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Abstract. While the successful estimation of a photo’s geolocation en-
ables a number of interesting applications, it is also a very challenging
task. Due to the complexity of the problem, most existing approaches
are restricted to specific areas, imagery, or worldwide landmarks. Only a
few proposals predict GPS coordinates without any limitations. In this
paper, we introduce several deep learning methods, which pursue the lat-
ter approach and treat geolocalization as a classification problem where
the earth is subdivided into geographical cells. We propose to exploit
hierarchical knowledge of multiple partitionings and additionally extract
and take the photo’s scene content into account, i.e., indoor, natural, or
urban setting etc. As a result, contextual information at different spa-
tial resolutions as well as more specific features for various environmental
settings are incorporated in the learning process of the convolutional neu-
ral network. Experimental results on two benchmarks demonstrate the
effectiveness of our approach outperforming the state of the art while
using a significant lower number of training images and without relying
on retrieval methods that require an appropriate reference dataset.

Keywords: Geolocation Estimation · Scene Classification · Deep Learn-
ing · Context-based Classification

1 Introduction

Predicting the geographical location of photos without any prior knowledge is a
very challenging task, since images taken from all over the earth depict a huge
amount of variations, e.g., different daytimes, objects, or camera settings. In ad-
dition, the images are often ambiguous and therefore provide only very few visual
clues about their respective recording location. For these reasons, the majority
of approaches simplifies photo geolocalization by restricting the problem to ur-
ban photos of, for example, well-known landmarks and cities [3,25,34,43,45,48] or
natural areas like deserts or mountains [5,33,38]. Only a few frameworks treat the
task at global-scale without relying on specific imagery [13,14,39,42] or any other
prior assumptions. These approaches particularly benefit from the advancements
in deep learning [15,16,21] and the increasing number of publicly available large-
scale image collections from platforms such as Flickr. Due to the complexity
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Fig. 1. Left: Workflow of the proposed geolocation estimation approach. Right: Sample
images of different locations for specific scene concepts.

of the problem and the unbalanced distribution of photos taken from all over
the earth, methods based on convolutional neural networks (CNNs) [39,42] treat
photo geolocalization as a classification task subdividing the earth into geograph-
ical cells with a similar number of images. However, according to Vo et al. [39],
even current CNNs are not able to memorize the visual appearance of the entire
earth and to simultaneously learn a model for scene understanding. Moreover,
geographical partitioning approaches [39,42] entail a trade-off problem. While a
finer partitioning leads to a higher accuracy at city-scale (location error less than
1 km), a coarser subdivision increases the performance at country-scale (750 km).
In our opinion, one main reason for these problems is the huge diversity caused
by various environmental settings, which requires specific features to distinguish
different locations. Referring to Figure 1, we argue that urban images mainly dif-
fer in, e.g., architecture, people, and specific objects like cars or street signs. On
the contrary, natural scenes like forests or indoor scenarios are most likely defined
by features encoding the flora and fauna or the style of the interior furnishings,
respectively. Therefore, we claim that photo geolocalization can greatly benefit
from contextual knowledge about the environmental scene, since the diversity in
the data space could be drastically reduced.

In this paper, we address the aforementioned problems by (1) incorporat-
ing hierarchical knowledge at different spatial resolutions in a multi-partitioning
approach, as well as (2) extracting and taking information about the respec-
tive type of environmental settings (e.g., indoor, natural, and urban) into ac-
count. We consider photo geolocalization as a classification task by subdividing
the earth into geographical cells with a balanced number of images (similar to
PlaNet [42]). There are several contributions. We combine the outputs from all
scales to exploit the hierarchical information of a CNN that is trained simulta-
neously with labels from multiple partitionings to encode local and global infor-
mation. Furthermore, we suggest two strategies to include information about the
respective scene type: (a) deep networks that are trained separately with images
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of distinctive scene categories, and (b) a multi-task network trained with both
geographical and scene labels. This should enable the CNN to learn specific fea-
tures for estimating the GPS (Global Positioning System) coordinate of images
in different environmental surroundings. The workflow is illustrated in Figure 1.

To the best of our knowledge, this is the first approach that considers scene
classification and exploits hierarchical (geo)information to improve unrestricted
photo geolocalization. Furthermore, we have used a state of the art CNN archi-
tecture and our comprehensive experiments include an evaluation of the impact
of different scene concepts. Experimental results on two different benchmarks
demonstrate that our approach outperforms the state of the art without rely-
ing on image retrieval techniques (Im2GPS [13,14,39]), while using a significant
lower number of training images compared to PlaNet [42] – making our approach
more feasible.

The remainder of the paper is organized as follows. In Section 2, we review re-
lated work on photo geolocation estimation. The proposed framework to extract
and utilize visual concepts of specific scenes and multiple earth partitionings to
estimate the GPS coordinates of images is introduced in Section 3. Experimental
results on two different benchmarks are presented and discussed in Section 4.
Section 5 concludes the paper and outlines areas of future work.

2 Related Work

Related work on visual geolocalization can be roughly divided into two cate-
gories: (1) proposals which are restricted to specific environments or imagery,
and (2) approaches at planet-scale without any restrictions. In this section, we
focus on the second category since it is more closely related to our work. For a
more comprehensive review, we refer to Brejcha and Čad́ık’s survey [8].

Many proposals of the first category are introduced at city-scale resolution re-
stricting the problem to specific cities or landmarks. These mainly apply retrieval
techniques to match a query image against a reference dataset [3,12,18,20,29,34,46].
Approaches that focus on landmark recognition use either a pre-defined set of
landmarks or cluster a given photo collection in an unsupervised manner to re-
trieve the most interesting areas for geolocalization [4,23,28,48]. Other proposals
match query images against 3D models of cities [10,19,24,27,30]. However, the
underlying data collections of these methods are restricted to popular scenes and
urban environments and therefore lack accuracy when predicting photos that do
not have (many) instance matches. For this reason, some approaches additionally
make use of satellite aerial imagery to enhance the geolocalization in sparsely
covered regions [35,40,44,45]. In this context, solutions are presented that match
an aerial query image against a reference dataset containing satellite images in a
wide baseline approach [2,6,43]. Some of these proposals [25,26] even address ge-
olocation at planet-scale. But since these frameworks require a reference dataset
that contains satellite images, we still consider them as restricted frameworks.
Only a minority of proposals has been designed for natural geolocalization of
images depicting beaches [9,41], deserts [38], or mountains [5,33].
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All of the aforementioned proposals are restricted to well-covered regions,
specific imagery, or environmental scenes. As a first attempt for planet-scale ge-
olocation estimation, Hays and Efros [13] have introduced Im2GPS. They use a
retrieval approach to match a given query image based on a combination of six
global image descriptors to a reference dataset consisting of more than six million
GPS-tagged images. The authors extend Im2GPS [14] by incorporating infor-
mation on specific geometrical classes like sky and ground as well as an improved
retrieval technique. Weyand et al. [42] have introduced PlaNet, where the task
of geolocalization is treated as a classification problem. The earth is adaptively
subdivided into geographical cells with a similar number of images that are used
to train a convolutional neural network. This approach noticeably outperformed
Im2GPS, which encouraged Vo et al. [39] to learn a feature representation with
a CNN to improve the Im2GPS framework. Using the extracted features of a
query photo, the (k)-nearest neighbors in the reference dataset based on kernel
density estimation are retrieved. In this way, a multi-partitioning approach is
introduced to simultaneously learn photo-geolocation at different spatial resolu-
tions. However, in contrast to our work this approach does not make use of the
hierarchical knowledge given by the predictions at each scale.

3 Hierarchical Geolocalization using Scene Classification

In this section, we present the proposed deep learning framework for geoloca-
tion estimation. According to PlaNet [42], we treat the task as a classification
problem by subdividing the earth into geographical cells C that contain a sim-
ilar number of images (Section 3.1). In contrast to previous work, we exploit
contextual information of the environmental scenario solely using the visual
content of a given photo to improve the localization accuracy. Therefore, we
assign scene labels to all the images based on the 365 categories of the Places2
dataset [49] (Section 3.2). Several approaches that are aimed at integrating the
extracted information about the given type of scene and multiple geographi-
cal cell partitionings are introduced in Section 3.3. Finally, we explain how the
proposed approaches are applied to estimate the GPS coordinates of images
based on the predicted geo-cell probabilities Ĉ (Section 3.4). In this context, we
introduce our hierarchical approach to combine the results of multiple spatial
resolutions. An overview of the proposed framework is presented in Figure 2.

3.1 Adaptive Geo-Cell Partitioning

The S2 geometry library3 is utilized to generate a set of non-overlapping geo-
graphical cells C. In more detail, the earth’s surface is projected on an enclosing
cube with six sides representing the initial cells. An adaptive hierarchical sub-
division based on the GPS coordinates of the images is applied [42], where each
cell is the node of a quad-tree. Starting at the root nodes, the respective quad-
tree is subdivided recursively until all cells contain a maximum of τmax images.

3 https://code.google.com/archive/p/s2-geometry-library/

https://code.google.com/archive/p/s2-geometry-library/


Geolocation Estimation using a Hierarchical Model and Scene Classification 5

Data 
Geo-Cell 

Partitioning 

Geo-Cells �ଵ 

Scene Filtering 

Scene 
Classification 

? Scene Labels 

Geo-Cells �ଷ 

Geo-Cells �ଶ 

Training 

Geolocation 
Estimation 

? 

Cell Probabilities � ଷ 

Cell Probabilities � ଶ 

Cell Probabilities � ଵ 

Scene Probabilties �  
Cell Probabilties � ଷ∗ 

Prediction 

Baseline steps (part of every network) 

Multi-Partitioning Variant 

Hierarchical Geo-Classification 

Individual Scenery Networks (ISNs) 

Multi-Task Network (MTN) 

Fig. 2. Pipeline of the proposed geolocation estimation frameworks. Gray: Baseline
steps that are part of every network. Additional steps are visualized in different colors.
Dashed elements are applied to all images before the training process takes place.

Afterwards, all resulting cells with less than τmin photos are discarded, because
they most likely cover areas like poles or oceans which are hard to distinguish.

This approach has several advantages compared to a subdivision of the earth
into cells with roughly equally areas. On the one hand side, an adaptive subdi-
vision prevents dataset biases and allows to create classes with a similar number
of images. On the other hand, fine cells in photographically well covered areas
are generated. This enables a more accurate prediction of image locations which
most likely depict interesting regions such as landmarks or cities.

3.2 Visual Scene Classification

To classify scenes and extract scene labels, the ResNet model [16] with 152 layers4

of the Places2 dataset [49] is applied. The model has been trained on more than
16 million training images from 365 different place categories. This fits nicely
with our approach, since the resulting classifier already distinguishes images that
depict specific environments. We predict the scene labels based on the scene
set S365 of all training images using the maximum probability of the output
vector. Based on the provided scene hierarchy5, we additionally extract labels
of the sets S16 and S3 containing 16 and three superordinate scene categories,
respectively. We add the probabilities of all classes which are assigned to the
same superordinate category and generate the corresponding label. However,
some scenes like barn are allocated to multiple superordinate categories (outdoor,
natural ; outdoor, man-made), because they visually overlap. For this reason, we
first divide the probability of these classes by the number of assigned categories
to maintain the normalization. Please note, that we use the terms natural for
”outdoor, natural” and urban for ”outdoor, man-made” in the rest of the paper.

4
Places2 ResNet152 model: https://github.com/CSAILVision/places365

5
Places2 scene hierarchy: http://places2.csail.mit.edu/download.html

https://github.com/CSAILVision/places365
http://places2.csail.mit.edu/download.html
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3.3 Geolocation Estimation

In this section, several approaches based on convolutional neural networks for
an unrestricted planet-scale geolocalization are introduced. First, we present a
baseline approach which is trained without using scene information and multiple
geographical partitionings. In the following, we describe how the information for
different spatial resolutions as well as environmental concepts are integrated in
the training process. In this context, two different approaches to utilize visual
scene labels are proposed. An overview is provided in Figure 2.

Baseline: To evaluate the impact of the suggested approaches for geolocaliza-
tion, we first present a baseline system that does not rely on information about
the environmental setting and different spatial resolutions. Therefore, we gener-
ate a single geo-cell partitioning C as described in Section 3.1. For classification,
we add a fully-connected layer on top of the global pooling layer of the ResNet
architecture [16], where the number of output neurons corresponds to the num-
ber of geo-cells |C|. During training the cross-entropy geolocalization loss Lsingle

geo

based on the probability distribution Ĉ and the ground-truth cell label encoded
in a one-hot vector ĈGT is minimized.

Multi-Partitioning Variant: We propose to simultaneously learn geoloca-
tion estimation at multiple spatial resolutions (according to Vo et al. [39]). In
contrast to the baseline approach, we add a fully-connected layer for the geo-
graphical cells of all partitionings P = {C1, . . . , Cn}. The multi-partitioning
classification loss Lmulti

geo is calculated using the mean of the loss values Lsingle
geo

for every partitioning. As a consequence, the CNN is able to learn geographical
features at different scales resulting in a more discriminative classifier. However,
in contrast to Vo et al. [39] we further exploit the hierarchical knowledge for the
final prediction. The details are presented in Section 3.4.

Individual Scene Networks (ISNs): In a first attempt to incorporate con-
text information about the environmental setting for photo geolocalization, in-
dividual networks for images depicting a specific scene are trained. For each
photograph, we extract the scene probabilities using the scene classification pre-
sented in Section 3.2. During the training, every image with a scene probability
greater than a threshold of τS is used as input for the respective Individual Scene
Network (ISN). Following this approach offers the advantage, that the network
is solely trained on images depicting specific environmental scenarios. It greatly
reduces the diversity in the underlying data space and enables the network to
learn more specific features. On the contrary, it is necessary to train individual
models for each scene concept, which is hard to manage if the number of dif-
ferent concepts |S| becomes larger. For this reason, we suggest to fine-tune a
model, which was initially trained without scene restriction, with images of the
respective environmental category.
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Multi-Task Network (MTN): Since the aforementioned method for geolo-
cation estimation may become infeasible for a large amount of different envi-
ronmental concepts, we aim for a more practicable approach using a network
which treats photo geolocalization and scene recognition as a multi-task prob-
lem. In order to encourage the network to distinguish between images of different
environmental scenes, we simultaneously train two classifiers for these comple-
mentary tasks. Adding another (complementary) task has proven to be efficient
to improve the results of the main task [7,17,32,47]. More specifically, an ad-
ditional fully-connected layer on top of the global pooling layer of the ResNet
CNN architecture [16] is utilized. The number of output neurons of this layer
corresponds to the amount of scene categories |S|. The weights of all other lay-
ers in the network are completely shared. In addition, the scene loss Lscene

based on the ground-truth one-hot vector ŜGT and the scene probabilities Ŝ is
minimized using the cross-entropy loss. The total loss Ltotal of the Multi-Task
Network (MTN) is defined by the sum of the geographical and scene loss.

3.4 Predicting Geolocations using Hierarchical Spatial Information

In order to estimate the GPS coordinate from the classification output, we apply
the trained models from Section 3.3 on three evenly sampled crops of a given
query image according to its orientation. Afterwards, the mean of the resulting
class probabilities of each crop is calculated. Please note that an additional step
for testing is necessary for the Individual Scene Networks. In this case, the scene
label is first predicted using the maximum probability as described in Section 3.2
in order to feed the image into the respective ISN for geolocalization.

Standard Geo-Classification: Without relying on hierarchical information,
we solely utilize the probabilities Ĉ of one given geo-cell partitioning C. In this
respect, we assign the class label with the maximum probability to predict the
geographical cell. Applying the multi-partitioning approach in Section 3.3 we are
therefore able to obtain |P | class probabilities at different spatial resolutions. In
our opinion, the probabilities at all scales should be exploited to enhance the
geolocalization and to combine the capabilities of all partitionings.

Hierarchical Geo-Classification: To ensure that every geographical cell in
the finest representation can be uniquely connected to a larger parent area in an
upper-level, a fixed threshold parameter τmin for the adaptive subdivision (Sec-
tion 3.1) is applied. Thus, we are able to generate a geographical hierarchy from
the different spatial resolutions. Inspired by the hierarchical object classification
approach from YOLO9000 [31], we multiply the respective probabilities at each
level of the hierarchy. Consequently, the prediction for the finest subdivision can
be refined by incorporating the knowledge of coarser representations.

Class2GPS: Depending on the predicted class we extract the GPS coordinates
of the given query image. In contrast to Weyand et al. [42], we use the mean
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Table 1. Number of classes |C| for
each partitioning C with different thresh-
olds τmin and τmax.

C τmin τmax |C|

coarse 50 5,000 3,298
middle 50 2,000 7,202
fine 50 1,000 12,893

Table 2. Top-1 and Top-5 accuracy on
the validation set of the Places2 bench-
mark [49] for different scene hierarchies.

Hierarchy Top-1 Top-5

S3 91.5% —
S16 72.1% 97.1%
S365 45.7% 77.3%

location of all training images in the predicted cell instead of the geographical
center. This is more precise for regions containing an interesting area where the
majority of photos is taken. Imagine a geographical cell centered around an ocean
and a city which is located at the cell boundary. In this example, the error using
the geographical center would be very high, even if it is clear that the photo was
most likely taken in the city.

4 Experimental Setup and Results

Training Data: We use a subset of the Yahoo Flickr Creative Commons 100
Million dataset (YFCC100M ) [37] as input data for our approach. This subset
was introduced for the MediaEval Placing Task 2016 (MP-16 ) [22] and includes
around five million geo-tagged images6 from Flickr without any restrictions.
The dataset contains ambiguous photos of, e.g., indoor environments, food, and
humans for which the location is difficult to predict. Like Vo et al. [39] we exclude
images from the same authors as in the test datasets, which we use for evaluation.
A ResNet model [15] is used which has been pre-trained on ImageNet [11] to
avoid duplicate images by comparing the resulting feature vectors from the last
pooling layer. Overall, our training dataset consists of |I| = 4,723,695 images.

Partitioning Parameters: As explained in Section 3.4, we choose a constant
value of τmin = 50 (according to PlaNet [42]) as the minimum threshold for
the adaptive subdivision, to enable the hierarchical classification approach. Our
goal is to train the geolocation at multiple spatial resolutions. Therefore, the
following maximum thresholds τmax ∈ {1,000; 2,000; 5,000} are used. We se-
lect these thresholds because the MP-16 dataset has approximately 16 times
less images than PlaNet [42] and we therefore aim to produce around

√
16 less

classes (PlaNet has 26,263 cells) at the middle representation. Since we want
to show how fine and coarse representations can be efficiently combined, the
other thresholds are specified to produce circa two times more and less classes
than the middle representation. The resulting number of classes |C| for different
partitionings to train our deep learning approaches are shown in Table 1.

6 Available at: http://multimedia-commons.s3-website-us-west-2.amazonaws.com

http://multimedia-commons.s3-website-us-west-2.amazonaws.com
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Scene Classification Parameters: The performance of the concept classifica-
tion (Section 3.2) is evaluated on the Places2 validation dataset [49] containing
36,500 images (100 for each scene). In Table 2 results for the different scene
hierarchy levels are reported. The quality of the scene classification is very cru-
cial for the ISNs presented in Section 3.3, because it defines the underlying data
space. Since the top-1 accuracy of 91.5% already provides a good basis, we focus
on a set of three scene concepts S3 = {indoor,natural, urban}. Furthermore, this
limits the amount of ISNs to a feasible number of three concepts. We suggest
to apply a small threshold of τS = 0.3. Admittedly, this selection is somewhat
arbitrary, but we intend to use images with similar scene probabilities as input
for each ISN. This could be especially useful for images depicting rural areas,
because they share visual information like architecture as well as flora and fauna
that are beneficial for both environmental categories urban and natural. The
scene filtering yields a total of around 1.80M, 1.42M, and 2.34M training images
for the concepts indoor, natural, urban, respectively.

Network Training: The proposed approaches are trained using a ResNet ar-
chitecture [16] with 101 convolutional layers. The weights are initialized by a
pre-trained ImageNet model [11]. To avoid overfitting, the data is augmented by
randomly selecting an area which covers at least 70% of the image with an aspect
ratio R between 3/4 ≤ R ≤ 4/3. Furthermore, the input images are randomly
flipped and subsequently cropped to 224 × 224 pixels. We use the Stochastic
Gradient Descend (SGD) optimizer with an initial learning rate of 0.01, a mo-
mentum of 0.9, and a weight decay of 0.0001. The learning rate is exponentially
lowered by a factor of 0.5 after every five training epochs. We initially train
the networks for 15 epochs and a batch size of 128. We validate the CNNs on
25,600 images of the YFCC100M dataset [37].

As described in Section 3.3, it could be beneficial to fine-tune the ISNs based
on a model which was initially trained without scene restriction. For a fair com-
parison, all models are therefore fine-tuned for five epochs or until the loss on
the validation set converges. In this respect, the initial learning rate is decreased
to 0.001. Finally, the best model on the validation set is used for conducting the
experiments. The implementation is realized using the TensorFlow library [1] in
Python. The trained models and all necessary data to reproduce our results are
available at: https://github.com/TIBHannover/GeoEstimation

Test Setup: We evaluate our approaches on two public benchmarks datasets for
geolocation estimation. The Im2GPS test dataset [13] contains 237 photos, where
5% are depicting specific tourist sites and the remaining are only recognizable in
a generic sense. Because this benchmark is very small, Vo et al. [39] introduced a
new datasets called Im2GPS3k that contains 3,000 images from Im2GPS (2,997
images are provided with a GPS tag). The great circle distance (GCD) between
the predicted and ground-truth image location is calculated for evaluation. As
suggested by Hays and Efros [13], we report the geolocalization accuracy as the
percentage of test images that are predicted within a certain distance to the

https://github.com/TIBHannover/GeoEstimation
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Table 3. Notation of the geolocalization approaches. T denotes whether the network
was trained with a single/lone (L) or multiple (M) partition(s). C ∈ {c,m, f} indicates
which cell partition (coarse (c), middle (m), fine (f)) is used for classification. If C is
denoted with a star (*) the hierarchical classification is utilized.

Notation Description

base (T,C) Baseline trained without scene information
ISNs (T,C, S3) Individual Scene Networks using the scene set S3

MTN (T,C, S) Multi-Task Network using a scene set S ∈ {S3, S16, S365}

base (L,C) vs. base (M,C) on the Im2GPS test dataset
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Fig. 3. Comparison of the geolocation approaches trained with and without multiple
subdivisions for different geo-cell partitionings C. First mentioned approach base (L,C)
is used as reference and its accuracy is denoted in the middle of the x-axis.

ground-truth location. The notations of the proposed approaches are presented
in Table 3. The most significant results using the suggested multi-partitioning
and scene concepts for geolocalization as well a comparison to the state of the art
methods are given in the related Sections. A complete list of results is provided
in the supplemental material.

4.1 Evaluating the Multi-Partitioning Approach

The results for the baseline and the multi-partitioning approach are displayed
in Figure 3. Surprisingly, no significant improvement using multiple partition-
ings can be observed for the Im2GPS test dataset. But it is clearly visible that
the results especially for the fine partitioning have improved for the Im2GPS3k
dataset, which is more representative due to its larger size. This demonstrates
that the network is able to incorporate features at different spatial resolutions
and utilizes this knowledge to learn a more discriminative classifier. A similar ob-
servation was made in the latest Im2GPS approach [39]. However, by exploiting
the hierarchical knowledge at different spatial resolutions the localization accu-
racy can be indeed further increased. Figure 4 shows that the geo-location of the
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Fig. 4. Quantitative result using the prediction of the different partitioning output
layers as well as the hierarchical result.

Table 4. Number of images on the evalu-
ation datasets for different scene concepts
in S3.

Scenes Im2GPS Im2GPS3k

all 237 2,997

indoor 19 545
natural 80 845
urban 138 1,607

Table 5. Top-1 and Top-5 scene classifi-
cation accuracies on the validation set of
the Places2 benchmark [49] for different
Multi-Task Networks.

Network Top-1 Top-5

MTN (L, f, S3) 92.0% —
MTN (L, f, S16) 71.7% 97.5%
MTN (L, f, S365) 46.0% 76.5%

photo is predicted with a higher accuracy using the coarse and middle partition-
ing compared to the finest representation. But, the capabilities of the network
in terms of spatial resolution are not fully exploited using coarser partitionings.
The hierarchical information, however, leads to a more accurate prediction at
the finest scale and consequently to a better estimation of the photo’s GPS po-
sition. Referring to the supplemental material and the next section, it is worth
mentioning that the ISNs greatly benefit from the knowledge at multiple spatial
resolutions. The results on both datasets improve drastically while using the
multi-partitioning approach.

4.2 Evaluating the Individual Scene Networks

We apply the scene classifier introduced in Section 3.2 to extract the scene labels
for all test images to evaluate the results for specific environmental settings. The
resulting number of images for every scene is presented in Table 4. Due to the
low number of images in the Im2GPS test dataset, we analyze the performance
of the ISNs on the Im2GPS3k dataset. However, referring to Table 6 and the
supplemental material, similar observations can be made for Im2GPS. The ge-
olocation results do not improve when restricting a single-partitioning network
to specific concepts (Figure 5).On the other hand, using a multi-partitioning ap-
proach with scene restrictions noticeably improves the geolocation estimation,
in particular for urban and indoor photos. One possible explanation is that the
intra-class variation for coarser subdivision with more images in larger areas
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base (L,m) vs. ISNs (L,m, S3) on the Im2GPS3k test dataset
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Fig. 5. Comparison of the Individual Scene Networks to the baseline approaches for
different scene concepts. First mentioned approach is used as reference and its accuracy
is denoted in the middle of the x-axis.

is reduced. Therefore, the network is able to learn specific features for the re-
spective scene concept. The best results are achieved for urban images, which
is intuitive since they often contain relevant cues for geolocation. It is also not
surprising that the performance of indoor photos is the lowest among all scene
concepts, since the images can be ambiguous. Weyand et al. (PlaNet) [42]) even
consider indoor images as noise. Despite only 1.42M natural images are available
to cover the huge diversity of very different scenes like beaches, mountains, and
glaciers, we were able to improve the performance for this concept. We believe
that the respective ISN mainly benefits from the hierarchical information, be-
cause it enables the encoding of more global features such as different climatic
zones. Overall, the results show that geolocation estimation benefits from train-
ing with specific scene concepts and improves at nearly all GCD thresholds for
every scene category.

4.3 Evaluating the Multi-Task Network

We investigate the performance of the Multi-Task Network regarding the ge-
olocation estimation (Figure 6) and scene classification (Table 5). Despite the
results demonstrate that the CNNs are able to learn both tasks simultaneously,
geolocalization unfortunately does not benefit from learning an additional task
no matter which model we analyze. This underlines that the more important fact
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base (M, f*) vs. MTN (M, f*, S3) on the Im2GPS3k test dataset
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Fig. 6. Comparison of the Multi-Task Network to the baseline approach for different
scene concepts S. First mentioned approach is used as reference and its accuracy is
denoted in the middle of the x-axis.

for predicting the GPS coordinates of photos is to reduce the diversity in the
underlying data space. Regarding scene classification, similar results compared
to the provided model of the Places2 dataset (Table 2) are achieved.

4.4 Comparison to the State of the Art

We can directly compare the results of our system base (L,m) to [L] 7011C net-
work from Im2GPS [39] and PlaNet (6.2M) [42], since they have a similar num-
ber of training images and geographical classes. In addition, PlaNet (91M) [42]
can be considered as equivalent at larger scale. The multi-partitioning approach
base (M,m) is comparable to [M ] 7011C of Im2GPS [39]. The corresponding re-
sults on the Im2GPS and Im2GPS3k test datasets are presented in Table 6.
It is obvious that our proposed approaches significantly outperform the current
state of the art methods. Interestingly, already our baseline approach base (L,m)
noticeably outperforms its equivalents. For this reason, we investigate the in-
fluence of the utilized ResNet architecture [16]. Therefore, we train the system
base (L,m) with VGG16 network [36] used in the Im2GPS approach [39]. The re-
sult is denoted with base-vgg (L,m) and shows that the main improvement is ex-
plained by the more powerful ResNet architecture. The system base-vggc (L,m)
uses the geographical center of the predicted cell as location (like in PlaNet and
Im2GPS ) instead of the mean GPS coordinate of all images that we suggested
in Section 3.4. This already noticeably improves the performance on street and
city level. Compared to Weyand et al. [42] we have used a less noisy training
dataset. As described in the previous sections, the geolocalization can be further
increased by training the CNN with multiple partitionings and exploiting the
hierarchical knowledge at all spatial resolutions. However, the best results are
achieved when the ISNs are combined with the hierarchical approach that is
trained with images of a specific visual scene concept.

5 Conclusions

In this paper, we have presented several deep learning approaches for planet-scale
photo geolocation estimation. For this purpose, scene information was exploited
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Table 6. Results on the Im2GPS (top) and Im2GPS3k (bottom) test sets. Percentage
is the fraction of images localized within the given radius using the GCD distance.

Method
Street City Region Country Continent
1 km 25 km 200 km 750 km 2,500 km

Human [39] 3.8% 13.9% 39.3%
Im2GPS [39]

• [L] 7011C 6.8% 21.9% 34.6% 49.4% 63.7%
• [L] kNN,σ = 4 12.2% 33.3% 44.3% 57.4% 71.3%
• ... 28m database 14.4% 33.3% 47.7% 61.6% 73.4%

PlaNet (6.2M) [42] 6.3% 18.1% 30.0% 45.6% 65.8%
PlaNet (91M) [42] 8.4% 24.5% 37.6% 53.6% 71.3%

base-vggc (L,m) 7.6% 22.8% 35.0% 50.6% 66.7%
base-vgg (L,m) 8.9% 26.6% 36.7% 50.6% 65.8%
base (L,m) 13.5% 36.3% 50.6% 64.1% 79.7%
base (M,m) 13.5% 35.0% 49.8% 64.1% 79.7%
base (M, f*) 15.2% 40.9% 51.5% 65.4% 78.5%
ISNs (M, f*, S3) 16.9% 43.0% 51.9% 66.7% 80.2%

Method
Street City Region Country Continent
1 km 25 km 200 km 750 km 2,500 km

Im2GPS [39]
• [L] 7011C 4.0% 14.8% 21.4% 32.6% 52.4%
• [M ] 7011C 3.7% 14.2% 21.3% 33.5% 52.7%
• kNN, σ = 4 7.2% 19.4% 26.9% 38.9% 55.9%

base-vggc (L,m) 4.2% 14.6% 22.2% 34.4% 54.2%
base-vgg (L,m) 4.8% 16.5% 22.6% 34.5% 54.4%
base (L,m) 8.3% 24.9% 34.0% 48.8% 65.8%
base (M,m) 8.2% 25.5% 35.1% 48.7% 65.2%
base (M, f*) 9.7% 27.0% 35.6% 49.2% 66.0%
ISNs (M, f*, S3) 10.5% 28.0% 36.6% 49.7% 66.0%

to incorporate context about the environmental setting in the convolutional neu-
ral network model. We have integrated the extracted knowledge in a classification
approach by subdividing the earth into geographical cells. Furthermore, a multi-
partitioning approach was leveraged that combines the hierarchical information
at different scales. Experimental results on two benchmarks have demonstrated
that our framework improves the state of the art in estimating the GPS coordi-
nates of photos. We have shown that the convolutional neural network is enabled
to learn specific features for the different environmental settings and spatial res-
olutions, yielding a more discriminative classifier for geolocalization. Best results
were achieved when the hierarchical approach was combined with scene classifi-
cation. In contrast to previous work, the proposed framework does neither rely
on an exemplary dataset for image retrieval nor on a training dataset that con-
sists of several tens of millions images. In the future, we intend to investigate
how other contextual information like specific objects, image styles, daytimes
and seasons can be exploited to improve geolocalization.
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5. Baatz, G., Saurer, O., Köser, K., Pollefeys, M.: Large scale visual geo-localization
of images in mountainous terrain. In: European Conference on Computer Vision.
pp. 517–530. Springer (2012)

6. Bansal, M., Daniilidis, K., Sawhney, H.: Ultrawide baseline facade matching for
geo-localization. In: Large-Scale Visual Geo-Localization, pp. 77–98. Springer
(2016)

7. Bingel, J., Søgaard, A.: Identifying beneficial task relations for multi-task learning
in deep neural networks. arXiv preprint arXiv:1702.08303 (2017)
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