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Abstract. Many recent energy-based methods for optical flow estima-
tion rely on a good initialization that is typically provided by some kind
of feature matching. So far, however, these initial matching approaches
are rather general: They do not incorporate any additional information
that could help to improve the accuracy or the robustness of the esti-
mation. In particular, they do not exploit potential cues on the camera
poses and the thereby induced rigid motion of the scene. In the present
paper, we tackle this problem. To this end, we propose a novel structure-
from-motion-aware PatchMatch approach that, in contrast to existing
matching techniques, combines two hierarchical feature matching meth-
ods: a recent two-frame PatchMatch approach for optical flow estimation
(general motion) and a specifically tailored three-frame PatchMatch ap-
proach for rigid scene reconstruction (SfM). While the motion Patch-
Match serves as baseline with good accuracy, the SfM counterpart takes
over at occlusions and other regions with insufficient information. Ex-
periments with our novel SfM-aware PatchMatch approach demonstrate
its usefulness. They not only show excellent results for all major bench-
marks (KITTI 2012/2015, MPI Sintel), but also improvements up to 50%
compared to a PatchMatch approach without structure information.

1 Introduction

Since almost four decades the estimation of optical flow from image sequences is
one of the most challenging tasks in computer vision. Despite of the recent success
of learning-based approaches [2, 9, 18, 36, 23], global energy-based methods are
still among the most accurate techniques for solving this task [16, 17, 22, 44]. Even
if combined with partial learning [1, 33, 41, 42] such methods offer the advantage
that they allow for a transparent modeling, since assumptions are explicitly
stated in the underlying energy functional. However, since the complexity of the
models has significantly grown within the last few years – recent methods try to
estimate segmentation [33, 41, 44], occlusions [17, 44] or illumination changes [8]
jointly with the optical flow – the minimization of the resulting non-convex
energies has become an increasingly challenging problem.



2 D. Maurer, N. Marniok, B. Goldluecke, and A. Bruhn

In this context, many energy-based approaches [14, 22, 33, 41] rely on a suit-
able initialization provided by other methods. Among the most popular ap-
proaches that are considered useful as initialization are EpicFlow [30], Coarse-
to-fine PatchMatch [15] and DiscreteFlow [25] – approaches that rely on the
interpolation or fusion of feature matches. This has two main reasons: On the
one hand, feature matching approaches are known to provide good results in the
context of large displacements. On the other hand, they are typically based on
some kind of filtering or a-posteriori regularization which renders the initializa-
tion sufficiently smooth and outlier-free. As a consequence, the initial flow field
offers already a reasonable quality and the energy minimization starts with a
good solution and is hence less likely to end up in undesired local minima.

While recent methods promote the use of feature-based approaches for initial-
ization, they also show that integrating additional information in the estimation
can be highly beneficial w.r.t. both accuracy and robustness [1, 16, 17, 33, 41].
Apart from considering domain-dependent semantic information [1, 5, 16, 33], it
has proven useful to integrate structure constraints and symmetry cues. For in-
stance, [41] proposed a method that jointly estimates the rigidity of each pixel
together with its optical flow. Thereby structure constraints are imposed only
on rigid parts of the scene. In contrast, [17] suggested an approach that exploits
symmetry and consistency cues to jointly estimate forward and backward flows.
This in turn, allows to infer occlusion information together with the optical flow.

Given the fact that the two aforementioned approaches as well as many other
recent methods from the literature rely on a suitable initialization from feature-
based methods, it is surprising that such information has hardly entered the
initial feature matching step so far. While symmetry and consistency cues are at
least considered in terms of simple forward-backward checks to detect occlusions
and remove the corresponding outliers [9, 15, 30], structure constraints in terms
of a rigid background motion have not found their way into feature matching
approaches for computing the optical flow at all. Hence, it would be desirable
to develop a feature-based method that allows to exploit structure information
while still being able to estimate independently moving objects at the same time.

Contributions. In our paper, we develop such a hybrid method. In this context,
our contributions are threefold. (i) First, we introduce a coarse-to-fine three-
frame PatchMatch approach for estimating structure matches (SfM) that com-
bines a depth-driven parametrization with different temporal selection strate-
gies. While the parametrization robustifies the estimation by reducing the search
space, the hierarchical optimization and the temporal selection improve the accu-
racy. (ii) Second, we propose a consistency-based selection scheme for combining
matches from this structure-based PatchMatch approach and an unconstrained
PatchMatch approach. Thereby, the backward flow allows us to identify reliable
structure matches, while a robust voting scheme decides on the remaining cases.
(iii) Finally, we embed the resulting matches into a full estimation pipeline.
Using recent approaches for interpolation and refinement, our method provides
dense results with sub-pixel accuracy. Experiments on all major benchmarks
demonstrate the benefits of our novel SfM-aware PatchMatch approach.



SfM-Aware PatchMatch for Adaptive Optical Flow Estimation 3

1.1 Related Work

As mentioned, integrating additional information can render the estimation of
the optical flow significantly more accurate and robust. We first comment on
related work regarding the integration of such information, while afterwards we
focus on related PatchMatch approaches for optical flow and scene structure.

Rigid Motion. In order to improve accuracy and robustness in case of a rigid
background, one may enforce geometric assumptions such as the epipolar con-
straint [29, 38, 43, 44]. However, if this assumption is forced to hold for the entire
scene, as proposed by Oisel et al. [29] and Yamaguchi et al. [43, 44], the approach
is only applicable to fully rigid scenes, e.g. to those of the KITTI 2012 bench-
mark [11]. Although this problem can be slightly alleviated by soft constraints
as proposed by Valgaerts et al. [37, 38], results for non-rigid scenes are typically
not good. Hence, Wedel et al. [40] suggested to turn off the epipolar constraint
for sequences with independent object motion. This, however, does not allow to
exploit rigid body priors at all in the standard optical flow setting. Consequently,
Gerlich and Eriksson [12] presented a more advanced approach that segments
the scene into different regions with independent rigid body motions. While this
strategy allows to handle automotive scenes with other rigdly moving objects
quite well, e.g. sequences similar to the KITTI 2015 benchmark [24], it cannot
model any type of non-rigid motion, e.g. as required for the different charac-
ters in the MPI Sintel benchmark [7]. In contrast, our SfM-aware PatchMatch
approach combines information from general and SfM-based motion estimation.
Hence, it is not restricted to fully rigid or object-wise rigid scenes.

Mostly Rigid Motion. Compared to [12], Wulff et al. [41] went a step fur-
ther. Instead of requiring the scene to be object-wise rigid they assume the
scene to be only mostly rigid. To this end, they suggested a complex iterative
model that jointly segments the scene into foreground and background using
semantic information as well as motion and structure cues while estimating the
background motion with a dedicated epipolar stereo algorithm. In contrast to
this approach, that uses the general optical flow method [25] as initialization
and adaptively integrates strong rigidity priors later on in the estimation, our
SfM-aware PatchMatch approach aims at integrating such priors already in the
estimation of feature matches at the very beginning of the estimation – and this
without the use of semantic information. Hence, our results are relevant for all
methods relying on a suitable initialization – including the work of Wulff et al.

[41] and other recent methods such as [17] or [33].

Parametrized Models. An alternative strategy that recently became very pop-
ular is to refrain from using global or object-wise rigidity priors and to model
motions that are pixel- or piecewise rigid. Typically this is done by means of a
suitable flow (over-)parametrization; see e.g. [13, 16, 24, 28, 39, 45]. For instance,
Hornaček et al. [13] proposed a 9 DoF flow parametrization that models a lo-
cally rigid motion of planes. Similar, Yang et al. [45] and Hur and Roth [16, 17]
suggested approaches that use a spatially coherent 8 DoF homography based on
superpixels. In contrast to those methods, our SfM-aware PatchMatch approach



4 D. Maurer, N. Marniok, B. Goldluecke, and A. Bruhn

does not explicitly rely on an over-parametrization. Vice versa, it gains robust-
ness by restricting the search space to 1D when calculating the SfM matches.
Moreover, it estimates the flow pixel-wise instead of segment-wise. Hence, it is
more suitable for general scenes with non-rigid motion and fine motion details.

Semantic Information. Another way to improve the accuracy and the robust-
ness of the estimation is to consider semantic. For instance, Bai et al. [1] proposed
to use instance-level segmentation to identify independently moving traffic par-
ticipants before computing separate rigid motions for both the background and
the participants. Similarly, Hur and Roth [16] make use of a CNN to integrate
semantic information into a joint approach for estimating the flow and a tem-
porally consistent semantic segmentation. Furthermore, Sevilla-Lara et al. [33]
suggested a layered approach that relies on semantic information when switching
between different motion models. Finally, there is also the method of Wulff et al.

[41] (see mostly rigid motion). While semantic information often improves the
results, it has to be particularly adapted to the given domain. As a consequence,
the corresponding approaches do typically not generalize well across different
applications or benchmarks. Hence, we do not rely on such information.

PatchMatch. In the context of unconstrained matching (optical flow), Patch-
Match has been originally proposed by Barnes et al. [4]. Recent developments
include the work of Bao et al. [3] that introduces an edge-preserving weighting
scheme as well as the approach of Hu et al. [15] that improves accuracy and speed
with a hierarchical matching strategy. Moreover, Gadot andWolf [9] and Bailer et
al. [2], have recently shown that feature learning can be beneficial. Despite of all
the progress, however, none of the aforementioned optical flow methods includes
structure information. In contrast, our SfM-aware approach exploits such infor-
mation by explicitly using feature matches from a specifically tailored three-view
stereo/SfM PatchMatch method.Also in the stereo/SfM context, there exists a
vast literature on PatchMatch algorithms. There, PatchMatch has been first in-
troduced by Bleyer et al. [6] who proposed a plane-fitting variant for the rectified
case. Recent developments include the approaches of Shen [34] and Galliani et
al. [10] who extended PatchMatch to the non-rectified two-view and multi-view
case, respectively; see also [32, 46]. In contrast to all those methods, our SfM-
aware PatchMatch approach not only extracts pure stereo information. Instead,
it combines information from optical flow and stereo and is hence also appli-
cable to non-rigid scenes with independent object motion. Moreover, it relies
on a hierarchical optimization [15] which has not been used in the context of
PatchMatch stereo so far. Finally, the SfM part of our algorithm uses a direct
depth-parametrization. This, in turn, makes both the estimation very robust.

2 Method Overview

Let us start by giving a brief overview over the proposed method. As many recent
optical flow techniques it relies on a multi-stage approach which includes steps for
computing and refining an initial flow field; see e.g. [14, 17, 22, 33, 41]. However, in
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Fig. 1. Schematic overview over our SfM-aware PatchMatch approach.

contrast to most of these approaches that typically aim at improving an already
given flow field, our method focuses on the generation of an accurate and robust
initial flow field itself. To achieve this goal, our method integrates structure
information into the feature matching process, which plays an essential role for
the initialization [15, 25, 30]. This integration is motivated by the observation
that many sequences contain a significant amount of rigid motion induced by the
ego-motion of the camera [41]. Since this motion is constrained by the underlying
stereo geometry, structure information can significantly improve the estimation.

In our multi-stage method, we realize this integration by combining two hi-
erarchical feature matching approaches that complement each other: On the one
hand, we use a recent two-frame PatchMatch approach for optical flow estimation
[15]. This allows our method to estimate the unconstrained motion in the scene
(forward and backward matches). On the other hand, we rely on a specifically
tailored three-frame stereo/SfM PatchMatch approach (see Sec. 3) with preced-
ing pose estimation [26]. This in turn, allows us our method to compute the rigid
motion of the scene induced by the moving camera (structure matches). In order
to discard outliers and combine the remaining matches, we perform a filtering
approach for all matches followed by a consistency-based selection (see Sec. 4).
Finally, we inpaint and refine the combined matches using recent methods from
the literature [14, 22]. An overview of the entire approach is given in Fig. 1.

3 Structure Matching

In this section, we present our structure matching framework which builds upon
the PatchMatch algorithm [4] – a randomized, iterative algorithm for approxi-
mate patch matching. In this context, we adopt ideas of the recently proposed
Coarse-to-fine PatchMatch (CPM) for optical flow [15] and apply them in the
context stereo/SfM estimation that relies on a depth-based parametrization [10,
31]. This not only enables the straightforward integration of multiple frames,
but also allows to consider the concepts of temporal averaging and temporal
selection [19], the latter one being a strategy for implicit occlusion handling.
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Fig. 2. Left: Illustration of the employed depth parametrization. Right: Illustration
of corresponding points defined by the image location xt and the associated depth
value z(xt). In this case, the 3D point is occluded in one view and could be handled
with the idea of temporal selection. i.e. by the view from the other time step.

3.1 Depth-Based Parametrization

Let us start by deriving the employed depth-based parametrization. To this end,
we assume that all images are captured by a calibrated perspective camera that
possibly moves in space, i.e. the corresponding projection matrices Pt = K [Rt|tt]
are known. Here Rt is a 3× 3 rotation matrix and tt a translation 3-vector that
together describe the pose of the camera at a certain time step t. In addition,
the 3× 3 matrix K denotes the intrinsic camera calibration matrix given by

K =





sx 0 cx
0 sy cy
0 0 1



 , (1)

where (sx, sy) denotes the scaled focal length and c = (cx, cy)
⊤ denotes the

principal point offset. Given the projection matrix Pt, a 3D point X ∈ R
3 is

projected onto a 2D point x ∈ R
2 on the image plane by x = π(PtX̃), where the

tilde denotes homogeneous coordinates, such that

X̃ =
(

X⊤, 1
)⊤

, (2)

and π maps a homogeneous coordinate x̃ to its Euclidean counterpart x

π(x̃) =

(

x̃1/x̃3

x̃2/x̃3

)

, with x̃ =
(

x̃1, x̃2, x̃3

)⊤
. (3)

Now, to define our parametrization, we assume w.l.o.g. that the camera pose of
the reference camera, i.e. the camera associated with the image taken at time t,
is aligned with the world coordinate system and invert the previous described
projection to specify a 3D point on the surface s by an image location x and the
corresponding depth z(x) along the optical axis; see Fig. 2. This leads to

X = s(x, z(x)) = z(x)K−1x̃ , (4)

which allows us to describe correspondences throughout multiple images with a
single unknown, the depth z(x), by projecting onto the respective image planes
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Fig. 3. Illustration showing the conversion procedure from a 3D point to the displace-
ment vectors w.r.t. to the forward frame t+ 1 and backward frame t− 1.

using the corresponding projection matrices; see Fig. 2. Finally, given three
frames as in our case, with projection matrices Pt+1, Pt, and Pt−1, one can
directly convert the estimated depth values to the corresponding displacement
vectors w.r.t. to the forward frame t+ 1 and the backward frame t− 1 (Fig. 3):

ust,fw(x, z(x)) = π(Pt+1s̃(x, z(x))− π(Pts̃(x, z(x)) , (5)

ust,bw(x, z(x)) = π(Pt−1s̃(x, z(x))− π(Pts̃(x, z(x)) . (6)

3.2 Hierarchical Matching

With the depth parametrization at hand we now turn to the actual matching.
While applying the classical PatchMatch approach [4] directly to the problem
typically yields noisy results due to non-existent explicit regularization, we resort
to the idea of integrating a hierarchical coarse-to-fine scheme, which has shown
to be less prone to noise in the context of optical flow estimation [15].

As in [15] we do not estimate the unknowns for all pixel locations, but for
multiple collections of seeds Sl = {slm} that are defined on each resolution level
l ∈ {0, 1, . . . , k − 1} of the coarse-to-fine pyramid. While the number of seeds
remains the same for each resolution level, their spatial locations are given by

x(slm) = ⌊η · x(sl−1
m )⌉ for l ≥ 1 , (7)

where ⌊·⌉ is a function that returns the nearest integer value and η = 0.5 is the
employed downsampling factor between two consecutive pyramid levels. Fur-
thermore, the locations for l = 0 (full image resolution) are located at the cross
points of a regular image grid with a spacing of 3 pixels and come with the de-
fault neighborhood system, defined via the spatial adjacency. In addition, these
neighborhood relations remain fixed throughout the coarse-to-fine pyramid.

The matching is now performed in the classical coarse-to-fine manner: Start-
ing at the coarsest resolution, each level is processed by iteratively performing
a random search and a neighborhood propagation as in [4]. While the coarsest
level uses a random initialization of the unknown depth, the subsequent levels are
initialized with the depth values of the corresponding seeds of the next coarser
level. Furthermore, the search radius for the random sampling is reduced expo-
nentially throughout the coarse-to-fine pyramid, such that the random search is
restricted to values near the current best depth estimate.
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3.3 Cost Computation and Temporal Averaging / Selection

Since we consider three images, there are several possibilities how to compute the
matching cost between corresponding patches. One possible choice is to compute
all pairwise similarity measures w.r.t. the reference patch and average the costs.
While this renders the estimation more robust if the actual 3D point is visible
in all views, it may lead to deteriorated results in case of occlusions. In order to
deal with this, one can apply the idea of temporal selection [19] and compute
all pairwise similarity measures w.r.t. the reference patch, but only consider the
lowest pairwise cost as overall cost. Thereby it can be ensured that, as long as the
reference patch can be found in at least one view and is occluded in the remaining
ones, the correct correspondence retains a small cost. In our experiments we will
use both approaches, temporal averaging and temporal selection.

Finally, we utilize SIFT descriptors [15, 20, 21] in order to compute the simi-
larity between two corresponding locations. This also renders the matching more
robust than operating directly on the intensity values. Regarding the cost func-
tion we follow [15] and apply a robust L1-loss. The resulting forward and back-
ward structure matching costs Ct+1 and Ct−1 are then given by

Ct+1(x, z(x)) = ||fSIFT(π(Pt+1s̃(x, z(x)))− fSIFT(π(Pts̃(x, z(x))||1 , (8)

Ct−1(x, z(x)) = ||fSIFT(π(Pt−1s̃(x, z(x)))− fSIFT(π(Pts̃(x, z(x))||1 , (9)

where fSIFT denotes the SIFT-feature and || · ||1 is the L1-norm. The correspond-
ing temporal averaging and temporal selection costs read

Cavg(x, z(x)) =
1
2 (Ct+1(x, z(x)) + Ct−1(x, z(x))) , (10)

Cts(x, z(x)) = min(Ct+1(x, z(x)), Ct−1(x, z(x))) . (11)

3.4 Outlier Handling

Finally, we extend the classical bi-directional consistency check to our three-view
setting. Therefore, we not only estimate the depth values with frame t as refer-
ence view but also with the other two frames as reference. Then we take the esti-
mated depth value zt(x) at frame t, project it into the frames t+1 and t−1, take
the estimated depth values zt+1(x) and zt−1(x) there, and project them back to
frame t. Only if at least one of the two backprojections maps to the starting point
x, the depth value zt(x) is considered valid. In this case, the forward/backward
structure matches can be computed from zt(x) via Eqs. (5)-(6).

4 Combining Matches

At this point, we have computed filtered forward and backward structure matches
from frame t to frames t+1 and t− 1. For the sake of clarity let us denote these
matches by ûst,fw and ûst,bw. Moreover, as indicated in Fig. 1. we have also com-
puted the corresponding forward and backward optical flow matches between the
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same frames with a hierarchical PatchMatch approach for unconstrained motion
[15]. Since these optical flow matches underwent a classical bi-directional consis-
tency check to remove outliers (which requires to additionally compute matches
from frames t+1 and t− 1 to frame t), let us denote them by ûof,fw and ûof,bw.

The goal of the combination step is now to fuse these four matches in such
a way such that rigid parts of the scene can benefit from the structure matches.
Thereby one has to keep in mind that optical flow matches may explain rigid mo-
tion, while structure matches are typically wrong in the context of independent
object motion. To avoid using structural matches at inappropriate locations, we
propose a conservative approach: We augment the optical flow matches with the
matches obtained from the structure matching. This means that we always keep
the match of the forward flow, if it has passed the outlier filtering. Otherwise,
however, we consider to augment the final matches at this location by the match
of the structure matching approach. In order to decide if such a structure match
should really be considered, we propose three different approaches (see Fig. 4):

Permissive Approach. The first approach is the most permissive approach.
It includes all structure matches ûst,fw that have passed the outlier filtering at
locations where no forward optical flow match ûof,fw is available.

Restrictive Approach. The second approach is more restrictive. Instead of
including all structure matches, we enforce an additional consistency check. This
allows to reduce the probability of blindly including possibly false matches. For
this consistency check we make use of the backward optical flow match ûof,bw. We
only consider the forward structure match ûst,fw, if its backward variant ûst,bw

is consistent with the backward optical flow match ûof,bw. In case the additional
consistency check cannot be performed, because the backward optical flow match
did not pass the outlier filtering, we do not consider the structure match.

Voting Approach. Finally, we propose a voting approach that enforces the ad-
ditional consistency check as in the restrictive approach but still allows to include
structure matches in case the additional consistency check cannot be performed.
The decision if such non-checkable structure matches should be included is con-
ducted for each sequence separately. It is based on a voting scheme: All locations,
that contain a valid match for the forward, backward and structure match are
eligible to vote. If the structure match is consistent with both the forward and
the backward match, we count this as a vote in favor of including non-checkable
matches. If the votes surpass a certain threshold (80% in our experiments) all
non-checkable structure matches are added. This can be seen as a detection
scheme that allows to identify scenes with a large amount of ego-motion.

5 Evaluation

Evaluation Setup. In order to evaluate our new approach, we used the follow-
ing components within our pipeline (cf. Fig. 1): The pose estimation uses the
OpenMVG [27] implementation of the incremental SfM approach [26], the for-
ward and backward matching employ the Coarse-to-fine PatchMatch (CPM) [15]
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Fig. 4. Illustration showing the different strategies to combine the computed matches.
Top: Color coded input matches. White denotes no match. Bottom: Fusion results.

approach, the structure matching and consistent combination are performed as
described in Sec. 3 and 4, respectively, followed by a robust interpolation of the
combined correspondences (RIC) using [14]. Finally, the inpainted matches are
refined using the order-adaptive illumination-aware refinement method (OIR)
[22]. Except for the refinement, where we optimized [35] the three weighting pa-
rameters per benchmark using the training data, we used the default parameters.

Benchmarks. To evaluate the performance of our approach, we consider three
different benchmarks: the KITTI 2012 [11], the KITTI 2015 [24], and the MPI
Sintel [7] benchmark. These benchmarks exhibit an increasing amount of ego-
motion induced optical flow. While KITTI 2012 consists of pure ego-motion,
KITTI 2015 additionally includes motion of other traffic participants. Finally,
MPI Sintel also contains non-rigid motion from animated characters.

Baseline. To measure improvements, we establish a baseline that does not use
structure information and only relies on forward optical flow matches (CPM).
As Tab. 1 shows, our baseline outperforms most of the related approaches. Only
DF+OIR [22] performs slightly better, due to the advanced DF matches [25].

Structure Matching. Next, we investigate the performance of our novel struc-
ture matching approach on its own. Therefore, we replace the matching ap-
proach (CPM) in our baseline with three variants of our structure matching
approach (CPMz): a two-frame variant, a three-frame variant with temporal
averaging and a three-frame variant with temporal selection. As the results in
Tab. 1 show, structure matching significantly outperforms the baseline in pure
ego-motion scenes, while it naturally has problems in scenes with independent
motion. Moreover, they show that the use of multiple frames pays off. However,
while for the KITTI benchmarks the robustness of temporal averaging is more
beneficial than the occlusion handling of temporal selection, the opposite holds
for the MPI Sintel benchmark. This, in turn, might be attributed to the fact
that MPI Sintel contains a larger amount of occlusions. Since both strategies
have their advantages, we consider both variants for our further evaluation.



SfM-Aware PatchMatch for Adaptive Optical Flow Estimation 11

Fig. 5. Example for the KITTI 2015 benchmark [24] (#186). First row: Reference
frame, subsequent frame, ground truth. Second row: Forward matches, structure
matches (depth visualization). Following rows. From left to right: Used matches
(color-coding see Fig. 4), final result, bad pixel visualization. From top to bottom:

Baseline, permissive approach, restrictive approach, voting approach.

Unconstrained Matching. Apart from the baseline we also evaluated two ad-
ditional variants solely based on unconstrained matching: a variant only using
backward matches and a variant that augments the forward matches with back-
ward matches. To this end, we assume a constant motion model, i.e. ûof,fw =
−ûof,bw. The results for the backward flow in Tab. 1 show that such a simple
model does not allow to leverage useful information to predict the forward flow.
Even the augmented variant does not improve compared to the baseline.

Combined Approach. Let us now turn towards the evaluation of our combined
approach. In this context, we compare the impact of the different combination
strategies. As one can see in Tab. 1, the permissive approach is not an option.
While it works well for dominating ego-motion, it includes too many false struc-
ture matches in case of independent object motion. In contrast, the restrictive
approach prevents the inclusion of false structure matches, but cannot make
use of the full potential of such matches in scenes with dominating ego-motion.
Nevertheless, it already outperforms the baseline significantly and gives the best
results for MPI Sintel. Finally, the voting approach combines the advantages
of both schemes. It yields the best results for KITTI 2012/2015 with improve-
ments up to 50% compared to the baseline, while still offering an improvement
w.r.t. MPI Sintel. This observation is also confirmed by the examples in Fig.
5/6. They show the usefulness of including structure matches in occluded areas
and the importance of filtering false structure matches in general.
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Table 1. Results for the training datasets of the KITTI 2012 [11] (all pixels), KITTI
2015 [24] (all pixels) and the MPI Sintel [7] benchmarks (clean render path) in terms of
the average endpoint error (AEE) and the percentage of bad pixels (BP, 3px threshold).

method KITTI 2012 KITTI 2015 Sintel

name matching inpainting refinement AEE BP AEE BP AEE

related approaches (+ baseline)

CPM-Flow [15] CPM EPIC EPIC 3.00 14.58 7.78 22.86 2.00
RIC-Flow [14] CPM RIC OpenCV 2.94 10.94 7.24 21.46 2.16
CPM+OIR [22] CPM EPIC OIR 2.78 9.68 7.36 19.21 1.99
DF+OIR [22] DF EPIC OIR 2.34 9.29 5.89 18.10 1.91

baseline CPM RIC OIR 2.61 8.98 6.82 18.70 1.95

only structure matching

two-frame CPMz RIC OIR 2.25 9.47 9.15 23.02 17.09
temporal averaging CPMz RIC OIR 1.25 6.51 7.85 19.11 20.68
temporal selection CPMz RIC OIR 1.43 6.69 8.06 19.52 15.69

only unconstrained matching

backward flow CPM RIC OIR 6.90 43.96 11.57 44.12 4.00
forward flow CPM RIC OIR 2.61 8.98 6.82 18.70 1.95

combined fw&bw CPM RIC OIR 4.53 18.93 9.54 27.42 2.05

combined (temporal selection)

permissive approach CPM/CPMz RIC OIR 1.47 5.91 4.95 14.12 2.53
restrictive approach CPM/CPMz RIC OIR 1.60 6.22 5.20 15.10 1.88

voting approach CPM/CPMz RIC OIR 1.48 5.82 4.91 13.95 1.90

combined (temporal averaging)

permissive approach CPM/CPMz RIC OIR 1.30 5.71 4.21 13.72 2.92
restrictive approach CPM/CPMz RIC OIR 1.59 6.17 5.04 14.97 1.90

voting approach CPM/CPMz RIC OIR 1.30 5.67 4.16 13.61 1.92

recent literature

PWC-Net [36] CVPR ’18 4.14 – 10.35 33.67 2.55
FlowNet2 [18] CVPR ’18 4.09 – 10.06 30.37 2.02
UnFlow [23] AAAI ’18 3.29 – 8.10 23.27 –
DCFlow [42] CVPR ’17 – – – 15.09 –
MR-Flow [41] CVPR ’17 – – – 14.09 1.83

Mirror Flow [17] ICCV ’17 – – – 9.98 –

learning approaches (fine tuned)

PWC-Net-ft[36] CVPR ’18 (1.45) – (2.16) (9.80) (1.70)
FlowNet2-ft [18] CVPR ’17 (1.28) – (2.30) (8.61) (1.45)
UnFlow-ft [23] AAAI ’18 (1.14) – (1.86) (7.40) –

Comparison to the Literature. Finally, we compare our method to other
approaches from the literature. To this end, we consider both the training and
the test data sets; see Tab. 1 and Tab. 2, respectively. Regarding the training data
sets, our method generally yields better results than recent learning approaches
without fine-tuning (PWC-Net [36], FlowNet2 [18], UnFlow [23]). Moreover, it
also outperforms DCFlow [42] and MR-Flow [41] on the KITTI 2015 benchmark.
Only MirrorFlow [17] (KITTI 2015) and MR-Flow (MPI Sintel) provide better
results. This good performance holds for the test data sets as well, for which we
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Fig. 6. Example for the MPI Sintel benchmark [7] (ambush5 #44). First row: Refer-
ence frame, subsequent frame, ground truth. Second row: Forward matches, structure
matches (forward match visualization). Following rows. From left to right: Used
matches (color-coding see Fig. 4), final result, bad pixel visualization. From top to

bottom: Baseline, permissive approach, restrictive approach, voting approach.

evaluated the approaches that had performed best on the training data. Here,
on KITTI 2012, our method performs favorably (all pixels) even compared to
methods based on pure ego-motion and semantic information. Moreover, it also
outperforms recent approaches with an explicit SfM background estimation (MR-
Flow) on KITTI 2015. Finally, ranking second and sixth our method also yields
an excellent performance on the clean and final set of MPI Sintel, respectively.
This shows that our method not only works well in the context of pure ego-
motion but can also handle a significant amount of independent object motion.

Fixed Parameter Set. Finally, we investigate how the results change when not
optimizing the refinement parameters individually for each benchmark. To this
end, we considered the voting approach with temporal averaging and conducted
an experiment on the training data with all parameters fixed. As Tab. 3 shows the
results hardly deteriorate when using a single parameter set for all benchmarks.

Runtime. The runtime of the pipeline excluding the pose estimation is 32s for
one frame of size 1024×436 (MPI Sintel) using three cores on an Intel R© CoreTM

i7-7820X CPU @ 3.6GHz, which splits into: 5.5s matching (incl. outlier filtering),
<0.1s combination, 1.5s inpainting and 25s refinement. The pose estimation is
run on the entire image sequence, which takes 83s for a sequence with 50 frames.
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Table 2. Top 10 non-anonymous optical flow methods on the test data of the KITTI
2012/2015 [11, 24] and of the MPI Sintel benchmark [7], excluding scene flow methods.

KITTI 2012 Out-Noc Out-All Avg-Noc Avg-All

SPS-Fl1 3.38 % 10.06 % 0.9 px 2.9 px
PCBP-Flow1 3.64 % 8.28 % 0.9 px 2.2 px
SDF2 3.80 % 7.69 % 1.0 px 2.3 px
MotionSLIC1 3.91 % 10.56 % 0.9 px 2.7 px
our approach 4.02 % 6.15 % 1.0 px 1.5 px

PWC-Net 4.22 % 8.10 % 0.9 px 1.7 px
UnFlow 4.28 % 8.42 % 0.9 px 1.7 px
MirrorFlow 4.38 % 8.20 % 1.2 px 2.6 px
ImpPB+SPCI 4.65 % 13.47 % 1.1 px 2.9 px
CNNF+PMBP 4.70 % 14.87 % 1.1 px 3.3 px

KITTI 2015 Fl-bg Fl-fg Fl-all

PWC-Net 9.66 % 9.31 % 9.60 %
MirrorFlow 8.93 % 17.07 % 10.29 %
SDF2 8.61 % 23.01 % 11.01 %
UnFlow 10.15 % 15.93 % 11.11 %
CNNF+PMBP 10.08 % 18.56 % 11.49 %
our approach 9.66 % 22.73 % 11.83 %

MR-Flow2 10.13 % 22.51 % 12.19 %
DCFlow 13.10 % 23.70 % 14.86 %
SOF2 14.63 % 22.83 % 15.99 %
JFS2 15.90 % 19.31 % 16.47 %

MPI Sintel clean all matched unmatched

MR-Flow2 2.527 0.954 15.365
our approach 2.910 1.016 18.357

FlowFields+ 3.102 0.820 21.718
CPM2 3.253 0.980 21.812
MirrorFlow 3.316 1.338 19.470
DF+OIR 3.331 0.942 22.817
S2F-IF 3.500 0.988 23.986
SPM-BPv2 3.515 1.020 23.865
DCFlow 3.537 1.103 23.394
RicFlow 3.550 1.264 22.220

MPI Sintel final all matched unmatched

PWC-Net 5.042 2.445 26.221
DCFlow 5.119 2.283 28.228
FlowFieldsCNN 5.363 2.303 30.313
MR-Flow2 5.376 2.818 26.235
S2F-IF 5.417 2.549 28.795
our approach 5.466 2.683 28.147

InterpoNet ff 5.535 2.372 31.296
RicFlow 5.620 2.765 28.907
InterpoNet cpm 5.627 2.594 30.344
ProbFlowFields 5.696 2.545 31.371

1 uses epipolar geometry as a hard constraint, only applicable to pure ego-motion
2 exploits semantic information

Table 3. Impact of refinement parameter optimization.

method KITTI 2012 KITTI 2015 Sintel

name parameters AEE BP AEE BP AEE

voting approach individually optimized 1.30 5.67 4.16 13.61 1.92

voting approach single parameter set 1.31 5.70 4.16 13.70 1.93

6 Conclusion

In this paper, we addressed the problem of integrating structure information into
feature matching approaches for computing the optical flow. To this end, we de-
veloped a hierarchical depth-parametrized three-frame SfM/stereo PatchMatch
approach with temporal selection and preceding pose estimation. By adaptively
combining the resulting matches with those of a recent PatchMatch approach
for general motion estimation, we obtained a novel SfM-aware method that ben-
efits from a global rigidity prior, while still being able to estimate independently
moving objects. Experiments not only showed excellent results on all major
benchmarks (KITTI 2012/2015, MPI Sintel), they also demonstrated consistent
improvements over a baseline without structure information. Since our approach
is based on inpainting and refining advanced feature matches, it offers another
advantage: Other optical flow methods can easily benefit from it by incorporating
its matches or the resulting dense flow fields as initialisation.
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