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Abstract. Systems that perform image manipulation using deep con-
volutional networks have achieved remarkable realism. Perceptual losses
and losses based on adversarial discriminators are the two main classes
of learning objectives behind these advances. In this work, we show how
these two ideas can be combined in a principled and non-additive man-
ner for unaligned image translation tasks. This is accomplished through a
special architecture of the discriminator network inside generative adver-
sarial learning framework. The new architecture, that we call a perceptual

discriminator, embeds the convolutional parts of a pre-trained deep clas-
sification network inside the discriminator network. The resulting archi-
tecture can be trained on unaligned image datasets, while benefiting from
the robustness and efficiency of perceptual losses. We demonstrate the
merits of the new architecture in a series of qualitative and quantitative
comparisons with baseline approaches and state-of-the-art frameworks
for unaligned image translation.

Keywords: Image translation · Image editing · Perceptual loss · Gen-
erative adversarial networks

1 Introduction

Generative convolutional neural networks have achieved remarkable success in
image manipulation tasks both due to their ability to train on large amount
of data [20,23,12] and due to natural image priors associated with such archi-
tectures [38]. Recently, the ability to train image manipulation ConvNets has
been shown in the unaligned training scenario [42,43,5], where the training is
based on sets of images annotated with the presence/absence of a certain at-
tribute, rather than based on aligned datasets containing {input,output} image
pairs. The ability to train from unaligned data provides considerable flexibility in
dataset collection and in learning new manipulation effects, yet poses additional
algorithmic challenges.

Generally, the realism of the deep image manipulation methods is known
to depend strongly on the choice of the loss functions that are used to train
generative ConvNets. In particular, simplistic pixelwise losses (e.g. the squared
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distance loss) are known to limit the realism and are also non-trivial to apply in
the unaligned training scenario. The rapid improvement of realism of deep image
generation and processing is thus associated with two classes of loss functions
that go beyond pixel-wise losses. The first group (so-called perceptual losses) are
based on matching activations inside pre-trained deep convolutional networks
(the VGG architecture trained for ILSVRC image classification is by far the most
popular choice [35]). The second group consists of adversarial losses, where the
loss function is defined implicitly using a separate discriminator network that is
trained adversarially in parallel with the main generative network.

The two groups (perceptual losses and adversarial losses) are known to have
largely complementary strengths and weaknesses. Thus, perceptual losses are
easy to incorporate and are easy to scale to high-resolution images, however
their use in unaligned training scenario is difficult, as these loss terms require a
concrete target image to match the activations to. Adversarial losses have the
potential to achieve higher realism and can be used naturally in the unaligned
scenarios, yet adversarial training is known to be hard to set up properly, of-
ten suffer from mode collapse, and is hard to scale to high-resolution images.
Combining perceptual and adversarial losses in an additive way has been pop-
ular [11,40,24,33]. Thus, a generative ConvNet can be trained by minimizing
a linear combination of an adversarial and a perceptual (and potentially some
other) losses. Yet such additive combination combines not only strengths but
also weaknesses of the two approaches. In particular, the use of perceptual loss
still incurs the use of aligned datasets for training.

In this work we present an architecture for realistic image manipulation,
which combines perceptual and adversarial losses in a natural non-additive way.
Importantly, the architecture keeps the ability of adversarial losses to train on
unaligned datasets, while also benefiting from the stability of perceptual losses.
Our idea is very simple and concerned with the particular design of the discrim-
inator network for adversarial training. The design encapsulates the pretrained
classification network as the initial part of the discriminator. During adversarial
training, the generator network is effectively learned to match the activations
inside several layers of this reference network, just like the perceptual losses do.
We show that the incorporation of the pretrained network into the discriminator
stabilizes the training and scales well to higher resolution images, as is common
with perceptual losses. At the same time, the use of adversarial training allows
to avoid the need for aligned training data.

Generally, we have found that the suggested architecture can be trained
with little tuning to impose complex image manipulations, such as adding and
removing smile to human faces, face ageing and rejuvenation, gender change,
hair style change, etc. In the experiments, we show that our architecture can
be used to perform complex manipulations at medium and high resolutions,
and compare the proposed architecture with several adversarial learning-based
baselines and recent methods for learning-based image manipulation.
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2 Related work

Generative ConvNets. Our approach is related to a rapidly growing body of
works on ConvNets for image generation and editing. Some of the earlier impor-
tant papers on ConvNet image generation [12] and image processing [20,10,23]
used per-pixel loss functions and fully supervised setting, so that at test time
the target image is known for each input. While this demonstrated the capa-
bility of ConvNets to generate realistic images, the proposed systems all had to
be trained on aligned datasets and the amount of high-frequency details in the
output images was limited due to defficiencies of pixel-wise loss functions.

Perceptual Losses. The work of Mahendran and Vedaldi [28] has demon-
strated that the activations invoked by an image within a pre-trained convolu-
tional network can be used to recover the original image. Gatys et al. [13] demon-
strated that such activations can serve as content descriptors or texture descrip-
tors of the input image, while Dosovitsky and Brox [11], Ulyanov et al. [37],
Johnson et al. [21] have shown that the mismatches between the produced and
the target activations can be used as so-called perceptual losses for a generative
ConvNet. The recent work of [7] pushed the spatial resolution and the realism of
images produced by a feed-forward ConvNet with perceptual losses to megapixel
resolution. Generally, in all the above-mentioned works [7,37,21,11], the percep-
tual loss is applied in a fully supervised manner as for each training example the
specific target deep activations (or the Gram matrix thereof) are given explicitly.
Finally, [39] proposed a method that manipulates carefully aligned face images at
high resolution by compositing desired activations of a deep pretrained network
and finding an image that matches such activations using the non-feedforward
optimization process similar to [28,13].

Adversarial Training. The most impressive results of generative ConvNets
were obtained within generative adversarial networks (GANs) framework pro-
posed originally by Goodfellow et al.[14]. The idea of adversarial training to
implement the loss function as a separate trainable network (the discriminator),
which is trained in parallel and in adversarial way with the generative ConvNet
(the generator). Multiple follow-up works including [30,34,3,22] investigated the
choice of convolutional architectures for the generator and for the discrimina-
tor.Achieving reliable and robust convergence of generator-discriminator pairs
remains challenging [15,8,27], and in particular requires considerably more ef-
forts than training with perceptual loss functions.

Unaligned Adversarial Training. While a lot of the original interest to
GANs was associated with unconditional image generation, recently the em-
phasis has shifted to the conditional image synthesis. Most relevant to our work
are adversarially-trained networks that perform image translation, i.e. generate
output images conditioned on input images. While initial methods used aligned
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Fig. 1: The perceptual discriminator is composed of a pre-trained image classi-
fication network (such as VGG), split into blocks bi. The parameters of those
blocks are not changed during training, thus the discriminator retains access to
so-called perceptual features. The outputs of these blocks are processed using
learnable blocks of convolutional operations ci and the outputs of those are used
to predict the probability of an image being real or manipulated (the simpler
version uses a single discriminator dmain, while additional path discriminators
are used in the full version).

datasets for training [41,19], recently some impressive results have been obtained
using unaligned training data, where only empirical distributions of the input and
the output images are provided [42,5,43]. For face image manipulation, systems
using adversarial training on unaligned data have been proposed in [6,9]. While
we also make an emphasis on face manipulation, our contribution is orthogonal
to [6,9] as perceptual discriminators can be introduced into their systems.

Combining Perceptual and Adversarial Losses. A growing number of
works [11,24,40] use the combination of perceptual and adversarial loss functions
to accomplish more stable training and to achieve convincing image manipulation
at high resolution. Most recently, [33] showed that augmenting perceptual loss
with the adversarial loss improves over the baseline system [7] (that has already
achieved very impressive results) in the task of megapixel-sized conditional image
synthesis. Invariably, the combination of perceptual and adversarial losses is
performed in an additive manner, i.e. the two loss functions are weighted and
added to each other (and potentially to some other terms). While such additive
combination is simple and often very efficient, it limits learning to the aligned
scenario, as perceptual terms still require to specify target activations for each
training example. In this work, we propose a natural non-additive combination
of perceptual losses and adversarial training that avoids the need for aligned
data during training.
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3 Perceptual discriminators

3.1 Background and motivation

Generative adversarial networks have shown impressive results in photorealistic
image synthesis. The model includes a generative network G, that is trained to
match the target distribution ptarget(y) in the data space Y, and a discriminator
network D that is trained to distinguish whether the input is real or generated
by G. In the simplest form, the two networks optimize (play a zero-sum game)
for the policy function V (D,G):

min
G

max
D

V (D,G) = Ey∼ptarget(y) logD(y)+Ex∼psource(x)[log(1−D(G(x))], (1)

In (1), the source distribution psource(x) may correspond to a simple parametric
distribution in a latent space such as the unit Gaussian, so that after training
unconditional samples from the learned approximation to ptarget can be drawn.
Alternatively, psource(x) may correspond to another empirical distribution in the
image space X . In this case, the generator learns to translate images from X to Y,
or to manipulate images in the space X (when it coincides with Y). Although our
contribution (perceptual discriminators) is applicable to both unconditional syn-
thesis and image manipulation/translation, we focus our evaluation on the latter
scenario. For the low resolution datasets, we use the standard non-saturating
GAN modification, where the generator maximizes the log-likelihood of the dis-
criminator instead of minimizing the objective (1) [14]. For high-resolution im-
ages, following CycleGAN [42], we use the LSGAN formulation [29].

Converging to good equilibria for any of the proposed GAN games is known
to be hard [15,8,27]. In general, the performance of the trained generator network
crucially depends on the architecture of the discriminator network, that needs
to learn to extract meaningful statistics, which are good for matching the target
distribution ptarget. The typical failure mode of GAN training is when the dis-
criminator does not manage to learn such statistics before being “overpowered”
by the generator.

3.2 Perceptual Discriminator Architecture

Multiple approaches have suggested to use activations invoked by an image y

inside a deep pre-trained classification network F (y) as statistics for such tasks
as retrieval [4] or few-shot classification [31]. Mahendran and Vedaldi [28] have
shown that activations computed after the convolutional part of such network
retain most of the informations about the input y, i.e. are essentially invertable.
Subsequent works such as [13,37,21,11] all used such “perceptual” statistics to
match low-level details such as texture content, certain image resolution, or
particular artistic style.

Following this line of work, we suggest to base the GAN discriminator D(y)
on the perceptual statistics computed by the reference network F on the input
image y, which can be either real (coming from ptarget) or fake (produced by the
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generator). Our motivation is that a discriminator that uses perceptual features
has a better chance to learn good statistics than a discriminator initialized to
a random network. For simplicity, we assume that the network F has a chain
structure. E.g. F can be the VGGNet of [35].

Consider the subsequent blocks of the convolutional part of the reference
network F , and denote them as b0, b1, . . . , bK−1. Each block may include one
or more convolutional layers interleaved with non-linearities and pooling opera-
tions. Then, the perceptual statistics {f1(y), . . . , fK(y)} are computed as:

f1(y) = b0(y) (2)

fi(y) = bi−1(fi−1(y)), i = 2, . . . ,K , (3)

so that each fi(y) is a stack of convolutional maps of the spatial dimensions
Wi ×Wi. The dimension Wi is determined by the preceeding size Wi−1 as well
as by the presence of strides and pooling operations inside bi. In our experiments
we use features from consecutive blocks, i.e. Wi =Wi−1/2.

The overall structure of our discriminator is shown in Figure 1. The key
novelty of our discriminator are the in-built perceptual statistics fi (top of the
image), which are known to be good at assessing image realism [13,21,39]. During
the backpropagation, the gradients to the generator flow through the perceptual
statistics extractors bi, but the parameters of bi are frozen and inherited from
the network pretrained for large-scale classification. This stabilizes the training,
and ensures that at each moment of time the discriminator has access to “good”
features, and therefore cannot be overpowered by the generator easily.

In more detail, the proposed discriminator architecture combines together
perceptual statistics using the following computations:

h1(y) = f1(y) (4)

hi(y) = stack [ci−1(hi−1(y), φi−1) , fi(y)] , i = 2, . . . ,K , (5)

where stack denotes stacking operation, and the convolutional blocks cj with
learnable parameters φj (for j = 1, . . . ,K − 1) are composed of convolutions,
leaky ReLU nonlinearities, and average pooling operations. Each of the cj blocks
thus transforms map stacks of the spatial size Wj ×Wj to map stacks of the
spatial size Wj+1 × Wj+1. Thus, the strides and pooling operations inside cj
match the strides and/or pooling operations inside bj .

Using a series of convolutional and fully-connected layers with learnable pa-
rameters ψmain applied to the representation hK(y), the discriminator outputs
the probability dmain of the whole image y being real. For low- to medium-
resolution images we perform experiments using only this probability. For high-
resolution, we found that additional outputs from the discriminator resulted in
better outcomes. Using the “patch discriminator” idea [19,42], to several feature
representations hj we apply a convolution+LeakyReLU block dj with learnable
parameters ψj that outputs probabilities dj,p at every spatial locations p. We
then replace the regular log probability logD(y) ≡ log dmain of an image being
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real with:

logD(y) = log dmain(y) +
∑

j

∑

p∈Grid(Wj×Wj)

log dj,p(y) (6)

Note, that this makes our discriminator “multi-scale”, since spatial resolution
Wj varies for different j. The idea of multiple classifiers inside the discriminator
have also been proposed recently in [40,18]. Unlike [40,18] where these classifiers
are disjoint, in our architecture all such classifiers are different branches of the
same network that has perceptual features underneath.

During training, the parameters of the c blocks inside the feature network F
remain fixed, while the parameters φi of feature extractors ci and the param-
eters ψi of the discriminators di are updated during the adversarial learning,
which forces the “perceptual” alignment between the output of the generator
and ptarget. Thus, wrapping perceptual loss terms into additional layers ci and
di and putting them together into the adversarial discriminator allows us to
use such perceptual terms in the unaligned training scenario. Such unaligned
training was, in general, not possible with the “traditional” perceptual losses.

3.3 Architecture Details

Reference Network. Following multiple previous works [13,37,21], we con-
sider the so-called VGG network from [35] trained on ILSVRC2012 [32] as the
reference network F . In particular, we pick the VGG-19 variant, to which we
simply refer to as VGG. While the perceptual features from VGG already work
well, the original VGG architecture can be further improved. Radford et. al [30]
reported that as far as leaky ReLU avoids sparse gradients, replacing ReLUs
with leaky ReLUs [17] in the discriminator stabilizes the training process of
GANs. For the same reasons, changing max pooling layers to average pooling
removes unwanted sparseness in the backpropagated gradients. Following these
observations, we construct the VGG* network, which is particularly suitable for
the adversarial game. We thus took the VGG-19 network pretrained on ILSVRC
dataset, replaced all max pooling layers by average poolings, ReLU nonlineari-
ties by leaky ReLUs with a negative slope 0.2 and then trained on the ILSVRC
dataset for further two days. We compare the variants of our approach based on
VGG and VGG* features below.

Generator Architecture. For the image manipulation experiments, we used
transformer network proposed by Johnson et al. [21]. It consists of M convolu-
tional layers with stride size 2, N residual blocks [16] and M upsampling layers,
each one increases resolution by a factor of 2. We set M and N in a way that
allows outputs of the last residual block to have large enough receptive field,
but at the same time for generator and discriminator to have similar number of
parameters. We provide detailed descriptions of architectures in [2].
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Stabilizing the Generator. We have also used two additional methods to
improve the generator learning and to prevent its collapse. First, we have added
the identity loss [36,42] that ensures that the generator does not change the
input, when it comes from the ptarget. Thus, the following term is added to the
maximization objective of the generator:

JG
id = −λid Ey∼ptarget

λ
∥

∥y −G(y)
∥

∥

L1
, (7)

where λid is a meta-parameter that controls the contribution of the weight, and
‖ · ‖L1

denotes pixel-wise L1-metric.
To achieve the best results for the hardest translation tasks, we have found

the cycle idea from the CycleGAN [42] needed. We thus train two generators
Gx→y andGy→x operating in opposite directions in parallel (and jointly with two
discriminators), while adding reciprocity terms ensuring that mappings Gx→y ◦
Gy→x and Gy→x ◦Gx→y are close to identity mappings.

Moreover, we notice that usage of external features as inputs for the discrim-
inator leads to fast convergence of the discriminator loss to zero. Even though
this is expected, since our method essentially corresponds to pretraining of the
discriminator, this behavior is one of the GAN failure cases [8] and on prac-
tice leads to bad results in harder tasks. Therefore we find pretraining of the
generator to be required for increased stability. For image translation task we
pretrain generator as autoencoder. Moreover, the necessity to pretrain the gen-
erator makes our approach fail to operate in DCGAN setting with unconditional
generator.

After an additional stabilization through the pretraining and the identity
and/or cycle losses, the generator becomes less prone to collapse. Overall, in
the resulting approach it is neither easy for the discriminator to overpower the
generator (this is prevented by the identity and/or cycle losses), nor is it easy
for the generator to overpower the discriminator (as the latter always has access
to perceptual features, which are good at judging the realism of the output).

4 Experiments

The goal of the experimental validation is two-fold. The primary goal is to vali-
date the effect of perceptual discriminators as compared to baseline architectures
which use traditional discriminators that do not have access to perceptual fea-
tures. The secondary goal is to validate the ability of our full system based on
perceptual discriminators to handle harder image translation/manipulation task
with higher resolution and with less data. Extensive additional results are avail-
able on our project page [2]. We perform the bulk of our experiments on CelebA
dataset [25], due to its large size, popularity and the availability of the attribute
annotations (the dataset comprises over 200k of roughly-aligned images with 40
binary attributes; we use 160×160 central crops of the images). As harder image
translation task, we use CelebA-HQ [22] dataset, which consists of high resolu-
tion versions of images from CelebA and is smaller in size. Lastly, we evaluate
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(ours)
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(ours)
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Fig. 2: Qualitative comparison of the proposed systems as well as baselines for
neutral→smile image manipulation. As baselines, we show the results of DFI
(perceptual features, no adversarial training) and DCGAN (same generator, no
perceptual features in the discriminator). Systems with perceptual discrimina-
tors output more plausible manipulations.

our model on problems with non-face datasets like apples to oranges and photo
to Monet texture transfer tasks.

Experiments were carried out on NVIDIA DGX-2 server.

Qualitative Comparison on CelebA. Even though our contribution is or-
thogonal to a particular GAN-based image translation method, we chose one of
them, provided modifications we proposed and compared it with the following
important baselines in an attribute manipulation task:

– DCGAN [30]: in this baseline GAN system we used image translation model
with generator and discriminator trained only with adversarial loss.

– CycleGAN [42]: this GAN-based method learns two reciprocal transforms in
parallel with two discriminators in two domains. We have used the authors’
code (PyTorch version).

– DFI [39]: to transform an image, this approach first determines target VGG
feature representation by adding the feature vector corresponding to input
image and the shift vector calculated using nearest neighbours in both do-
mains. Then the resulting image is produced using optimization-based fea-
ture inversion as in [28]. We have used the authors’ code.

– FaceApp [1]: is a very popular closed-source app that is known for the qual-
ity of its filters (transforms), although the exact algorithmic details are un-
known.

Our model is represented by two basic variants.
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Table 1: Quantitative comparison: (a) Photorealism user study. We show the
fraction of times each method has been chosen as “the best” among all in terms
of photorealism and identity preservation (the higher the better). (b) C2ST
results (cross-entropy, the higher the better). (c) Log-loss of classifier trained on
real data for each class (the lower the better). See main text for details.

(a) User study (b) C2ST, ×10−2 (c) Classification loss
Smile Age Smile Gender Hair

color
Smile Gender Hair

color

DFI [39] 0.16 0.4 < 0.1 < 0.01 < 0.01 1.3 0.5 1.14
FaceApp [1] 0.45 0.41 – – – – – –
DCGAN [30] – – 0.6 0.03 0.06 0.6 1.5 2.33
CycleGAN [42] 0.03 0.04 5.3 0.35 0.49 1.2 0.8 2.41

VGG-GAN – – 8.6 0.21 0.96 0.4 0.1 1.3
VGG*-GAN 0.36 0.15 5.2 0.24 1.29 0.7 0.1 1.24

Real data – – – – – 0.1 0.01 0.56

– VGG-GAN : we use DCGAN as our base model. The discriminator has a
single classifier and no generator pretraining or regularization is applied,
other than identity loss mentioned in the previous section.

– VGG*-GAN : same as the previous model, but we use a finetuned VGG
network variant with dense gradients.

The comparison with state-of-the-art image transformation systems is per-
formed to verify the competitiveness of the proposed architecture (Figure 2). In
general, we observe that VGG*-GAN and VGG-GAN models consistently out-
performed DCGAN variant, achieving higher effective resolution and obtaining
more plausible high-frequency details in the resulting images. While a more com-
plex CycleGAN system is also capable of generating crisp images, we found that
the synthesized smile often does not look plausible and does not match the face.
DFI turns out to be successful in attribute manipulation, yet often produces
undesirable artifacts, while FaceApp shows photorealistic results, but with low
attribute diversity. Here we also evaluate the contribution of dense gradients
idea for VGG encoder and find it providing minor quality improvements.

User Photorealism Study on CelebA. We have also performed an infor-
mal user study of the photorealism. The study enrolled 30 subjects unrelated
to computer vision and evaluated the photorealism of VGG*-GAN, DFI, Cycle-
GAN and FaceApp on smile and aging/rejuvenation transforms. To assess the
photorealism, the subjects were presented quintuplets of photographs unseen
during training. In each quintuplet the center photo was an image without the
target attribute (e. g. real photo of neutral expression), while the other four pic-
tures were manipulated by one of the methods and presented in random order.
The subjects were then asked to pick one of the four manipulations that they
found most plausible (both in terms of realism and identity preservation). While
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Input Blond hair Black hair Brown hair Gender swap Smile on/off

Fig. 3: Results for VGG*-MS-CycleGAN attribute editing at 256×256 resolution
on Celeba-HQ dataset. Networks have been trained to perform pairwise domain
translation between the values of hair color, gender and smile attributes. Digital
zoom-in recommended. See [2] for more manipulation examples.

there was no hard time limit, the users were asked to make the pick as quickly as
possible. Each subject was presented overall 30 quintuplets with 15 quantuplets
allocated for each of the considered attribute. The results in Table 1a show that
VGG*-GAN is competitive and in particular considerably better than the other
feed-forward method in the comparison (CycleGAN), but FaceApp being the
winner overall. This comes with the caveat that the training set of FaceApp is
likely to be bigger than CelebA. We also speculate that the diversity of smiles
in FaceApp seems to be lower (Figure 2), which is the deficiency that is not
reflected in this user study.

Quantitative Results on CelebA. To get objective performance measure, we
have used the classifier two-sample test (C2ST) [26] to quantitatively compare
GANs with the proposed discriminators to other methods. For each method, we
have thus learned a separate classifier to discriminate between hold-out set of
real images from target distribution and synthesized images, produced by each of
the methods. We split both hold-out set and the set of fake images into training
and testing parts, fit the classifier to the training set and report the log-loss
over the testing set in the Table 1b. The results comply with the qualitative
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(a) (b) (c) (d) (e) (a) (b) (c) (d) (e)

Fig. 4: We compare different architectures for the discriminator on CelebA-HQ
256×256 male ↔ female problem. We train all architectures in CycleGAN man-
ner with LSGAN objective and compare different discriminator architectures.
(a) Input, (b) VGG*-MS-CycleGAN: multi-scale perceptual discriminator with
pretrained VGG* as a feature network F , (c) Rand-MS-CycleGAN: multi-scale
perceptual discriminator with a feature network F having VGG* architecture
with randomly-initialized weights, (d) MS-CycleGAN: multi-scale discriminator
with the trunk shared across scales (as in our framework), where images serve as
a direct input, (e) separate multi-scale discriminators similar to Wang et al. [40].
Digital zoom-in recommended.

observations: artifacts, produced by DCGAN and DFI are being easily detected
by the classifier resulting in a very low log-loss. The proposed system stays on par
with a more complex CycleGAN (better on two transforms out of three), proving
that a perceptual discriminator can remove the need in two additional networks
and cycle losses. Additionally, we evaluated attribute translation performance
in a similar fashion to StarGAN [9]. We have trained a model for attribute
classification on CelebA and measured average log-likelihood for the synthetic
and real data to belong to the target class. Our method achieved lower log-loss
than other methods on two out of three face attributes (see Table 1c).

Higher Resolution. We further evaluate our model on CelebA-HQ dataset.
Here in order to obtain high quality results we use all proposed regularization
methods. We refer to our best model as VGG*-MS-CycleGAN, which corre-
sponds to the usage of VGG* network with dense gradients as an encoder,
multi-scale perceptual discriminator based on VGG* network, CycleGAN regu-
larization and pretraining of the generator. Following CycleGAN, we use LSGAN
[29] as an adversarial objective for that model. We trained on 256× 256 version
of CelebA-HQ dataset and present attribute manipulation results in Figure 3.
As we can see, our model provides photorealistic samples while capturing differ-
ences between the attributes even for smaller amount of training samples (few
thousands per domain) and higher resolution compared to our previous tests.

In order to ensure that each of our individual contributions affects the qual-
ity of these results, we consider three variations of our discriminator architec-
ture and compare them to the alternative multi-scale discriminator proposed in
Wang et al. [40]. While Wang et al. used multiple identical discriminators oper-
ating at different scales, we argue that this architecture has redundancy in terms
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Input CycleGAN VGG*-
CycleGAN

Input CycleGAN VGG*-
CycleGAN

Fig. 5: Comparison between CycleGAN and VGG*-MS-CycleGAN on
painting↔photo translation task. It demonstrates the applicability of our ap-
proach beyond face image manipulation. See [2] for more examples.

of number of parameters and can be reduced to our architecture by combining
these discriminators into a single network with shared trunk and separate multi-
scale output branches (as is done in our method). Both variants are included
into the comparison in Figure 4. Also we consider Rand-MS-CycleGAN baseline
that uses random weights in the feature extractor in order to tease apart the
contribution of VGG* architecture as a feature network F and the effect of also
having its weights pretrained on the success of the adversarial training. While
the weights inside the VGG part were not frozen, so that adversarial training
process could theoretically evolve good features in the discriminator, we were
unable to make this baseline produce reasonable results. For high weight of the
identity loss λid the resulting generator network produced near-identical results
to the inputs, while decreasing λid lead to severe generator collapse. We conclude
that the architecture alone cannot explain the good performance of perceptual
discriminators (which is validated below) and that having pretrained weights in
the feature network is important.

Non-face Datasets. While the focus of our evaluation was on face attribute
modification tasks, our contribution applies to other translation tasks, as we ver-
ify in this section by performing qualitative comparison with the CycleGAN and
VGG*-MS-CycleGAN architectures on two non-face domains on which Cycle-
GAN was originally evaluated: an artistic style transfer task (Monet-photographs)
in Figure 5 and an apple-orange conversion in Figure 6 (the figures show repre-
sentative results). To achieve fair comparison, we use the same amount of residual
blocks and channels in the generator and the same number of downsampling lay-
ers and initial amount of channels in discriminator both in our model and in the
original CycleGAN. We used the authors’ implementation of CycleGAN with
default parameters. While the results on the style transfer task are inconclu-
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Input CycleGAN VGG*-MS
CycleGAN

Input CycleGAN VGG*-MS
CycleGAN

Fig. 6: Apple↔orange translation samples with CycleGAN and VGG*-MS-
CycleGAN are shown. Zoom-in recommended. See [2] for more examples.

sive, for the harder apple-to-orange task we generally observe the performance
of perceptual discriminators to be better.

Other Learning Formulations. Above, we have provided the evaluation of
the perceptual discriminator idea to unaligned image translation tasks. In princi-
ple, perceptual discriminators can be used for other tasks, e.g. for unconditional
generation and aligned image translation. In our preliminary experiments, we
however were not able to achieve improvement over properly tuned baselines. In
particular, for aligned image translation (including image superresolution) an ad-
ditive combination of standard discriminator architectures and perceptual losses
performs just as well as our method. This is not surprising, since the presence
of alignment means that perceptual losses can be computed straight-forwardly,
while they also stabilize the GAN learning in this case. For unconditional image
generation, a naive application of our idea leads to discriminators that quickly
overpower generators in the initial stages of the game leading to learning col-
lapse.

5 Summary

We have presented a new discriminator architecture for adversarial training that
incorporates perceptual loss ideas with adversarial training. We have demon-
strated its usefulness for unaligned image translation tasks, where the direct
application of perceptual losses is infeasible. Our approach can be regarded as
an instance of a more general idea of using transfer learning, so that easier dis-
criminative learning formulations can be used to stabilize and improve GANs
and other generative learning formulations.
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