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Abstract. Accurate semantic image segmentation requires the joint
consideration of local appearance, semantic information, and global scene
context. In today’s age of pre-trained deep networks and their pow-
erful convolutional features, state-of-the-art semantic segmentation ap-
proaches differ mostly in how they choose to combine together these
different kinds of information. In this work, we propose a novel scheme
for aggregating features from different scales, which we refer to as Multi-

Scale Context Intertwining (MSCI). In contrast to previous approaches,
which typically propagate information between scales in a one-directional
manner, we merge pairs of feature maps in a bidirectional and recurrent
fashion, via connections between two LSTM chains. By training the pa-
rameters of the LSTM units on the segmentation task, the above ap-
proach learns how to extract powerful and effective features for pixel-
level semantic segmentation, which are then combined hierarchically.
Furthermore, rather than using fixed information propagation routes,
we subdivide images into super-pixels, and use the spatial relationship
between them in order to perform image-adapted context aggregation.
Our extensive evaluation on public benchmarks indicates that all of the
aforementioned components of our approach increase the effectiveness of
information propagation throughout the network, and significantly im-
prove its eventual segmentation accuracy.

Keywords: Semantic Segmentation, Deep Learning, Convolutional Neu-
ral Network, Long Short-Term Memory

1 Introduction

Semantic segmentation is a fundamental task in computer vision, whose goal is
to associate a semantic object category with each pixel in an image [1–4]. Many
real-world applications, e.g., autonomous driving [4], medical analysis [5], and
computational photography [6], can benefit from accurate semantic segmentation
that provides detailed information about the content of an image.

In recent years, we have witnessed a tremendous progress in semantic seg-
mentation accuracy. These advances are largely driven by the power of fully con-
volutional networks (FCNs) [7] and their derivatives [8, 9], which are pre-trained
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Fig. 1: Alternative approaches for encoding multi-scale context information into
segmentation features for per-pixel prediction. The spatial pyramid pooling
(SPP) network (a) and the encoder-decoder (ED) network (b) propagate infor-
mation across the hierarchy in a one-directional fashion. In contrast, our multi-
scale context intertwining architecture (c) exchanges information between adja-
cent scales in a bidirectional fashion, and hierarchically combines the resulting
feature maps. Figure 2 provides a more detailed illustration of the multi-stage
recurrent context intertwining process.

on large-scale datasets [10, 2]. It has also become apparent that accounting for
the semantic context leads to more accurate segmentation of individual objects
[11–14, 9, 15–19].

The feature maps extracted by the deeper layers of a convolutional network
encode higher-level semantic information and context contained in the large
receptive field of each neuron. In contrast, the shallower layers encode appear-
ance and location. State-of-the-art semantic segmentation approaches propa-
gate coarse semantic context information back to the shallow layers, yielding
richer features, and more accurate segmentations [7, 9, 17–21]. However, in these
methods, context is typically propagated along the feature hierarchy in a one-
directional manner, as illustrated in Figure 1(a) and (b).

In this paper, we advocate the idea that more powerful features can be learned
by enabling context to be exchanged between scales in a bidirectional manner.
We refer to such information exchange as context intertwining. The intuition
here is that semantics and context of adjacent scales are strongly correlated,
and hence the descriptive power of the features may be significantly enhanced
by such intertwining, leading to more precise semantic labeling.

Our approach is illustrated by the diagram in Figure 1(c). Starting from a col-
lection of multi-scale convolutional feature maps, each pair of successive feature
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maps is intertwined together to yield a new enriched feature map. The inter-
twining is modeled using two chains of long short-term memory (LSTM) units
[22], which repeatedly exchange information between them, in a bidirectional
fashion, as shown in Figure 2. Each intertwining phase reduces the number of
feature maps by one, resulting in a hierarchical feature combination scheme (the
horizontal hierarchy in Figure 1(c)). Eventually, a single enriched high-resolution
feature map remains, which is then used for per-pixel semantic label inference.

Furthermore, rather than using fixed information propagation routes for con-
text aggregation, we subdivide images into super-pixels, and use the spatial
relationship between the super-pixel in order to define image-adapted feature

connections.
We demonstrate the effectiveness of our approach by evaluating it and com-

paring it to an array of state-of-the-art semantic segmentation methods on four
public datasets (PASCAL VOC 2012 [1], PASCAL-Context [3], NYUDv2 [23]
and SUN-RGBD [24] datasets). On the PASCAL VOC 2012 validation set, we
outperform the state-of-the-art (with 85.1% mean IoU). On the PASCAL VOC
2012 test set, our performance (87.0% mean IoU) is second only to the recent
result of Chen et al. [25], who uses a backbone network trained on an internal
JFT dataset [26–28], while our backbone network is trained on the ImageNet
dataset [10].

2 Related Work

Fully convolutional networks (FCNs) [7] have proved effective for semantic image
segmentation by leveraging the powerful convolutional features of classification
networks [29, 30, 27] pre-trained on large-scale data [10, 24]. The feature maps
extracted by the different convolutional layers have progressively coarser spatial
resolutions, and their neurons correspond to progressively larger receptive fields
in the image space. Thus, the collection of feature maps of different resolutions
encodes multi-scale context information. Semantic segmentation methods have
been trying to exploit this multi-scale context information for accurate segmen-
tation. In this paper, we focus on two aspects, i.e., Feature Combination and
Feature Connection, which have also been explored by most of the recent works
[7, 9, 18–20, 31–33] to make better use of the image context.

Feature Combination To capture the multi-scale context information in the
segmentation features, many works combine feature maps whose neurons have
different receptive fields. Various schemes for the combination of feature maps
have been proposed. Spatial pyramid pooling (SPP) [34] has been successfully
applied for combining different convolutional feature maps [9, 18, 20]. Generally,
the last convolutional feature map, which is fed to the pixel-wise classifier, is
equipped with an SPP (see Figure 1(a)). But the SPP-enriched feature maps
have little detailed information that is missed by the down-sampling operations
of an FCN. Though the atrous convolution can preserve the resolutions of fea-
ture maps for more details, it requires a large budget of GPU storage for com-
putation [29, 30, 27]. To save the GPU memory and improve the segmentation
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performance, some networks [35, 17, 19, 21] utilize an Encoder-Decoder (ED) net-
work to gradually combine adjacent feature maps along the top-down hierarchy
of a common FCN architecture, propagating the semantic information from the
low-resolution feature maps to the high-resolution feature maps and using the
high-resolution feature maps to recover the details of objects (see Figure 1(b)).
The latest work [25] further uses the ED network along with an atrous spatial
pyramid pooling (ASPP) [20], and combines multi-resolution feature maps for in-
formation enrichment. In the ED network, each feature map of the decoder part
only directly receives the information from the feature map at the same level
of the encoder part. But the strongly-correlated semantic information, which is
provided by the adjacent lower-resolution feature map of the encoder part, has
to pass through additional intermediate layers to reach the same decoder layer,
which may result in information decay.

In contrast, our approach directly combines pairs of adjacent feature maps
in the deep network hierarchy. It creates new feature maps that directly receive
the semantic information and context from a lower-resolution feature map and
the improved spatial detail from a higher-resolution feature map. In addition,
in our architecture the information exchange between feature maps is recurrent
and bidirectional, enabling better feature learning. The pairwise bidirectional
connections produce a second, horizontal hierarchy of the resulting feature maps,
leading up to a full resolution context-enriched feature map (rightmost feature
map in Figure 1(c)), which is used for pixel-wise label prediction.

Feature Connection Connections between feature maps enable the communi-
cation between neurons with different receptive field sizes, yielding new feature
maps that encode multi-scale context information. Basically, FCN-based models
[7–9, 17–20, 31] use separate neurons to represent the regular regions in an image.
Normally, they use convolutional/pooling kernels with predefined shapes to ag-
gregate the information of adjacent neurons, and propagate this information to
the neurons of other feature maps. But traditional convolutional/pooling kernels
only capture the context information in a local scale. To leverage richer context
information, graphical models are integrated with FCNs [12, 13, 16]. Graphical
models build dense connections between feature maps, allowing neurons to be
more sensitive to the global image content that is critical for learning good
segmentation features. Note that previous works use one-way connections that
extract context information from the feature maps separately, which is even-
tually combined. Thus, the learned features at a given scale are not given the
opportunity to optimally account for the multi-scale context information from
all of the other scales.

In contrast to previous methods, our bidirectional connections exchange
multi-scale context information to improve the learning of all features. We em-
ploy super-pixels computed based on the image structure, and use the relation-
ship between them to define the exchange routes between neurons in different fea-
ture maps. This enables more adaptive context information propagation. Several
previous works [31–33, 36] also use super-pixels to define the feature connections.
And information exchange has been studied in [37, 38] for object detection. But



Multi-Scale Context Intertwining for Semantic Segmentation 5

... ...

F l
0

F l+1
0

H l
0

H l+1
0

F l
t−1

F l+1
t−1

H l
t−1

H l+1
t−1

F l
t

F l+1
t

H l
t

H l+1
t

F l
t+1

F l+1
t+1

H l
t+1

H l+1
t+1

F l
T

F l+1
T

H l
T

H l+1
T

Fig. 2: Multi-scale context intertwining between two successive feature maps in
the deep hierarchy. The green arrows propagate the context information from the
lower-resolution feature map to the higher-resolution one. Conversely, the blue
arrows forward information from the higher-resolution feature map to augment
the lower-resolution one. The orange circle in each stage indicates the hidden
features output by LSTMs, including the cell states and gates.

these works do not exchange the information between feature maps of different
resolutions, which is critical for semantic segmentation.

3 Multi-Scale Context Intertwining

To utilize multi-scale context information, the common networks use one-way
connections to combine feature maps of different resolution, following the top-
down order of the network hierarchy (see Figure 1(a) and (b)). Here, we present
a multi-scale context intertwining (MSCI) architecture, where the context in-
formation can be propagated along different dimensions. The first dimension
is along the vertical deep hierarchy (see Figure 1(c)): our context intertwining
scheme has connections to exchange the multi-scale context information between
the adjacent feature maps. The connection is bidirectional with two different long
short-term memory (LSTM) chains [22] that intertwines feature maps of different
resolution in a sequence of stages. By training the LSTM units, the bidirectional
connections learn to produce more powerful feature maps. The second dimension
is along the horizontal hierarchy: the feature maps produced by our bidirectional
connections are fed to the next phase of context intertwining, which can encode
the context information memorized by our bidirectional connections into the new
feature maps.

The overall MSCI architecture is illustrated in Figure 1(c). Initially, we use
the backbone FCN to compute a set {F l} convolutional feature maps of dif-
ferent resolutions, where l = 1, ..., L and F 1 has the highest resolution. Figure
2 provides a more detailed view of context intertwining between two successive
feature maps F l and F l+1. To exchange the context information between F l and
F l+1, we construct a bidirectional connection L:

{Ql, Cl→l+1
T , Cl+1→l

T } = L(F l, F l+1, Cl→l+1, Cl+1→l, P l→l+1, P l+1→l, T ). (1)
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Algorithm 1 Multi-Scale Context Intertwining

1: Input:
1) the number of stages T for each phase of the context intertwining;
2) a set of convolutional feature maps F = {F l}, where l = 1, ..., L;
3) the trained parameter set {(P l→l+1, P l+1→l)}.

2: Initialization:
1) a total K phases for the context intertwining, where K = L− 1;
2) a set Q = {Qk}, where Q0 = {Ql

0|Q
l

0 = F l}; and Qk = ∅, k = 1, ...,K;
3) a set of cell states {(Cl→l+1, Cl+1→l)}, where Cl→l+1, Cl+1→l = 0.

3: for k = 1 → K do

4: for l = 1 → |Qk−1| − 1 do

5: {Ql

k, C
l→l+1

T
, Cl+1→l

T
} = L(Ql

k−1, Q
l+1

k−1
, Cl→l+1, Cl+1→l, P l→l+1, P l+1→l, T )

6: Qk = Qk ∪ {Ql

k}, (C
l→l+1, Cl+1→l) = (Cl→l+1

T
, Cl+1→l

T
)

7: end for

8: end for

9: Output: the segmentation feature map Q1
K .

The bidirectional connection L consists of two different LSTM chains. One chain
has the parameter set P l→l+1. It extracts the context information from F l and
passes it to F l+1. The other chain has the parameter set P l+1→l and passes
context information from F l+1 to F l. Cl→l+1 and Cl+1→l are the cell states of
the two LSTMs, and they are initialized to zeros in the very beginning. As shown
in Figure 2, the information exchange takes place over T stages. At each stage
t, information is exchanged between the feature maps F l

t and F l+1
t , yielding

the maps F l
t+1 and F l+1

t+1 . Note that the resulting feature map F l
T has higher

resolution than F l+1
T . Thus, we deconvolve the feature map F l+1

T with the kernel

Dl+1
f and add it to F l

T to obtain a combined high-resolution feature map Ql:

Ql = F l
T +Dl+1

f ∗ F l+1
T . (2)

Note that the feature map Ql and the cell states Cl→l+1
T and Cl+1→l

T can be
further employed to drive the next phase of context intertwining (the next level
of the horizontal hierarchy). Along the LSTM chains, the feature maps contain
neurons with larger receptive fields, i.e., with richer global context. Besides,
the cell states of LSTMs can memorize the context information exchanged at
different stages. Due to the shortcut design of the cell states [22], the local context
from the early stages can be easily propagated to the last stage, encoding the
multi-scale context including the local and global information to the final feature
map.

The entire MSCI process is summarized in Algorithm 1. We assume the
MSCI process has K phases totally. Each phase of Algorithm 1 produces new
feature maps. As each pair of feature maps is intertwined, the corresponding
cell states (Cl→l+1, Cl+1→l) are iteratively updated to provide the memorized
context to assist the information exchange in the next phase. Finally, the out-
put is the high-resolution feature map Q1

K that is fed to the pixel-wise classi-
fier for segmentation. Algorithm 1 describes the feed-forward pass through the
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LSTMs. We remark that the LSTM parameters are reusable, and the LSTMs
are trained using the standard stochastic gradient descent (SGD) algorithm with
back-propagation. Below, we focus on a single context intertwining phase, and
thus omit the subscript k to simplify notation.

4 Bidirectional Connection

In this section, we describe in more detail the bidirectional connections that en-
able mutual exchange of context information between low- and high-resolution
feature maps. Our bidirectional connections are guided by the super-pixel struc-
ture of the original image, as illustrated in Figure 3. Given an input image I,
we divide it into non-overlapping super-pixels, which correspond to a set of re-
gions {Sn}. Let F

l
t and F l+1

t denote two adjacent resolution feature maps in our
network, where l is the resolution level and t is the LSTM stage. The context
information exchange between F l

t and F l+1
t is conducted using the regions de-

fined by the super-pixels. Informally, at each of the two levels, for each region
Sn we first aggregate the neurons whose receptive fields are centered inside Sn.
Next, we sum together the aggregated features of Sn and all of its neighboring
regions at one level and pass the resulting context information to the neurons
of the other level that reside in region Sn. This is done in both directions, as
shown in Figure 3(a) and 3(b). Thus, we enrich the locally aggregated context
information of each neuron with that of its counterpart in the other level, as well
as with the more global context aggregated from the surrounding regions. Our
results show that this significantly improves segmentation accuracy.

Formally, given the feature map F l
t and a region Sn, we first aggregate the

neurons in Sn, yielding a regional context feature Rl
n,t ∈ R

C :

Rl
n,t =

∑

(h,w)∈Φ(Sn)

F l
t (h,w), (3)

where Φ(Sn) denotes the set of centers of the receptive fields inside the region Sn.
Next, we define a more global context feature M l

n,t, by aggregating the regional
features of Sn and of its adjacent regions N (Sn):

M l
n,t =

∑

Sm∈N (Sn)

Rl
m,t. (4)

The above features are propagated bidirectionally between F l
t and F l+1

t using a
pair of LSTM chains, as illustrated in Figure 2. In the tth stage, an LSTM unit
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Fig. 3: Bidirectional context aggregation. The features are partitioned into dif-
ferent regions defined by super-pixels. We aggregate the neurons resided in the
same region, and pass the information of the adjacent regions along the bidirec-
tional connection (a) from a low-resolution feature to a high-resolution feature;
and (b) from a high-resolution feature to a low-resolution feature.

generates a new feature F l+1

t+1 from F l+1
t , Rl

n,t, and M l
n,t, as follows:

Gl→l+1

i,t (h,w) = σ(W l+1

i ∗ F l+1
t (h,w) +W l

s,i ∗R
l
n,t +W l

a,i ∗M
l
n,t + bl+1

i ),

Gl→l+1

f,t (h,w) = σ(W l+1

f ∗ F l+1
t (h,w) +W l

s,f ∗Rl
n,t +W l

a,f ∗M l
n,t + bl+1

f ),

Gl→l+1
o,t (h,w) = σ(W l+1

o ∗ F l+1
t (h,w) +W l

s,o ∗R
l
n,t +W l

a,o ∗M
l
n,t + bl+1

o ),

Gl→l+1
c,t (h,w) = tanh(W l+1

c ∗ F l+1
t (h,w) +W l

s,c ∗R
l
n,t +W l

a,c ∗M
l
n,t + bl+1

c ),

Cl→l+1

t+1 (h,w) = Gl→l+1

f,t (h,w)⊙ Cl→l+1
t (h,w) +Gl→l+1

i,t (h,w)⊙Gl→l+1
c,t (h,w),

Al→l+1

t+1 (h,w) = tanh(Gl→l+1
o,t (h,w)⊙ Cl→l+1

t+1 (h,w)),

F l+1

t+1 (h,w) = F l+1
t (h,w) +Al→l+1

t+1 (h,w), (5)

where (h,w) ∈ Φ(Sn). W and b are convolutional kernels and biases. In Eq.
(5), convolutions are denoted by ∗, while ⊙ denotes the Hadamard product.
Respectively, G and C represents the gate and cell state of an LSTM unit.
Al→l+1

t+1 is the augmentation feature for F l+1
t , and they have equal resolution.

We add the augmentation feature Al→l+1

t+1 with F l+1
t , producing the new feature

F l+1

t+1 for the next stage. The sequence of features F l
t is defined in the same way

as above (with the l superscripts replaced by l + 1, and vice versa).

5 Implementation Details

We use the Caffe platform [39] to implement our approach. Our approach can
be based on different deep architectures [29, 40, 30], and we use the ResNet-152
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architecture [30] pre-trained on ImageNet dataset [10] as our backbone network.
We randomly initialize the parameters of our LSTM-based bidirectional connec-
tions. Before training our network for the evaluations on different benchmarks,
we follow [18, 17, 20, 25] and use the COCO dataset [2] to fine-tune the whole
network.

Given an input image, we apply the structured edge detection toolbox [41]
to compute super-pixels. Empirically, we set the scale of super-pixels to be 1,000
per image. The image is fed to the backbone network to compute the convolu-
tional features. Following [31], we select the last convolutional feature map from
each residual block as the initial feature maps fed into our context intertwining
network. More specifically, we use the ResNet-152 network layers res2, res3, res4
and res5 as

{

F 1
0 , F

2
0 , F

3
0 , F

4
0

}

, respectively. Successive pairs of these feature maps
are fed into our LSTM-based context intertwining modules, each of which has 3
bidirectional exchange stages. We optimize the segmentation network using the
standard SGD solver. We fine-tune the parameters of the backbone network and
the bidirectional connections.

During training, we use the common flipping, cropping, scaling and rotating
of the image to augment the training data. The network is fine-tuned with a
learning rate of 1e−3 for 60K mini-batches. After that, we decay the learning
rate to 1e−4 for the next 60K mini-batches. The size of each mini-batch is set
to 12. With the trained model, we perform multi-scale testing on each image to
obtain the segmentation result. That is, we rescale each testing image using five
factors (i.e., {0.4, 0.6, 0.8, 1.0, 1.2}) and feed the differently scaled versions into
the network to obtain predictions. The predictions are averaged to yield the final
result.

6 Experiments

We evaluate our approach on four public benchmarks for semantic segmentation,
which are PASCAL VOC 2012 [1], PASCAL-Context [3], NYUDv2 [23] and
SUN-RGBD [24] datasets. The PASCAL VOC 2012 dataset [1] has been widely
used for evaluating segmentation performance. It contains 10,582 training images
along with the pixel-wise annotations for 20 object classes and the background.
The PASCAL VOC 2012 dataset also provides a validation set of 1,449 images
and a test set of 1,456 images. We use this dataset for the major evaluation of
our network. We further use the PASCAL-Context, NYUDv2 and SUN-RGBD
datasets for extensive comparisons with state-of-the-art methods. We report all
the segmentation scores in terms of mean Intersection-over-Union (IoU).

Ablation Study of MSCI Our MSCI architecture is designed to enable ex-
change of multi-scale context information between feature maps. It consists of
recurrent bidirectional connections defined using super-pixels. Below, we report
an ablation study of our approach, which examines the effect that removing
various key components has on segmentation performance. The results are sum-
marized in Table 1.
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Our approach is based on LSTMs, each of which can be regarded as a special
recurrent neural network (RNN) unit with a cell state for memorization. By
removing the RNNs and the cell states, we effectively disable the bidirectional
connection between feature maps. In this case, our model degrades to a basic
FCN, and obtains the segmentation score of 77.8 that lags far behind our full
MSCI model.

RNN cell states super-pixels mean IoU

77.8

X X 84.4

X X 84.3

X X X 85.1

Table 1: Ablation experiments on the PASCAL VOC 2012 validation set. Seg-
mentation accuracy is reported in terms of mean IoU (%).

strategy method VOC 2012 CONTEXT

w/o combination basic FCN [9] 77.8 41.2

w/o hierarchy

SPP [18] 81.1 43.6

Encoder-Decoder [17] 81.4 44.3

ASPP [20] 82.2 46.0

Encoder-Decoder + ASPP [25] 82.5 47.4

w/ hierarchy MSCI 85.1 50.3

Table 2: Comparison of different feature combination strategies. Performance
is evaluated on the PASCAL VOC 2012 and PASCAL-Context validation sets.
Segmentation accuracy is reported in terms of mean IoU (%).

Next, we investigate the importance of the cell states. The cell states are em-
ployed by our approach to memorize the local and global context information,
which enriches the final segmentation feature map. With all the cell states re-
moved from our bidirectional connections, our approach achieves an accuracy of
84.4%, which is significantly lower than the 85.1% accuracy of our full approach.

In our approach, the super-pixels adaptively partition the features into dif-
ferent regions according to the image structure, which are then used for context
aggregation and exchange (Figure 3). We remove the super-pixels and interpo-
late the low-resolution feature maps [17, 18] to match with the high-resolution
maps. Thus, each neuron aggregates context from a local regular window. Com-
pared to our full model, the performance drops to 84.3%, demonstrating the
effectiveness of using super-pixels to guide context aggregation.

Feature Combination Strategies Our approach combines in a hierarchical
manner the features produced by the bidirectional connections. In Table 2, we
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compare our feature combination strategy to those of other networks [9, 18, 17,
20, 25]. For a fair comparison, we reproduce the compared networks by pre-
training them with the ResNet-152 backbone model on the ImageNet dataset,
and fine-tuning them on the COCO dataset and the PASCAL VOC 2012 train-
ing set. Without any combination of features, the backbone network FCN model
achieves the score of 77.8%. Next, we compare our network to the SPP net-
work [9, 18, 20] and Encoder-Decoder [35, 17, 19, 21, 25] network. For the SPP
network, we chose a state-of-the-art model proposed in [18] for comparison. The
ASPP network [20] is a variant of the SPP network, and it can achieve bet-
ter results than the SPP network. For the Encoder-Decoder network, we select
the model proposed in [17] for comparison here. We also compare our network
with the latest Encoder-Decoder network with ASPP components [25]. These
models combine the adjacent features that are learned with our bidirectional
connections, which generally leads to 0.4 ∼ 1.2 improvement in the segmenta-
tion scores, compared to the counterparts without bidirectional connections. We
find that our approach performs better than other methods. In Figure 4, we can
also observe that MSCI provides better visual results than other methods.

val set test set

method mean IoU method mean IoU

Chen et al. [9] 77.6 Wang et al. [42] 83.1

Sun et al. [43] 80.6 Peng et al. [19] 83.6

Wu et al. [44] 80.8 Lin et al. [17] 84.2

Shen et al. [45] 80.9 Wu et al. [44] 84.9

Peng et al. [19] 81.0 Zhao et al. [18] 85.4

Zhao et al. [18] 81.4 Wang et al. [46] 86.3

Lin et al. [17] 82.7 Fu et al. [47] 86.6

Chen et al. [20] 82.7 Luo et al. [48] 86.8

Chen et al. [25] 84.6 Chen et al. [20] 86.9

Fu et al. [47] 84.8 Chen et al. [25] 89.0

MSCI 85.1 MSCI 88.0

Table 3: Comparisons with other state-of-the-art methods. The performances are
evaluated on the PASCAL VOC 2012 validation set (left) and test set (right).
Segmentation accuracy is reported in terms of mean IoU (%).

Comparisons with State-of-the-Art Methods In Table 3, we report the
results of our approach on the PASCAL VOC 2012 validation set and test set,
and compare with state-of-the-art methods. On the validation set (see Table 3
(left)), MSCI achieves a better result than all of other methods. Specifically, given
the same set of training images, it outperforms the models proposed in [18, 20,
17], which are based on SPP, ASPP and Encoder-Decoder networks, respectively.
In addition, we also report our result on the test set. Our per-category results on
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image ground-truth ASPP Encoder-Decoder

 + ASPP

MSCI

Fig. 4: The segmentation results of the ASPP model [20], Encoder-Decoder with
ASPP model [25] and our MSCI. The images are taken from the PASCAL VOC
2012 validation set.

image ground-truth ASPP Encoder-Decoder

 + ASPP

MSCI

Fig. 5: The segmentation results of the ASPP model [20], Encoder-Decoder with
ASPP model [25] and our MSCI. The images are scenes taken from the PASCAL-
Context validation set.
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the test set can be found on PASCAL VOC leaderboard1. Our result of 88.0%
is second only to the score reported in [25], which leverages a stronger backbone
network, trained on an internal JFT-300M dataset [26–28].

Experiments on Scene Labeling Datasets We perform additional exper-
iments on three scene labeling datasets, including the PASCAL-Context [3],
NYUDv2 [23], and SUN-RGBD [24]. In contrast to the object-centric PASCAL
VOC 2012 dataset, these scene labeling datasets provide more complex pixel-
wise annotations for objects and stuff, which require segmentation networks to
have a full reasoning about the scene in an image. We use these datasets to verify
if our network can label the scene images well.

The PASCAL-Context dataset [3] contains 59 categories and background,
providing 4,998 images for training and 5,105 images for validation. In Table 2,
we already used this dataset to compare MSCI to other feature combination
strategies, and found that it works well on the scene labeling task. We provide
several segmentation results in Figure 5. Table 4 shows that MSCI outperforms
other state-of-the-art methods on this dataset.

CONTEXT NYUDv2 SUN-RGBD

method mIoU method mIoU method mIoU

Dai et al. [49] 40.5 Long et al. [7] 34.0 Chen et al. [9] 27.4

Lin et al. [15] 42.0 Eigen et al. [50] 34.1 Kendall et al. [51] 30.7

Lin et al. [16] 43.3 He et al. [52] 40.1 Long et al. [7] 35.1

Wu et al. [53] 44.5 Lin et al. [16] 40.6 Hazirbas et al. [54] 37.8

Chen et al. [9] 45.7 Zhao et al. [18] 45.2 Lin et al. [16] 42.3

Lin et al. [17] 47.3 Lin et al. [17] 47.0 Lin et al. [17] 47.3

Wu et al. [44] 48.1 Lin et al. [55] 47.7 Lin et al. [55] 48.1

MSCI 50.3 MSCI 49.0 MSCI 50.4

Table 4: Comparison with other state-of-the-art methods. Performance is eval-
uated on the PASCAL-Context validation set (left), NYUDv2 validation set
(middle) and the SUN-RGBD validation set (right). Segmentation accuracy is
reported in terms of mean IoU (%).

We further evaluate our method on the NYUDv2 [23] and SUN-RGBD [24]
datasets, originally intended for RGB-D scene labeling. The NYUDv2 dataset
[23] has 1,449 images (795 training images and 654 testing images) and pixel-wise
annotations of 40 categories. The SUN-RGBD dataset [24] has 10,335 images
(5,285 training images and 5,050 testing images) and pixel-wise annotations of 37
categories. Unlike the PASCAL-Context dataset, the NYUDv2 and SUN-RGBD
datasets consist of images of indoor scenes. We report the segmentation scores
of MSCI and other state-of-the-art methods in Table 4. We note that the best

1 http://host.robots.ox.ac.uk:8080/anonymous/F58739.html
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image ground-truth MSCI image ground-truth MSCI

Fig. 6: MSCI segmentation results. The images are taken from the NYUDv2
validation set (left) and the SUN-RGBD validation set (right).

previous method proposed in [55] uses the RGB and depth information jointly
for segmentation, and achieves the scores of 47.7 and 48.1 on the NYUDv2 and
SUN-RGBD validation sets, respectively. Even without the depth information,
MSCI outperforms the previous best results. We show some of our segmentation
results on the NYUDv2 and SUN-RGBD validation sets in Figure 6.

7 Conclusions

Recent progress in semantic segmentation may be attributed to powerful deep
convolutional features and the joint consideration of local and global context
information. In this work, we have proposed a novel approach for connecting
and combining feature maps and context from multiple scales. Our approach
uses interconnected LSTM chains in order to effectively exchange information
among feature maps corresponding to adjacent scales. The enriched maps are
hierarchically combined to produce a high-resolution feature map for pixel-level
semantic inference. We have demonstrated that our approach is effective and
outperforms the state-of-the-art on several public benchmarks.

In the future, we plan to apply our MSCI approach to stronger backbone
networks and more large-scale datasets for training. In addition, we aim to ex-
tend MSCI to other recognition tasks, such as object detection and 3D scene
understanding.
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