
ground truth and the estimated positions.

5.1 Simulated Data. Assessing Tracking Accuracy

By using simulated data we assess the accuracy limits of our feature tracker. To
this end, we used the event camera simulator presented in [10] and 3D scenes
with different types of texture, objects and occlusions (Fig. 6). The tracker’s
accuracy can be assessed by how the average feature tracking error evolves over
time (Fig. 6(c)); the smaller the error, the better. All features were initialized
using the first frame and then tracked until discarded, which happened if they
left the field of view or if the registration error (6) exceeded a threshold of 1.6.
We define a feature’s age as the time elapsed between its initialization and its
disposal. The longer the features survive, the more robust the tracker.

The results for simulated datasets are given in Fig. 6 and Table 1. Our method
tracks features with a very high accuracy, of about 0.4 pixel error on average,
which can be regarded as a lower bound for the tracking error (under noise-free

3 A justification of the choice of patch size can be found in the supplementary material.
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(a) (b) (c)

Fig. 6: Feature tracking results on simulated data. (a) Example texture used to
generate synthetic events in the simulator [10]. (b) Qualitative feature tracks
represented as curves in space-time. (c) Mean tracking error (center line) and
fraction of surviving features (width of the band around the center line) as a
function of time. Our features are tracked with 0.4 pixel accuracy on average.

Table 1: Average pixel error and average feature age for simulated data.

Datasets Error [px] Feature age [s]

sim april tags 0.20 1.52
sim 3planes 0.29 0.78
sim rocks 0.42 1.00
sim 3wall 0.67 0.40

conditions). The remaining error is likely due to the linearization approximation
in (3). Note that feature age is just reported for completeness, since simulation
time cannot be compared to the physical time of real data (Section 5.2).

5.2 Real Data

We compare our method against the state-of-the-art [8, 9]. The methods were
evaluated on several datasets. For [8] the same set of features extracted on frames
was tracked, while for [9] features were initialized on motion-corrected event
images and tracked with subsequent events. The results are reported in Fig. 7
and in Table 2. The plots in Fig. 7 show the mean tracking error as a function
of time (center line). The width of the colored band indicates the proportion of
features that survived up to that point in time. The width of the band decreases
with time as feature tracks are gradually lost. The wider the band, the more
robust the feature tracker. Our method outperforms [8] and [9] in both tracking
accuracy and length of the tracks.

In simple, black and white scenes (Figs. 7(a) and 7(d)), such as those in [8],
our method is, on average, twice as accurate and produces tracks that are almost
three times longer than [8]. Compared to [9] our method is also more accurate
and robust. For highly textured scenes (Figs. 7(b) and 7(e)), our tracker main-
tains the accuracy even though many events are generated everywhere in the
patch, which leads to significantly high errors in [8, 9]. Although our method
and [9] achieve similar feature ages, our method is more accurate. Similarly, our
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(a) Black & white scene (b) High-texture scenes (c) Natural scenes

(d) shapes 6dof (e) boxes 6dof (f) rocks

Fig. 7: Feature tracking on simple black and white scenes (a), highly textured
scenes (b) and natural scenes (c). Plots (d) to (f) show the mean tracking error
(center line) and fraction of surviving features (band around the center line) for
our method and [8, 9] on three datasets, one for each type of scene in (a)-(c).
More plots are provided in the supplementary material.

Table 2: Average pixel error and average feature age for various datasets.
Error [px] Feature age [s]

Scene Datasets
Our method Kueng [8] Zhu [9] Our method Kueng [8] Zhu [9]

shapes 6dof 0.64 1.75 3.04 3.94 1.53 1.30
Black and white

checkerboard 0.78 1.58 2.36 8.23 2.76 7.12

poster 6dof 0.67 2.86 2.99 2.65 0.65 2.56
High Texture

boxes 6dof 0.90 3.10 2.47 1.56 0.78 1.56

bicycles 0.75 3.65 3.66 1.15 0.49 1.26
Natural

rocks 0.80 2.11 3.24 0.78 0.85 1.13

method performs better than [8] and is more accurate than [9] on natural scenes
(Figs. 7(c) and 7(f)). For these scenes [9] exhibits the highest average feature age.
However, being a purely event-based method, it suffers from drift due to chang-
ing event appearance, as is most noticeable in Fig. 7(f). Our method does not
drift since it uses a time invariant template and a generative model to register
events, as opposed to an event-based template [9]. Additionally, unlike previous
works, our method also exploits the full range of the brightness gradients instead
of using simplified, point-set–based edge maps, thus yielding higher accuracy. A
more detailed comparison with [8] is further explored in Section 5.3, where we
show that our objective function is better behaved.

The tracking error of our method on real data is larger than that on synthetic
data, which is likely due to modeling errors concerning the events, including noise
and dynamic effects (such as unequal contrast thresholds for events of different
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Patch on frame Events Cost (6) Cost (8), [8] Track (position history)

Fig. 8: Our cost function (6) is better behaved (smoother and with fewer lo-
cal minima) than that in [8], yielding a better tracking (last column). The
first two columns show the datasets and feature patches selected, with intensity
(grayscale) and events (red and blue). The third and fourth columns compare
the cost profiles of (6) and (8) for varying translation parameters in x and y

directions (±5 pixel around the best estimate from the tracker). The point-set–
based cost used in [8] shows many local minima for more textured scenes (second
row) which is not the case of our method. The last column shows the position
history of the features (green is ground truth, red is [8] and blue is our method).

polarity). Nevertheless, our tracker achieves subpixel accuracy and consistently
outperforms previous methods, leading to more accurate and longer tracks.

5.3 Objective Function Comparison against ICP-based Method [8]

As mentioned in Section 4, one of the advantages of our method is that data
association between events and the tracked feature is implicitly established by
the pixel-to-pixel correspondence of the compared patches (2) and (3). This
means that we do not have to explicitly estimate it, as was done in [8,9], which
saves computational resources and prevents false associations that would yield
bad tracking behavior. To illustrate this advantage, we compare the cost function
profiles of our method and [8], which minimizes the alignment error (Euclidean
distance) between two 2D point sets: {pi} from the events (data) and {mj} from
the Canny edges (model),

{R, t} = argmin
R,t

∑

(pi,mi)∈Matches

bi ‖Rpi + t−mi‖2 . (8)

Here, R and t are the alignment parameters and bi are weights. At each step,
the association between events and model points is done by assigning each pi to
the closest point mj and rejecting matches which are too far apart (> 3 pixel).
By varying the parameter t around the estimated value while fixing R we obtain
a slice of the cost function profile. The resulting cost function profiles for our
method (6) and (8) are shown in Fig. 8.
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For simple black and white scenes (first row of Fig. 8), all events generated
belong to strong edges. In contrast, for more complex, highly-textured scenes
(second row), events are generated more uniformly in the patch. Our method
clearly shows a convex cost function in both situations. In contrast, [8] exhibits
several local minima and very broad basins of attraction, making exact local-
ization of the optimal registration parameters challenging. The broadness of the
basin of attraction, together with the multitude of local minima can be explained
by the fact that data association changes for each alignment parameter. This
means that there are several alignment parameters which may lead to partial
overlapping of the point-clouds resulting in a suboptimal solution.

To show how non-smooth cost profiles affect tracking performance, we show
the feature tracks in the last column of Fig. 8. The ground truth derived from
KLT is marked in green. Our tracker (in blue) is able to follow the ground truth
with high accuracy. On the other hand [8] (in red) exhibits jumping behavior
leading to early divergence from ground truth.

5.4 Tracking using Frames Reconstructed from Event Data

Recent research [34–37] has shown that events can be combined to reconstruct
intensity frames that inherit the outstanding properties of event cameras (high
dynamic range (HDR) and lack of motion blur). In the next experiment, we show
that our tracker can be used on such reconstructed images, thus removing the
limitations imposed by standard cameras. As an illustration, we focus here on
demonstrating feature tracking in HDR scenes (Fig. 9). However, our method
could also be used to perform feature tracking during high-speed motions by
using motion-blur–free images reconstructed from events.

Standard cameras have a limited dynamic range (60 dB), which often results
in under- or over-exposed areas of the sensor in scenes with a high dynamic range
(Fig. 9(b)), which in turn can lead to tracking loss. Event cameras, however,
have a much larger dynamic range (140 dB) (Fig. 9(b)), thus providing valuable
tracking information in those problematic areas. Figs. 9(c)-(d) show qualitatively
how our method can exploit HDR intensity images reconstructed from a set of
events [34,35] to produce feature tracks in such difficult conditions. For example,
Fig. 9(d) shows that some feature tracks were initialized in originally overexposed
areas, such as the top right of the image (Fig. 9). Note that our tracker only
requires a limited number of reconstructed images since features can be tracked
for several seconds. This complements the computationally-demanding task of
image reconstruction.

Supplementary Material. We encourage the reader to inspect the video, ad-
ditional figures, tables and experiments provided in the supplementary material.

6 Discussion

While our method advances event-based feature tracking in natural scenes, there
remain directions for future research. For example, the generative model we use
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(a) (b) (c) (d)

Fig. 9: Our feature tracker is not limited to intensity frames from a real camera.
In this example, we use an intensity image reconstructed from a stream of events
[34,35] in a scene with high dynamic range (a). The DAVIS frame, shown in (b)
with events overlaid on top, cannot capture the full dynamic range of the scene.
By contrast, the reconstructed image in (c) captures the full dynamic range of
the scene. Our tracker (d) can successfully use this image to produce accurate
feature tracks everywhere, including the badly exposed areas of (b).

to predict events is an approximation that does not account for severe dynamic
effects and noise. In addition, our method assumes uniform optical flow in the
vicinity of features. This assumption breaks down at occlusions and at objects
undergoing large flow distortions, such as motion along the camera’s optical axis.
Nevertheless, as shown in the experiments, many features in a variety of scenes
and motions do not suffer from such effects, and are therefore tracked well (with
sub-pixel accuracy). Finally, we demonstrated the method using a Euclidean
warp since it was more stable than more complex warping models (e.g., affine).
Future research includes ways to make the method more robust to sensor noise
and to use more accurate warping models.

7 Conclusion

We presented a method that leverages the complementarity of event cameras and
standard cameras to track visual features with low-latency. Our method extracts
features on frames and subsequently tracks them asynchronously using events.
To achieve this, we presented the first method that relates events directly to pixel
intensities in frames via a generative event model. We thoroughly evaluated the
method on a variety of sequences, showing that it produces feature tracks that
are both more accurate (subpixel accuracy) and longer than the state of the
art. We believe this work will open the door to unlock the advantages of event
cameras on various computer vision tasks that rely on accurate feature tracking.
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