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Abstract. The thriving of video sharing services brings new challenges
to video retrieval, e.g. the rapid growth in video duration and content
diversity. Meeting such challenges calls for new techniques that can ef-
fectively retrieve videos with natural language queries. Existing methods
along this line, which mostly rely on embedding videos as a whole, re-
main far from satisfactory for real-world applications due to the limited
expressive power. In this work, we aim to move beyond this limitation
by delving into the internal structures of both sides, the queries and the
videos. Specifically, we propose a new framework called Find and Fo-

cus (FIFO), which not only performs top-level matching (paragraph vs.
video), but also makes part-level associations, localizing a video clip for
each sentence in the query with the help of a focusing guide. These lev-
els are complementary – the top-level matching narrows the search while
the part-level localization refines the results. On both ActivityNet Cap-
tions and modified LSMDC datasets, the proposed framework achieves
remarkable performance gains. 1

1 Introduction

Over the past few years, the explosive growth of video content brings unprece-
dented challenges to video retrieval. Retrieving a video that one really wants
is sometimes like finding a needle in a haystack. For example, entering a short
query “dancing people” on Youtube would result in tens of millions of video en-
tries, many of which are lengthy and filled with irrelevant fragments. To tackle
such challenges, we aim to explore a new way to retrieve videos, one that can
efficiently locate the relevant clips from a large and diverse collection.

Video retrieval is not new in computer vision. The research on this topic
dates back to 1990s [26]. Classical content-based retrieval techniques [42, 2, 27,
5, 34] primarily rely on matching visual features with a fixed set of concepts.

⋆ Equal contribution, name in alphabetical order.
1 Project Page: https://ycxioooong.github.io/projects/fifo
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: Two men are talking outside a building.

: A woman and another man walk away as the 
two men continue their conversation.

: The men engage in a game of pool, shooting 

the balls into the corner pockets and taking turns.
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Fig. 1. An overview of our Find and Focus framework. Given a query paragraph, the
system first retrieves a number of candidate videos in the Find stage, and then applies
clip localization to each candidate video, to identify the associations between query
sentences and video clips. The resulting localization scores can further refine the initial
retrieval results. For example, the ground-truth video is ranked as No. 4 in the Find
stage and promoted to No. 1 after the Focus stage.

This approach can only work with a closed setting, where all videos belong to
a predefined list of categories. The problem of video retrieval in the wild re-
mains widely open. In recent years, an alternative approach, namely retrieving
videos with natural language queries, emerges as a promising way to break the
closed-set assumption. The efforts along this line are usually based on visual
semantic embedding [7, 16, 13, 6, 36, 20, 30, 38], where each image or video and
its corresponding description are embedded into a common space and their rep-
resentations are aligned.

It is noteworthy that both the classical techniques and visual semantic em-
bedding share a common paradigm, namely, to encode each video as a whole
into a feature vector and perform the retrieval simply by feature matching. This
paradigm has two important limitations. First, a single vector representation
lacks the expressive power to characterize a video with rich structures, and sec-
ond, it lacks the capability of temporal localization, Note that these are not
serious issues in conventional experimental settings where all video samples in
the dataset are short clips. However, they become significant challenges in real-
world applications where the videos are usually long and not trimmed.

In this work, we aim to move beyond such limits and develop an effective
method that can retrieve complex events, i.e. those with rich temporal struc-
tures, based on natural language queries. We observe that people often describe a
complex event with a paragraph, where each sentence may refer to a certain part
of the event. This suggests that the association between a video and a relevant
description exists not only at the top level but also between parts, i.e. sentences
and video segments. With this intuition in mind, we explore a new idea, that is,
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to delve into the internal structures of both the queries and the videos, trying
to identify and leverage the connections between their parts.

Specifically, we propose a structured framework to connect between the visual
and the linguistic domains. The framework comprises two levels of associations,
the top-level that matches the query paragraphs with whole videos, and the part-
level that aligns individual sentences with video clips. On top of this formulation,
we develop a two-stage framework called Find and Focus (FIFO), as shown in
Fig. 1. Given a paragraph query, it first finds a subset of candidate videos via
top-level matching. Then for each candidate, it localizes the clips for individual
sentences in the query. Finally, the part-level associations are used to refine the
ranking of retrieval results. In this way, the framework jointly accomplishes two
tasks: retrieving videos and localizing relevant segments. Note that in our frame-
work, these two tasks benefit each other. On one hand, the top-level matching
narrows the search, thus reducing the overall cost, especially when working with
a large database. On the other hand, the part-level localization refines the re-
sults, thus further improving the ranking accuracy. To facilitate clip localization,
we develop a semantics-guided method to generate clip proposals, which allows
the framework to focus on those clips with significant meanings.

Our main contributions are summarized as follows: (1) We propose a struc-
tured formulation that captures the associations between the visual and the
linguistic domains at both top-level and part-level. (2) Leveraging the two-level
associations, we develop a Find and Focus framework that jointly accomplishes
video retrieval and clip localization. Particularly, the localization stage is sup-
ported by a new method, Visual Semantic Similarity (VSS), for proposing clip
candidates, which helps to focus on the segments with significant meanings. (3)
On two public datasets, ActivityNet Captions [17] and a modified version of
Large Scale Movie Description Challenge (LSMDC) [23], the proposed frame-
work obtains remarkable improvement.

2 Related Work

Visual Semantic Embedding. VSE [7, 16] is a general approach to bridge vi-
sual and linguistic modalities. It has been adopted in various tasks, such as image
question answering [22], image captioning [14, 13], and image-text matching [16,
31, 36, 6], etc. This approach was later extended to videos [19, 24, 21]. Plummer
et al [21] proposed to improve video summarization by learning a space for joint
vision-language embedding. Zhu et al [44] adopted the joint embedding method
for aligning books to movies. In these works, each video is embedded as a whole,
and its internal structures are not explicitly exploited.
Video Retrieval. Recent methods for video retrieval roughly fall into three cat-
egories: concept-based [2, 27, 5, 34], graph-based [18], and those based on feature
embeddings. Early works [27] often adopted the concept-based method, which
involves detecting a list of visual concepts from the given videos. Recently, Yu
et al [41] proposed to improve this paradigm through end-to-end learning. A
fundamental limitation of such methods is that they require a predefined list of
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concepts, which is difficult to provide sufficient coverage in real-world applica-
tions. Graph-based methods have also been widely used for matching images with
text [12, 11, 37]. Lin et al [18] explored a graph-based method which matches the
objects in a video and the words in a description via bipartite matching. This
method also requires a predefined list of objects and nouns.

Many works focused more on learning a joint embedding space for both videos
and descriptions [20, 30, 38]. However, Otani et al [20] embedded each video as a
whole, therefore having difficulty in handling long videos that contain multiple
events. It is not capable of temporal localization either. Also both [20] and [38]
harness external resources through web search, while our framework only utilizes
the video-text data in the training set. There are also works [29, 3, 4] aligning
text and video based on character identities, discriminative clustering, or object
discovery, without fully mining the semantic meaning of data.
Temporal Localization. Temporal localization, i.e. finding video segments for
a query, is often explored in the context of action detection. Early methods
mainly relied on sliding windows and hand-crafted features [8, 10, 28]. Recent
works [40, 25, 43] improved the performance using convolutional networks. In
these methods, actionness is a key factor to consider when evaluating proposals.
However, in our settings, the query sentences can describe static scenes. Hence,
we have to consider the significance of each proposal in a more general sense.
Retrieval in Video Captioning. We note that recent works on video caption-
ing [17, 39] often use video retrieval to assess the quality of generated captions.
In their experiments, individual sentences and video clips are matched respec-
tively. The temporal structures among video clips are not explicitly leveraged.
Hence, these works essentially differ from our two-level structured framework.

3 Methodology

Our primary goal is to develop a framework that can retrieve videos with natural
language descriptions and at the same time localize the relevant segments. For
this task, it is crucial to model the temporal structures of the videos, for which
only the top-level embeddings may not be sufficient. As mentioned, our basic idea
is to delve into the internal structures, establishing the connections between the
textual queries and the videos, not only at the top level, but also at the part
level, i.e. sentences and video clips.

In this section, we formalize the intuition above into a two-level formulation
in Sec. 3.1, which lays the conceptual foundation. We then proceed to describe
how we identify the part-level associations between sentences and video clips in
Sec. 3.2, which we refer to as clip localization. In Sec. 3.3, we put individual
pieces together to form a new framework called Find and Focus (FIFO), which
jointly accomplishes retrieval and localization.

3.1 Two-level Structured Formulation

Our task involves two domains: the query paragraphs in the linguistic domain
and the videos in the visual domain. Both paragraphs and videos consist of
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A women is helping … , … kiss 
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A women is helping a little boy 
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Fig. 2. This figure shows our two-level structured formulation. The upper half de-
picts the video-paragraph correspondence while the lower half represents the part-level
associations between individual clips and sentences. Each individual pair of clip and
sentence is denoted in different colors.

internal structures. As shown in Fig. 2, a paragraph P is composed of a se-
quence of sentences (s1, . . . , sM ); while a video V is composed of multiple clips
{c1, . . . , cN}, each capturing an event. When a paragraph P is describing a video
V , each sentence si thereof may refer to a specific clip in V . We refer to such
correspondences between sentences and clips as part-level associations. The part-
level associations convey significant information about the relations between a
video and a corresponding paragraph. As we will show in our experiments, lever-
aging such information can significantly improve the accuracy of retrieval.

3.2 Clip Localization

The part-level associations are identified via clip localization. Given a paragraph
P and a video V , it first derives the features for the sentences in P and the
snippets in V . Based on these features, it generates a collection of video clip
candidates in a semantic-sensitive way, and then solves the correspondences be-
tween the sentences and the clips, via a robust matching method. The whole
process of clip localization is illustrated in Fig. 3.
Feature Extraction. Given a video, it can be represented by a sequence of
snippet-specific features as V = (f1, . . . , fT ), where T is the number of snippets.
The snippets are the units for video analysis. For every snippet (6 frames in
our work), fj is extracted with a two-stream CNN, trained following the TSN
paradigm [35]. In a similar way, we can represent a query paragraph with a
series of sentence-specific features as P = (s1, . . . , sM ), where M is the number
of sentences. Note that the visual features and the sentence features are in two
separate spaces of different dimensions. To directly measure their similarities,
we should first embed both features into a common semantic space as f̃j and
s̃i, where they are well aligned. The complete feature embedding process will be
introduced in Sec. 3.3.
Clip Proposal. In our two-level formulation, each sentence corresponds to a
video clip. A clip usually covers a range of snippets, and the duration of the
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Ground-truth

Proposals

�" �# �$

A women is helping a little 
boy slide down a slide.

A little boy slides down into the arms 
of another person in a red vest.

The person in the red 
vest then kissed the child.

Fig. 3. This figure shows the clip localization process. Given a video with ground-truth
clips in green bars, a number of clip proposals colored in blue are generated using a
semantic sensitive method. Each sentence is possibly associated with multiple clips,
which are represented by thin dash lines. The optimal correspondence, illustrated by
the thick lines, is obtained by a robust cross-domain matching.

clips for different sentences can vary significantly. Hence, to establish the part-
level associations, we have to prepare a pool of clip candidates.

Inspired by the Temporal Actionness Grouping (TAG) method in [43], we
develop a semantic-sensitive method for generating video clip proposals. The
underlying idea is to find those continuous temporal regions, i.e. continuous
ranges of snippets, that are semantically relevant to the queries. Specifically,
given a sentence si, we can compute the semantic relevance of the j-th snippet
by taking the cosine similarity between f̃j and s̃i. Following the watershed scheme
in TAG [43], we group the snippets into ranges of varying durations and thus
obtain a collection of video clips2. For a query paragraph P , the entire clip pool
is formed by the union of the collections derived for individual sentences.

Compared to TAG [43], the above method differs in how it evaluates the
significance of a snippet. TAG is based on actionness, which is semantic-neutral
and is only sensitive to those moments where certain actions happen; while our
method uses semantic relevance, which is query-dependent and can respond to
a much broader range of scenarios, including stationary scenes.

Cross-domain Matching.Given a set of sentences {s1, . . . , sM} from the query
paragraph P and a set of clip proposals {c1, . . . , cN} derived by the proposal
generation method, the next is to find the correspondences between them. In
principle, this can be accomplished by bipartite matching. However, we found
empirically that the one-to-one correspondence enforced by bipartite matching
can sometimes lead to misleading results due to outliers. To improve the ro-
bustness of the matching, we propose a robust bipartite matching scheme, which
allows each sentence to be associated with up to umax clips.

We can formalize this modified matching problem as a linear programming
problem as follows. We use a binary variable xij to indicate the association

2 The technical details of this scheme is provided in the supplemental materials.
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between cj and si. Then the problem can be expressed as

maximize

M
∑

i=1

N
∑

j=1

rijxij ; s.t.

N
∑

j=1

xij ≤ umax, ∀i;

M
∑

i=1

xij ≤ 1, ∀j. (1)

Here, rij is the semantic relevance between the sentence si the clip cj , which is
given by

rij ,
s̃Ti g̃j

‖s̃i‖ · ‖g̃j‖
, with g̃j =

1

|Cj |

∑

t∈Cj

f̃t. (2)

Here, g̃j is the visual feature that summarizes the video clip cj , which is snippet-
wise feature averaged over its temporal window Cj . Moreover, the two inequali-
ties in Eq.(1) respectively enforce the following constraints: (1) each sentence sj
can be matched to at most umax clips, and (2) each clip corresponds to at most

one sentence, i.e. the associated clips for different sentences are disjoint.
The above problem can be solved efficiently by Hungarian algorithm. The

optimal value of the clip localization objective in Eq.(1) reflects how well the
parts in both modalities can be matched. We call this optimal value part-level

association score, and denote it by Sp(V, P ).

3.3 Overall Framework

Given a paragraph P , we can evaluate its relevance to each individual video
by clip localization as presented above and thus obtain a ranked list of results,
in descending order of the relevance score Sp(V, P ). However, this approach is
prohibitively expensive, especially when retrieving from a large-scale database,
as it requires performing proposal generation and solving the matching problem
on the fly.

To balance the retrieval performance and runtime efficiency, we propose a
two-stage framework called Find and Focus, which is illustrated in Fig. 1. In the
Find stage, we perform top-level matching based on the overall representations
for both the videos and the query. We found that while top-level matching may
not be very accurate for ranking the videos, it can effectively narrow down the
search by filtering out a majority of the videos in the database that are clearly
irrelevant, while retaining most relevant ones. Note that top-level matching can
be done very efficiently, as the top-level representations of the videos can be
precomputed and stored. In the Focus stage, we perform detailed clip localization
for each video in the top-K list by looking into their internal structures. The
resultant localization scores will be used to refine the ranking. The detailed
procedure is presented below.
Find: Top-level Retrieval. Given the snippet-level features denoted in Sec 3.2,
both the top-level representation v for a video V and p for a paragraph P can
be achieved by aggregating all their part-level features.

In order to establish the connections between v and p, at first we have to
learn two embedding networks F top

vis and F
top
text respectively for the visual and the
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linguistic domains, through which we could project them into a common space,
as ṽ = F

top
vis (v;W

top
vis) and p̃ = F

top
text(p;W

top
text). Here, the embedding networks

F
top
vis and F

top
text for top-level data can be learned based on the ranking loss [16, 6].

Then the top-level relevance between V and P , denoted by St(V, P ), is defined
as the cosine similarity between ṽ and p̃.

Based on the top-level relevance scores, we can pick the top K videos given a
query paragraph P . We found that with a small K, the initial search can already
achieve a high recall. Particularly, for ActivityNet Captions [17], which comprises
about 5000 videos, the initial search can retain over 90% of the ground-truth
videos in the top-K list with K = 100 (about 2% of the database).
Focus: Part-level Refinement. Recall that through the embeddings learned
in the Find stage, both visual features and linguistic features have already been
projected into a common space Ω. These preliminarily embedded features could
be further refined for clip localization task. The refined features for a snippet-
specific feature fj and a sentence si are denoted as f̃j = F

ref
vis (F top

vis (fj)) and

s̃i = F
ref
text(F

top
text(si)), where F

ref
vis and F

ref
text represent the feature refinement

networks. We will elaborate on how these feature embedding networks F top and
refinement networks F ref are trained in Sec. 4.

For each of the K videos retained by the Find stage, we perform clip local-
ization, in order to identify the associations between its clips and the sentences
in the query. The localization process not only finds the clips that are relevant to
a specific query sentence but also yields a part-level association score Sp(V, P )
for the video V at the same time.

Here, the part-level score Sp(V, P ), which is derived by aligning the internal
structures, provides a more accurate assessment of how well the video V matches
the query P and thus is a good complement to the top-level score St(V, P ).
In this framework, we combine both scores into the final relevance score in a
multiplicative way, as Sr(V, P ) = St(V, P ) · Sp(V, P ). We use the final scores
to re-rank the videos. Intuitively, this reflects the criterion that a truly relevant
video should match the query at both the top level and the part level.

4 Learning the Embedding Networks

Our Find and Focus framework comprises two stages. In the first stage, a top-
level embedding model is used to align the top-level features of both domains.
In the second stage, the embedded features will be further refined for making
part-level associations. Below we introduce how these models are trained.
Embedding for Top-level Data. The objective of the first stage is to learn
the networks F

top
vis and F

top
text, which respectively embed the original visual fea-

tures {vj} and the paragraph features {pi} into a common space, as ṽj =
F

top
vis (vj ;W

top
vis) and p̃i = F

top
text(pi;W

top
text). These networks are learned jointly

with the following margin-based ranking loss:

LFind(Wtop
vis ,W

top
text) =

∑

i

∑

j 6=i

max (0, St(Vj , Pi)− St(Vi, Pi) + α) . (3)
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Here, St(Vj , Pi) is the top-level relevance between the video Vj and the para-
graph Pi, which, as mentioned, is defined to be the cosine similarity between ṽj

and p̃i in the learned space. Also, α is the margin which we set to 0.2. This objec-
tive encourages high relevance scores between each video and its corresponding
paragraph, i.e. St(Vi, Pi), and low relevance scores for mismatched pairs.
Refined Embedding for Part-level Data. We use refined embeddings for
identifying part-level associations. Specifically, given a clip cj and a sentence
si, their refined features, respectively denoted as g̃j and s̃i, can be derived via
refined embedding networks as follows:

g̃j = F
ref
vis (F top

vis (gj ;W
top
vis);W

ref
vis ); s̃i = F

ref
text(F

top
text(si;W

top
text);W

ref
text). (4)

Given s in a paragraph, we randomly pick one positive clip c+ whose temporal
IoU(tIoU) is greater than 0.7 out of all clip proposals from the corresponding
video, and L negative proposals with tIoU below 0.3. The refined embedding
networks F ref

vis and F
ref
text are then trained with a ranking loss defined as below:

LRef (Wref
vis ,W

ref
text) =

L
∑

j=1

max
(

0, sr(cj , s)− sr(c
+, s) + β

)

. (5)

Here, sr(cj , s) is the cosine similarity between the refined features as sr(cj , s) =
cos(g̃j , s̃); and the margin β is set to 0.1. This loss function encourages high
similarity between the embedded feature of the positive proposal c+ and that of
the query sentence s, while trying to reduce those between negative pairs.

5 Experiments

5.1 Dataset

ActivityNet Captions. ActivityNet Captions [17] consists of 20K videos with
100K sentences, which are aligned to localized clips. On average, each paragraph
has 3.65 sentences, The number of annotated clips in one video ranges from 2 to
27, and the temporal extent of each video clip ranges from 0.05s to 407s. About
10% of the clips overlap with others. The complete dataset is divided into three
disjoint subsets (training, validation, and test) by 2 : 1 : 1. We train models on
the training set. Since the test set is not released, we test the learned models on
the validation set val 1.
Modified LSMDC. LSMDC [23] consists of more than 128k clip-description
pairs collected from 200 movies. However, for a considerable fraction of these
movies, the provided clip descriptions are not well aligned with our acquired
film videos possibly due to different versions. Excluding such videos and those
kept for blind test, we retain 74 movies in our experiments. Besides, if we treat
each movie as a video, we only have 74 video samples, which are not enough for
training the top-level embedding. To circumvent this issue, we divide each movie
into 3-minute chunks, each serving as a whole video. In this way, 1677 videos are
obtained and partitioned into two disjoint sets, 1188 videos from 49 movies for
training and 489 videos from the other 25 movies for testing.
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Table 1. Results for whole video retrieval on ActivityNet Captions.

R@1 R@5 R@10 R@50 MedR

Random 0.02 0.10 0.20 1.02 2458

LSTM-YT [33] 0 4 - 24 102

S2VT [32] 5 14 - 32 78

Krishna et al [17] 14 32 - 65 34

VSE (Find) 11.69 34.66 50.03 85.66 10

Ours (Find + refine in Top 20) 14.11 37.12 52.13 - 10

Ours (Find + refine in Top 100) 14.05 37.40 52.94 86.72 9

Table 2. Results for whole video retrieval on modified LSMDC dataset.

R@1 R@5 R@10 R@50 MedR

Random 0.20 1.02 2.04 10.22 244

VSE (Find) 2.66 10.63 16.36 52.97 45

Ours (Find + refine in Top 20) 3.89 13.70 20.04 - 45

Ours (Find + refine in Top 70) 3.89 13.50 20.25 56.65 40

5.2 Implementation Details

For ActivityNet Captions, we extract a 1024-dimensional vector for every snippet
of a video as its raw feature, using a TSN [35] with BN-Inception as its backbone
architecture. We also extract word frequency histogram (Bag of Words weighted
with tf-idf) as the raw representation for each paragraph or sentence. For the
modified LSMDC, we use the feature from the pool5 layer of ResNet101 [9] as
the raw feature for video data, and the sum of word embeddings for text.

We set the dimension of the common embedding space to be 512. We train
both the top-level embedding networks in the Find stage and the refinement
network in the Focus stage using Adam [15] with the momentum set to 0.9.

5.3 Whole Video Retrieval

We first compare our framework with the following methods on the task of whole
video retrieval: (1) LSTM-YT [33] uses the latent states in the LSTM for cross-
modality matching. (2) S2VT [32] uses several LSTMs to encode video frames
and associate videos with text data. (3) Krishna et al [17] encode each paragraph
using the captioning model and each clip with a proposal model.

For performance evaluation, we employ the following metrics: (1) Recall@K,
the percentage of ground truth videos that appear in the resultant top-K list,
and (2) MedR, the median rank of the ground truth videos. These metrics are
commonly used in retrieval tasks [17, 20].

Table 1 shows the results of whole video retrieval on ActivityNet Captions
dataset. From the results, we observe: (1) The VSE model trained in the Find
stage is already able to achieve a substantial improvement over previous methods
in terms of Recall@50, which shows that it is suitable for top-level matching. (2)
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Fig. 4. Comparison of different proposal generation methods on ActivityNet Captions.

Our proposed FIFO framework achieves the best performance consistently on
all metrics. With a further refinement in the Focus stage by localizing clips in
the selected top 20 candidate videos, all recall rates with different settings of K
are boosted considerably. For example, Recall@1 is improved by about 20%, and
Recall@5 is improved by about 8%.

We also evaluate our framework on the modified LSMDC dataset. From the
results shown in Table 2, we observe similar trends, but more obvious. Compared
to VSE, our method improves Recall@1 by about 46% (from 2.66 to 3.89) and
Recall@5 by about 29% (from 10.63 to 13.70).

5.4 Proposal Generation and Clip Localization

We evaluate the performance of our proposal generation method, visual semantic

similarity (VSS), in comparison with previous methods on ActivityNet Captions
dataset. The performance is measured in terms of the recall rate at different tIoU
thresholds. From the results shown in Fig. 4(a), we can see that our method
outperforms all the other methods consistently across all tIoU thresholds. Par-
ticularly, with the tIoU threshold set to 0.5, our method can achieve a high recall
95.09% with 1000 proposals, significantly outperforming SSN+shot, a state-of-
the-art method for video clip proposal, which achieves recall 84.35% with 1000
proposals. The performance gain is primarily thanks to our design that employs
semantic significance instead of actionness in proposal rating.

Fig. 4(b) shows that when we increase the number of proposals, the recall
improves consistently and significantly. This suggests that our method tends to
produce new proposals covering different temporal regions.

Furthermore, we compare the quality of temporal proposals generated by
different methods in the task of clip localization. The performance is measured
by the recall rate with different tIoU thresholds. Table 3 shows the results. Again,
our proposal generation method outperforms others by a large margin.
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Table 3. Comparison of clip localization performance for different proposal methods.

ActivityNet, clip localization Recall@tIoU

Recall@0.3 Recall@0.5 Recall@0.7

SSN [43] 15.85 7.33 3.20

SSN [43]+shot [1] 16.71 8.74 4.30

Ours (VSS) 28.52 13.46 5.21

Table 4. Different word representations for video retrieval on ActivityNet Caption.

R@1 R@5 R@10 R@50 MedR

BoW with tf-idf
(Find) 11.69 34.66 50.03 85.66 10
(Find + refine in Top 100) 14.05 37.40 52.94 86.72 9

BoW without tf-idf
(Find) 11.57 33.03 49.89 85.66 11
(Find + refine in Top 100) 13.46 36.67 52.09 86.26 9

word2vec
(Find) 9.05 27.96 42.95 81.55 14
(Find + refine in Top 100) 10.92 32.38 46.55 82.06 12

word2vec + Fisher Vec
(Find) 11.80 34.35 50.07 85.93 10
(Find + refine in Top 100) 13.75 37.93 53.41 86.30 9

5.5 Ablation Studies

Different Language Representations.We compare the performance of differ-
ent ways to represent text on ActivityNet Captions dataset. The first two rows
in Table 4 show the filtering effect of TF-IDF. The bottom two rows demon-
strate that using a better word aggregation method will lead to a performance
promotion, as Fisher vector [10] models a distribution over words.
Choice of K in Video Selection. Here, K is the number of videos retained in
the initial Find stage. We compare the influence of K on the final retrieval per-
formance, with the results reported in Table 5. The results demonstrate that the
Focus stage can significantly improve the retrieval results. Generally, increasing
K can lead to better performance. However, on ActivityNet Captions, as K goes
beyond 20, the performance gradually saturates. Note that when K is set to a
very large number (K = 1000), we can get almost 100% recall in Find stage.
But the results are close to K = 100 with high computational cost.
Feature Refinement. Recall that the embedded features in the Find stage can
be further refined during the Focus stage. Here, we compare the performance in
the task of clip localization, with or without feature refinement. The performance
is measured by the recall rate of clip localization at different tIoU thresholds.
The results in Table 6 show that the feature refinement in the Focus stage leads
to more favorable features, which could better capture the semantic relevance
across modalities.
Bipartite Matching. We try different settings for bipartite matching in the Fo-
cus stage, by varying umax, the maximum number of clips allowed to be matched
to a sentence. Table 7 shows that slightly increasing umax can moderately im-
prove the retrieval results, as it makes the matching process more resilient to
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Table 5. Retrieval performance on ActivityNet Captions with different settings of K.

Recall@1 Recall@5 Recall@10 Recall@15 Recall@20 Recall@50

No Refinement 11.69 34.66 50.03 59.90 67.34 85.66

K = 10 13.93 36.65 - - - -

K = 20 14.11 37.12 52.13 61.62 - -

K = 50 14.05 37.40 52.90 63.29 70.53 -

K = 100 14.05 37.40 52.94 63.27 70.75 86.72

K = 1000 14.01 37.44 53.06 63.11 70.34 86.62

Table 6. The influence caused by feature refinement under the task of clip localization.

Dataset ActivityNet Captions Modified LSMDC

Clip localization Recall@tIoU R@0.3 R@0.5 R@0.7 R@0.3 R@0.5 R@0.7

VSS (not refined feature) 27.04 12.74 4.72 5.00 2.48 0.75

VSS (refined feature) 28.52 13.46 5.21 5.25 2.49 0.86

Table 7. Comparison of the performance between different settings of the bipartite
matching algorithm in the Focus stage.

umax = 1 umax = 2 umax = 3

Recall@1 Recall@5 Recall@1 Recall@5 Recall@1 Recall@5

13.87 36.61 13.93 36.65 13.75 36.59

outliers. However, the performance gain diminishes when umax is too large due
to the confusion brought by the increased matching clips. We observe that on Ac-
tivityNet Captions, the bipartite matching achieves the best performance when
umax is set to 2, and this setting is also adopted in our experiments.

5.6 Qualitative Results

We present the qualitative results of the joint video retrieval and clip localization
on both ActivityNet Captions and modified LSMDC datasets in Fig. 5. We
visualize three successful cases plus one failed case. We can see that in the above
three examples, the clips are accurately localized and semantically associated
with the query sentences. In the failed case, the first clip is wrongly localized. It
reveals that although being able to capture information about objects and the
static scenes, our method sometimes ignores complex relations, e.g. the phrase
“followed by” in the first query sentence. More qualitative results are provided
in the supplemental materials.

6 Conclusions

In this paper, we presented a two-level structured formulation to exploit both the
top-level and part-level associations between paragraphs and videos. Based upon
this hierarchical formulation, we propose a two-stage Find and Focus framework
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Ground-truth

A man is sitting on top of a roof.A man is holding a yellow bar. He takes the bar and starts tearing up a roof.

Ground-truth

Then, the woman close the drain stopper by pulling a rod 

behind the faucet, after she continues cleaning the sink.

A woman cleans a 

sink with a pink cloth.
Next, the woman cleans the 

faucet and handles.

Ground-truth

As the van doors are closed the sandstorm 

zooms in like a swarm of angry bees.

Everyone looks up as a string of sand 

whizzes past like an express train.
The weight of the sand presses the 

accelerator on the van, picks up speed.

…

Ground-truth

The girl is then seen putting 

makeup on her eyes.

A close up of a sink is shown 

followed by a girl looking into a mirror.
She continues putting makeup on 

and stops to look at the camera.

Fig. 5. Qualitative results of video retrieval and clip localization on ActivityNet Cap-
tions and modified LSMDC datasets. For every video with several representative
frames, the ground-truth video clip is denoted in colored bars above. The localized
clips associated with the query sentences are illustrated below each video.

to jointly retrieve the whole videos and localize events therein with natural
language queries. Our experiments show the mutual benefits between the two
stages. In particular, the top-level retrieval in the Find stage helps to alleviate the
burden of clip localization; while the clip localization in the Focus stage refines
the retrieval results. On both ActivtyNet Captions and the modified LSMDC,
the proposed method outperforms VSE and other representative methods.

Acknowledgement This work is partially supported by the Big Data Collabo-
ration Research grant from SenseTime Group (CUHKAgreement No. TS1610626),
the Early Career Scheme (ECS) of Hong Kong (No. 24204215), and International
Partnership Program of Chinese Academy of Sciences (172644KYSB20160033).



Find and Focus 15

References

1. Apostolidis, E., Mezaris, V.: Fast shot segmentation combining global and local
visual descriptors. In: IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). pp. 6583–6587. IEEE (2014)

2. Aytar, Y., Shah, M., Luo, J.: Utilizing semantic word similarity measures for
video retrieval. In: IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR). pp. 1–8. IEEE (2008)

3. Bojanowski, P., Lajugie, R., Grave, E., Bach, F., Laptev, I., Ponce, J., Schmid, C.:
Weakly-supervised alignment of video with text. In: IEEE International Conference
on Computer Vision (ICCV). pp. 4462–4470 (2015)

4. Chen, K., Song, H., Loy, C.C., Lin, D.: Discover and learn new objects from doc-
umentaries. In: Computer Vision and Pattern Recognition (CVPR), 2017 IEEE
Conference on. pp. 1111–1120. IEEE (2017)

5. Dalton, J., Allan, J., Mirajkar, P.: Zero-shot video retrieval using content and
concepts. In: the 22nd ACM International Conference on Information & Knowledge
Management (CIKM). pp. 1857–1860. ACM (2013)

6. Faghri, F., Fleet, D.J., Kiros, J.R., Fidler, S.: Vse++: Improved visual-semantic
embeddings. arXiv preprint arXiv:1707.05612 (2017)

7. Frome, A., Corrado, G.S., Shlens, J., Bengio, S., Dean, J., Mikolov, T., et al.: De-
vise: A deep visual-semantic embedding model. In: Advances in Neural Information
Processing Systems (NIPS). pp. 2121–2129 (2013)

8. Gaidon, A., Harchaoui, Z., Schmid, C.: Temporal localization of actions with ac-
toms. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(11),
2782–2795 (2013)

9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp.
770–778 (2016)

10. Jain, M., Van Gemert, J., Jégou, H., Bouthemy, P., Snoek, C.: Action localization
with tubelets from motion. In: IEEE International Conference on Computer Vision
and Pattern Recognition (CVPR) (2014)

11. Johnson, J., Krishna, R., Stark, M., Li, L.J., Shamma, D., Bernstein, M., Fei-Fei,
L.: Image retrieval using scene graphs. In: IEEE Conference on Computer vision
and Pattern Recognition (CVPR). pp. 3668–3678 (2015)

12. Jouili, S., Tabbone, S.: Hypergraph-based image retrieval for graph-based repre-
sentation. Pattern Recognition 45(11), 4054–4068 (2012)

13. Karpathy, A., Fei-Fei, L.: Deep visual-semantic alignments for generating image
descriptions. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 3128–3137 (2015)

14. Karpathy, A., Joulin, A., Fei-Fei, L.: Deep fragment embeddings for bidirectional
image sentence mapping. In: Advances in Neural Information Processing Systems
(NIPS). pp. 1889–1897 (2014)

15. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

16. Kiros, R., Salakhutdinov, R., Zemel, R.S.: Unifying visual-semantic embeddings
with multimodal neural language models. arXiv preprint arXiv:1411.2539 (2014)

17. Krishna, R., Hata, K., Ren, F., Fei-Fei, L., Niebles, J.C.: Dense-captioning events
in videos. In: IEEE International Conference on Computer Vision (ICCV) (2017)

18. Lin, D., Fidler, S., Kong, C., Urtasun, R.: Visual semantic search: Retrieving videos
via complex textual queries. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 2657–2664 (2014)



16 D. Shao and Y. Xiong et al.

19. Liu, W., Mei, T., Zhang, Y., Che, C., Luo, J.: Multi-task deep visual-semantic
embedding for video thumbnail selection. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). pp. 3707–3715 (2015)

20. Otani, M., Nakashima, Y., Rahtu, E., Heikkilä, J., Yokoya, N.: Learning joint repre-
sentations of videos and sentences with web image search. In: European Conference
on Computer Vision (ECCV). pp. 651–667. Springer (2016)

21. Plummer, B.A., Brown, M., Lazebnik, S.: Enhancing video summarization via
vision-language embedding. In: IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR) (2017)

22. Ren, M., Kiros, R., Zemel, R.: Image question answering: A visual semantic em-
bedding model and a new dataset. Advances in Neural Information Processing
Systems (NIPS) 1(2), 5 (2015)

23. Rohrbach, A., Torabi, A., Rohrbach, M., Tandon, N., Pal, C., Larochelle, H.,
Courville, A., Schiele, B.: Movie description. International Journal of Computer
Vision 123(1), 94–120 (2017)

24. Sharghi, A., Gong, B., Shah, M.: Query-focused extractive video summarization.
In: European Conference on Computer Vision (ECCV). pp. 3–19. Springer (2016)

25. Shou, Z., Wang, D., Chang, S.F.: Temporal action localization in untrimmed videos
via multi-stage cnns. In: IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR). pp. 1049–1058 (2016)

26. Smoliar, S.W., Zhang, H.: Content based video indexing and retrieval. IEEE Mul-
timedia 1(2), 62–72 (1994)

27. Snoek, C.G., Worring, M.: Concept-based video retrieval. Foundations and Trends
in Information Retrieval 2(4), 215–322 (2008)

28. Tang, K., Yao, B., Fei-Fei, L., Koller, D.: Combining the right features for complex
event recognition. In: IEEE International Conference on Computer Vision (ICCV).
pp. 2696–2703. IEEE (2013)
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