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Abstract. We develop using person gaze direction for scene understand-
ing. In particular, we use intersecting gazes to learn 3D locations that
people tend to look at, which is analogous to having multiple camera
views. The 3D locations that we discover need not be visible to the cam-
era. Conversely, knowing 3D locations of scene elements that draw visual
attention, such as other people in the scene, can help infer gaze direc-
tion. We provide a Bayesian generative model for the temporal scene
that captures the joint probability of camera parameters, locations of
people, their gaze, what they are looking at, and locations of visual at-
tention. Both the number of people in the scene and the number of
extra objects that draw attention are unknown and need to be inferred.
To execute this joint inference we use a probabilistic data association
approach that enables principled comparison of model hypotheses. We
use MCMC for inference over the discrete correspondence variables, and
approximate the marginalization over continuous parameters using the
Metropolis-Laplace approximation, using Hamiltonian (Hybrid) Monte
Carlo for maximization. As existing data sets do not provide the 3D
locations of what people are looking at, we contribute a small data set
that does. On this data set, we infer what people are looking at with
59% precision compared with 13% for a baseline approach, and where
those objects are within about 0.58m.

Keywords: 3D temporal scene understanding, 3D gaze estimation, monoc-
ular video, discovering objects, MCMC, model selection

1 Introduction

Observing people interacting with their environment can provide clues about its
3D structure. Facets of this that have been studied within computer vision in-
clude inferring functional objects as “dark matter” [64], ground plane paths [30],
and modeling human-object interactions for understanding events and partici-
pants from RGB-D video [61]. 3D representations enable answering questions
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Fig. 1. Temporal 3D scene understanding through joint inference of people’s locations,
their head posse, and locations of what they’re looking at. The gaze cones of the red
person for the current (red) and previous times (faded red) intersect to help localize a
target in 3D on the left wall. The hypothesis that they are looking at the same object
from two different views makes this analogous to stereo vision. The blue person adds
a third view. Furthermore, the hypothesis that the green person is looking at the red
person enriches our understanding of the scene, and can help improve both the estimate
of the green person’s head pose as well as the location of the red person.

that are awkward or not accessible with 2D representations. For example, one
might want to ask if there are paths that can be taken that are not visible to
security cameras. In this paper, we present a system that infers 3D locations
that people look at, including ones not visible to the camera, from monocular,
uncalibrated video. For example, we can infer the 3D location of an interesting
poster that draws people’s gazes by observing the people passing by (Fig. 1).

To this end, we develop a fully 3D Bayesian modeling approach that repre-
sents where people are, their head poses (thus approximate gaze directions), and
what 3D location they are looking at, which might be one of the other persons
that we are tracking, or an interesting location that attract people’s visual at-
tentions in a scene. Our model further embodies the camera parameters of an
assumed stationary monocular video camera, so that we can infer it rather than
rely on having calibrated cameras.

Our joint inference approach is motivated by the following observations: 1)
the 3D locations of what people might be looking at can help estimate gaze
direction and therefore head pose; 2) other people in the scene are possible
targets of visual attention, and if we are tracking them in 3D, joint inference of
their location and gazes from others should be beneficial; and 3) scenes often
contain likely locations of visual attention (e.g., a visually interesting poster), and
multiple spatio-temporal gaze cones can help pinpoint them in 3D analogously
with multiple views (Fig. 1). We also make use of the following observations from
Brau et al. [13] regarding tracking of people walking on a ground plane: 1) 3D
representation simplifies handling occlusions (which become evidence instead of
confounds); 2) 3D representation allows for a meaningful prior on velocity (and
here, head turning angular velocity); and 3) one can infer camera parameters
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jointly with the scene, as people walking tend to maintain fixed height, and thus
are like calibration probes that transport themselves to different depths.

We specify the joint probability of the latent model and the association of
person detections across frames (§3). The data association implies a hypothesis
for the number of people in the scene at each point in time. To compare models of
differing dimensions in a principled way, we approximately marginalize out all the
continuous model parameters. These include the locations of each person, their
gaze angles, and the locations of the static points drawing visual attention that
we are trying to discover from gazing behavior. We compute these approximate
marginals using MCMC sampling to maximize the distribution, and then apply
the Laplace approximation. We combine this with multiple MCMC sampling
strategies to explore the space of models (§4).

Because our goals are new, we contribute a modest data set with the 3D
locations of what participants are looking at, which is not available in other data
sets with people walking about (see §5 for further discussion). In the contributed
data set, participants recorded what they were looking at while they were walking
around, and we established the ground truth 3D locations for all targets (people
and other objects) using ground truth 2D detections (§6).

Our contributions include: 1) operationalizing the observation that mul-
tiple gaze angles estimated from head pose can be used to learn 3D locations
that people look at; 2) extending the approach proposed by Brau et al. [13]
to include head pose, a walking direction prior, and a more efficient sampling
approach; 3) joint inference of head pose and 3D location of what people are
looking at while walking; 4) inferring who is looking at whom or what (both
anonymously defined); and 5) a new data set for what people are looking at
while they walk around, and where those objects or people are in 3D.

2 Related work

Multiple target tracking (MOT). Despite significant progress, multiple-
target tracking remains a challenge due to issues such as noisy and complex
evidence, occlusion, abrupt motion, and an unknown number of targets. This
work is in the tracking-by-detection paradigm [13, 69, 31, 3, 44, 9, 4, 46, 17, 37, 66,
54]. Typically, these approaches first acquire the image locations of people a
video sequence, and then find the tracks of each underlying target by solving the
data association problem and inferring the target locations. Both 2D and 3D
models have been used to represent the underlying targets. Effectively working
in 2D requires explicit modeling of occluded targets (e.g., [69, 37]). Conversely,
3D models can treat occlusions and smooth motion naturally [28, 13].

Head pose estimation. There is a rich history in methods to estimate
head pose from single images (e.g., [12, 22, 11, 39, 26, 33, 34, 21, 25, 38]. In video,
information flow between frames has been exploited by a number of researchers
(e.g., [70, 6, 65, 57]). More similar to us is model-based tracking methods that
fit a 3D model to the tracked features across a video (e.g., [62, 32, 63, 45, 56]).
Head and body pose have also been estimated jointly via correlations between
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outputs of body pose and head pose classifiers [14, 15]. In contrast, we model
this coupling through a joint distribution on 3D body and head poses.

Head pose is a strong cue for visual focus of attention (VFoA) recognition
which has potential applications such as measuring the attractiveness of adver-
tisements or shop displays in public spaces as well as analyzing the social dynam-
ics of meetings. Much research in VFoA focuses on dynamic meeting scenarios,
where people usually sit around meeting tables while being video recorded by
multiple cameras [5, 7, 8, 19, 42, 43, 51–53, 58, 59]. Most of these methods exploit
context-related information from speech and motion activity and the potential
VFoA is a predefined discrete set with known locations. In addition, the number
of people in the scene is fixed and they are considered to be seated in typically
known locations, which makes sense given the application.

VFoA estimation has also been considered in surveillance settings in the con-
text of understanding behavior [10, 27, 48, 49], where, so far, visual attention has
been limited to image coordinates, and one person at a time. However, Benfold
and Reid[10] use a camera calibrated to the ground plane to estimate a visual at-
tention map representing the amount of attention received by each square meter
of the ground in a town center scene. Similar to us, they identify interesting re-
gions in the scene based on the inferred visual attention map. However, while the
map can be projected into the video to visualize it, 3D location is not inferred.

Another application of estimating VFoA is human-robot interaction scenar-
ios, which involves both person-to-person and robot-to-person interactions [36,
47, 67]. Approaches in this domain often assume known head poses (orientations
and locations) of the targets (persons, robots, and objects). For example, Massé
et al. proposed a switching Kalman filter formulation to jointly estimate the
gaze and the VFoA of several persons from observed head poses and object lo-
cations [36]. In addition, they also assume the number of persons and objects
are known and remain constant over time. In contrast, we propose simultane-
ously inferring the number of the targets and their locations in the scene while
estimating their VFoAs using image evidence.

3 Statistical model

Figure 2 shows our generative statistical model for temporal scene understanding
using probabilistic graphical modeling notation. The scene consists of multiple
people moving on the ground plane throughout the video. At each frame, each
person may have their visual attention on another person or on one of several
static objects that are located in 3D space. We model the visual focus of
attention and the static objects explicitly. At each frame, each person may
also generate a detection box, and the data association groups these detection
boxes by person (or noise). Finally, we model the camera, which projects the
scene onto the image plane, generating the observed data.

We place prior distributions on each of the model variables mentioned above.
Similarly, for each type of data we use, we have a likelihood function that cap-
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Fig. 2. Generative graphical model for temporal
scene understanding. We use bold font for aggre-
gate variables (e.g., z represents state vectors for
each person for each frame). The data association,
ω, specifies the number of people and which detec-
tions (body, face) are associated with them. ω de-
pends on hyper-parameters collectively denoted by
γ (§3.1). χ is the set of static 3D points that peo-
ple look at. The visual focus of attention (VFoA),
ξ, of each person is, for each frame, either one of
these 3D points or another person. The tempo-
ral scene z consists of the 3D state (location, size,
head pose) of each person at each frame (§3.2). z
projects onto 2D to create model frames via the
camera C, generating person detections, B, opti-
cal flow, If , and face landmarks, Ik (§3.4).

tures its dependence on the model. We combine these functions to get the pos-
terior distribution, which we maximize (see §4).

3.1 Association

Following previous work [13], we define an association ω = {τr ⊂ B}mr=0 to
be a partition of B, the set of all detections (body, face) for the entire video.
Here, each τr, r = 1, . . . ,m, called a track, is the set of detections which are
associated to person r, and τ0 is the set of spurious detections, generated by a
noise process [41]. The prior distribution p(ω) has hyper parameters λA, κ, θ,
and λN representing the expected detections per person per frame, new tracks
per frame, track length, and noise detections per frame [13].

3.2 Scene and VFoA

Our 3D scene model consists of a set of moving persons, represented using 3D
cylinders and ellipsoids, which we call the temporal scene, and a set of static
objects, represented by 3D points. These objects are assumed to command at-
tention from the people in the scene, which we model explicitly for each person
at each frame, and call visual focus of attention (VFoA).

Static objects. The scene contains a set of m̂ static objects, denoted by χ =
(χ1, . . . ,χm̂), χr ∈ R

3. Since we do not have any prior information regarding
their locations, we set a uniform distribution on their positions over the visible
3D space. We model interesting locations as independent from each other by

using a joint prior of p(χ) = p(m̂)
∏m̂

r=1 p(χr), where p(m̂) is Poisson.
Visual focus of attention (VFoA). The scene also contains m people, one

for each association track τr ∈ ω. Each person has a VFoA at each frame that
encodes who or what they are observing, if anything. We use ξrj ∈ {0, . . . ,m+m̂}
to denote the VFoA of person r at frame j, e.g., ξrj = r′ indicates person r is
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looking at person or object r′ at frame j, where values of 1 ≤ ξrj ≤ m indicate
focus on a person,m < ξrj ≤ m+m̂ on an object, and ξrj = 0 indicates no focus.
A priori, people tend to focus on the same visual target in consecutive frames,
and we set a simple Markov prior on ξr = (ξr1, . . . , ξmlm

), where ξrj = ξrj−1

with high probability. The prior for the entire VFoA set is p(ξ |ω) =
∏m

r=1 p(ξr).
Temporal scene. Each person r has temporal 3D statewr = (wr1, . . . ,wrlr ),

where each single-frame state consists of the person’s ground-plane position
xrj ∈ R

2, body yaw qrj , head pitch prj , and head yaw yrj , so that wrj =
(xrj , qrj , prj , yrj), j = 1, . . . , lr. Importantly, the head yaw yrj is measured rela-
tive to the body yaw qrj , i.e., yrj = 0 when person r at frame j is looking straight
ahead. Additionally, each person has three size dimensions: width, height, and
thickness, denoted by dwr , d

h
r, and d

g
r. We will denote the full 3D configuration

of track τr by zr = (wr, d
w
r , d

h
r, d

g
r). Conceptually, at any given frame j, this can

be thought of as a dwr × dhr × dgr cylinder whose “front” side is oriented at angle
qrj , with an ellipsoid on top that has a pitch of prj and a yaw of yrj (Fig. 3).

We call xr = (xr1, . . . ,xrlr ) the trajectory of person r, and place a Gaussian
process (GP) prior on it to promote smoothness. We use analogous definitions
for the body angle trajectory qr, the head pitch trajectory pr, and the head
yaw trajectory yr (e.g., for body angle, qr = (qr1, . . . , qrlr )). We use similar
smooth GP priors for these trajectories. Importantly, the priors on the head
angle trajectories pr and yr depend on which objects they observe, encoded
by ξr, and their locations, which are contained in χ and x−r (all trajectories
except xr); e.g., for head pitch, p(pr | ξr,χ,x−r). We express this dependence
by setting the mean of the GP prior to an angle pointing in the direction of the
observed object, if any, at each frame.

The prior over a person’s full physical state, p(zr | ξr,χ,x−r, ω), expands to
p(dwr , d

h
r, d

g
r)p(xr |ω)p(qr |ω)p(pr | ξr,χ,x−r, ω)p(yr | ξr,χ,x−r, ω), by conditional

independence of the state variables given the context variables. We condition on
ω as it encodes track length probability. Our overall state prior includes an energy
function that makes trajectory intersection unlikely, which is better for inference

Fig. 3. 3D model for a person (left) and its
projection into the image plane (right). Per-
son r at time (frame) j consists of a cylinder
at position xrj , of width dwr , height d

h
r, and

thickness dgr (not illustrated) with body an-
gle qrj (the black stripe on the cylinder rep-
resents its “front”) relative the z-axis of the
world. Further, person r’s head, represented
by the ellipsoid, has yaw yrj relative to the
front of the cylinder and pitch prj indicated
by the red arc. Its projection under camera
C yields three boxes: model box hrj , model
body box orj , and model face box grj .

 
p

rj
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than a simple constraint (details omitted). Excluding the energy function, the
overall prior is: p(z | ξ,χ, ω) =

∏m

r=1 p(zr | ξr,χ,x−r, ω), where m is the number
of people in the scene.

3.3 Camera

We use a standard perspective camera model [23] with the simplifying assump-
tions used by Del Pero et al. [18]. Specifically, the world coordinate origin is
on the ground plane (we use the xz-plane), and the camera center is (0, η, 0),
with pitch ψ, and focal length f . This simplified camera has unit aspect ratio,
and roll, yaw, axis skew, and principal point offset are all zero. We denote the
camera parameters as C = (η, ψ, f) and give them vague normal priors whose
parameters we set manually.

3.4 Data and likelihood

We use three sources of evidence: person detectors, face landmarks associated
with person detections, and optical flow. A person detector [20] provides bound-
ing boxes Bt = {bt1, . . . , btNt

}, t = 1, . . . , T , whereNt is the number of detections
at frame t. We define B = ∪T

t=1Bt to be the set of all such boxes. We parameter-
ize each box btj by (bxtj , b

top
tj , b

bot
tj ), representing the x-coordinate of the center,

and the y-coordinates of the top and bottom, respectively.
A face landmark detector [71] provides five 2D points for each face, kti =

(k1ti, . . . , k
5
ti), representing centers of the eyes, the corners of the mouth, and the

tip of the nose, of the ith detection at frame t. We use Ikt = {kt1, . . . ,ktN} to
represent all face landmarks detected at frame t, and define Ik = {Ik1 , . . . , I

k
T }.

A dense optical flow estimator [35] provides velocity vectors Ift = {vt1, . . . , vtNI
}

for each frame t = 1, . . . , T − 1, where NI is the number of pixels in the frame.
We also define I = (If , Ik).

To compute the data likelihood from evidence in 2D frames, we first convert
the 3D model to 2D at each time point, by projecting the 3D scene z on to the
image (via the camera C) as follows.

Model boxes. For each person r at frame j, we compute a set of points on
the surface of their body cylinder and head ellipsoid and project them into the
image. We then find a tight bounding box on the image plane, hrj , called the
model box. Similarly, using the cylinder and ellipsoid separately, we compute a
model body box, orj , and a model face box, grj (see Figure 3). Using this formu-
lation, we can reason about occlusion in 3D, as we can efficiently compute the
non-occluded regions of boxes [13], denoted by ôrj (body) and ôrj (face).

Face features. We project five face locations on the ellipsoid representing
the centers of the eyes, the nose, the corners of the mouth (see Figure 3). We
denote the projected face features bymrj = (m1

rj , . . . ,m
5
rj), using a special value

when a feature is not visible to the camera.
Image plane motion directions. We define two 2D direction vectors,

called model body vector and model face vector, which represent the 3D mo-
tion of the body cylinder (respectively, face ellipsoid) projected onto the image.
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To compute the model face vector for person r at its jth frame, we pick a visible
point on the head ellipsoid and project that point onto the image at frames j
and j+1. Then, the model face vector crj is given by the difference between the
two projected points. We perform the analogous computation using the body
cylinder to get the model body vector urj .

Likelihood. We define a likelihood function for each of the data sources dis-
cussed above, p(B |ω, z, C), p(If | z, C), and p(Ik | z, C). Since B, If , and Ik

are conditionally independent given z and C (see Figure 2), the total likelihood
function is given by a product of these three functions.

Detection box likelihood. We assume each assigned detection box has
i.i.d Laplace-distributed errors with respect to their assigned model box in the
x-coordinate of its center and the y-coordinates of its top and bottom. Our like-
lihood includes video specific noise rate for box detections, and detector specific
miss rate, both of which are critical for inferring the number of tracks [13].

Face landmark likelihood.We associate landmark kti to person r at frame
t if its centroid is near the center of model face box grt. Then, we assume a
Gaussian noise model around each of the model face features mrj . Specifically,
for every k ∈ Ik, ki ∼ N (mi

rj , Σ
i
Ik). for i = 1, . . . , 5, where mi

rj is the model

face feature assigned to ki. Assuming independence of all landmarks, we get a
landmark likelihood of

p(Ik | z, C) =
∏

k∈Ik

p(k |m(k)), (1)

where m(k) is the predicted face feature for landmark k. Because we link faces
to boxes, noisy detections are not relevant. However, the probability of missing
a face detection, conditioned on the model (and box) is strongly dependent on
whether the face is frontal, or sufficiently in profile that only one eye is visible.
Hence we calibrate miss rate for these two cases using held out data.

Optical flow likelihood. We place a Laplace distribution on the difference
between the non-occluded model body vectors and the average optical flow in
the corresponding model body box, and similarly for model face vectors [13].

4 Inference

We wish to find the MAP estimate of ω as a good solution to the data associ-
ation problem. In addition, we need to infer the camera parameters C, and the
association prior parameters γ = (κ, θ, λN ), which we want to be video specific.
We add to this block of parameters, which do not vary in dimension, the discrete
VFoA variables ξ. Hence, we seek (ω, γ, C, ξ) that maximizes the posterior

p(ω, γ, C, ξ |B, I) ∝ p(ω | γ)p(γ)p(C)p(ξ |ω)p(B, I |ω,C, ξ), (2)

where the marginal data likelihood p(B, I |ω,C, ξ) is given by
∫
p(B |ω, z, C)p(I | z, C)p(z | ξ,χ, ω)p(χ) dχ dz. (3)
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4.1 Block sampling over γ, ω, C and ξ

Since expression (2) has no closed form, we approximate its maximum using
MCMC block sampling, which successively draws samples from the conditional
distributions p(γ |ω), p(ω | γ, ξ, C,B, I), p(C |ω, ξ, B, I), and p(ξ |ω,C,B, I). Dur-
ing sampling, we are required to evaluate the posterior (2), which contains the
integral in expression (3). Since this integral cannot be performed analytically,
nor can it be computed numerically due to the high dimensionality of (z,χ),
we estimate its value using the Laplace-Metropolis approximation [24]. This ap-
proximation requires obtaining the best 3D scene (z∗,χ∗) with respect to the
posterior distribution p(z,χ |B, I, ω, C, ξ), which we estimate using MCMC (see
§4.2), keeping track of the best scene across samples.

We use Gibbs to directly draw samples of the association parameters γ from
the conditional posterior p(γ |ω), an extension of the MCMCDA algorithm [40]
to sample values for ω from p(ω | γ, ξ, C,B, I) [13], and random-walk Metropolis-
Hastings (MH) to draw samples of the camera parameters η, ψ, and f from the
distribution p(C |ω, ξ, B, I).

We also use MH to sample ξ from p(ξ |ω,C,B, I) using the following proposal
mechanism. For each person r in the scene, at each frame j, we find the set of
objects or persons in the current scene estimate (z∗,χ∗) that intersect (up to
a threshold) with person r’s gaze vector. Then, we build a distribution over
these objects, which is biased towards the closer ones, as well as the VFoA in
the previous frame. We draw a sample from this distribution and assign it to
ξrj . We then accept or reject the sample using the standard MH acceptance
probability.

4.2 Estimating (z∗, χ∗)

To approximate the MAP estimate of (z∗,χ∗), we alternate sample over z and
χ under the distribution

p(z,χ |B, I, ω, C, ξ) ∝ p(χ)p(z | ξ,χ, ω)p(B, I | z,χ, ω, C). (4)

To sample over χ, we use random-walk MH to perturb the position of each
interesting point χr. We also perform a birth move to introduce new points in
the scene. First, we construct a set of candidate points by intersecting all gaze
rays across all frames using the current estimate of the temporal 3D state of
the persons in the scene z (see Figure 4). Then, we choose a point from the
candidates uniformly at random and add it to χ. We also use a death move,
where we remove an element from χ is uniformly at random.

To explore the space of z, we use an efficient Gaussian process posterior sam-
pling mechanism based on inducing points [55]. The basic idea is to construct a
proposal distribution by drawing samples from the conditional GP prior and a set
of inducing point locations that provide a low-dimensional representation of the
function. We iterate over persons r = 1, . . . ,m and over the different trajectories
of each xr, qr, pr, and yr, drawing a sample at each iteration. More specifically,
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Frame 1 Frame 100

Fig. 4. Proposing static objects. On the left we show a bird’s eye view of three people
with their corresponding gaze vectors at frame 1. The intersection of two of them
creates a candidate static object (red circle). On the right, we show frame 100 of the
same video, which also contains three subjects generating four additional candidates.
The three lighter lines are gazes recorded in at previous times. The red circles is a
candidate generated solely by gazes in the current frame. The three blue circles are
candidates generated by intersecting gaze at the current frame with gazes from the
previous frames. Finally, the light red circle is the candidate from frame 1.

for a given trajectory, say qr = (qr1, . . . , qrlr ), we arbitrarily choose a subset of
(1, . . . , lr) as inducing points, denoted by (j1, . . . , jl′

r
). Then, for each inducing

point jc, we draw a sample from the conditional GP prior q′rjc ∼ p(qrj |qrj−c
),

and a sample from the predictive distribution q′

r ∼ p(qr |qrj−c
, q′rjc), where

qrj−c
represents qr at the set of inducing points excluding jc. The sample is

accepted or rejected using the MH acceptance probability ratio using only the
likelihood function p(B, I | z,χ, ω, C).

5 Evaluation dataset and measures

Several datasets exist for evaluating VFoA recognition in meeting scenarios [7,
5, 8, 29, 58, 59]. Since most of the participants in available meeting datasets are
seated throughout the videos, these datasets are not well-suited for evaluating
our system, which relies on the ability to detect standing people, and is tar-
geted for scenarios with a diversity of gaze directions in both pitch and yaw.
Similarly, datasets such as the Vernissage Corpus dataset [29], which simulates
an art gallery scenario, contain many frames where only the upper bodies of
the participants are visible. Data sets with walking persons on the other hand
uniformly do not encode 3D locations of what people are looking at. While data
sets like the challenging SALSA [1], cocktail party [68] and coffee break [16],
have head pose annotations, this does not suffice for our goals. Thus we created
a new dataset with multiple participants moving freely about while looking at
different static targets and each other.

5.1 A new dataset for 3D gaze

We captured and annotated six indoor and two outdoor video sequences. Each
setting contained several static object locations, several of which were not vis-
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Fig. 5. From left to right, sample frames from two outdoor videos and two indoor
videos. The outdoor videos were taken on top of a garage rooftop and within a library
courtyard. The indoor videos were shot in a classroom and within a hallway. Each
video participant walks inside the scene and records (via an audio recorder) what they
are looking at – either another person or a stationary object. All objects in the indoor
videos are visible to the camera and can be seen in the frames. Some of the objects in
the outdoor videos are not visible to the camera.

ible to the camera. Video participants were asked to walk around and look at
each other or the stationary objects, indicating when they started and stopped
focusing on each target with an audio recording device. All 8 of our videos were
between 40 and 90 seconds long with 3 to 4 people and 5 to 8 objects total
(including objects that were not visible). Indoor videos had an image resolution
of 1920 × 1080. Outdoor video resolution was 1440 × 1080.

Annotation and ground truth. We annotated bounding boxes around
each target at each frame using the VATIC annotation tool [60]. We then es-
timated the ground truth for the 3D positions of each target and the camera
parameters in each video by minimizing the reprojection error with respect to
3D locations and heights using the tops and the bottoms of the ground truth
boxes. We also used the VFoA audio annotations described above to estimate the
ground truth head orientations (pitch and yaw) of each person at every frame
where the person was looking at a target. To determine the locations of points
not visible to the camera, we measured their locations, and locations that were
visible in a shared coordinate system. We then mapped the locations of invisible
points to the camera coordinate system.

5.2 Evaluation measures

Trajectory and head pose evaluation. To evaluate the 3D trajectories of
the inferred targets, we first find the best match between the inferred tracks and
the ground truth tracks using the Hungarian method with pairwise Euclidean
distances. We then use two conventional metrics for tracking: MOTA (for accu-
racy of the data associations) and and MOTP (for precision of the estimated 3D
tracks) [50]. Per convention, we set the MOTP threshold to 1 meter. To evaluate
head pose estimation, we compute the the equivalent of MOTP for both yaw
and pitch between the inferred head poses and their corresponding ground truth
head poses (measured in degrees) at frames in which they are available.

To evaluate VFoA estimation, we compare the inferred VFoA of a tracked
person to the ground truth VFoA at each frame where it exists. Let Nc be the
number of frames where the VFoA is correctly estimated, Nm be the number of
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frames where we fail to infer a VFoA (misses), and Ne be the number of frames
where we infer an incorrect VFoA. We then compute the following three scores for
the VFoA estimation: accuracy = Nc/N, mistakes = Ne/N, missed = Nm/N,
where N is the total number of frames that the ground truth for that person
records that they were looking at one of the scene VFoA targets. Note that this
excludes evaluating the VFoA when the tracked person is transitioning from
looking at one target to another. For each video, we compute the average scores
over all the tracked persons.

Evaluating inferring interesting locations. Finally, we evaluate how well
we can infer the interesting locations in a scene by first finding the best matching
between the inferred interesting locations and the preset ground truth locations
using the Hungarian method with 1 meter threshold. We then compute the recall
and precision for the inferred interesting locations and their average distance to
the ground truth locations.

6 Experiments and results

We ran two sets of experiments to evaluate the performance of our method.
We do not compare to others on our main tasks since we are not aware of any
any relevant published results. We first ran our algorithm and ablated variants
on our dataset to assess the impact of different aspects of our approach. We
then compare our person tracking performance against our previously published
results [13] for people tracking alone to check the effect of the extensions for
gaze tracking and object discovery on basic tracking on the well known TUD
dataset [2].

Experiments on our dataset. We experiment with enabling and disabling
inference over three different parts of the model: the 3D head pose (p,y), the
VFoA ξ, and the static objects χ, and replace each with a baseline algorithm.
We denote the entire model MGG (for “multiple gaze geometry”).

When we disable inference over (p,y), we simply set the head pose same as
the walking direction at each frame (MGG-NO-HEAD). When disabling infer-
ence over ξ, we set the VFoA of each person at each frame to the object or person
first intersects their gaze ray (MGG-NO-VO). Finally, when turning off inference
over χ, we estimate the static objects by computing a histogram of the intersec-
tions of all the 3D gaze directions of all the people across all the frames, then
taking the locations of the top 5 bins with the highest votes (MGG-BASELINE).

Table 1 provides the tracking and head pose estimation results on our dataset.
While MOTA and MOTP on position are comparable across all algorithms, the
estimated yaw of the head is poor without head pose data. This is not surprising,
as the participants in our videos often do not look straight ahead, partly due to
the construction of the experiment. By jointly modeling position and pose, we
maintain good performance on tracking, while obtaining reasonable accuracy of
head yaw, surpassing MGG-NO-HEAD by a significant amount (∼ 40 ◦). The
gain for pitch was more modest, but the absolute error in pitch was less to begin
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Table 1. Performance of different modes of our algorithm on our dataset. Numbers
are averaged over eight videos. The first row shows our method with all parts enabled,
while the next three rows each shows the algorithm with different aspects disabled,
e.g., MGG-NO-HEAD is the stereo gaze algorithm without inferring head pose (see §6
for details). Each column shows a different evaluation measure. We evaluate using the
MOTA (with 1.0m threshold) and MOTP for distance and angles. For VFoA we use
the measures defined in §5.2.

Algorithm MOTA
MOTP VFoA

pos yaw pitch accuracy mistakes missed

MGG 0.95 0.07 28.1 16.8 0.48 0.35 0.17
MGG-NO-HEAD 0.93 0.08 67.3 19.3 0.14 0.45 0.41

MGG-NO-VO 0.95 0.07 29.9 19.2 0.31 0.39 0.30
MGG-BASELINE 0.92 0.10 70.1 20.8 0.13 0.46 0.41

Table 2. Object discovery performance. Numbers are averaged over eight videos. The
algorithms are the same as in Table 1, and the measures are defined in §5.2. We tabulate
performance separately for objects not visible in any frame. The performance here may
be favorably biased towards invisible objects because they tended to be behind the
camera, and looking at them meant a more frontal image of the viewer, which entails
better pose estimation.

Algorithm
All static objects Objects in video Objects not in video
recall prec dist recall prec dist recall prec dist

MGG 0.48 0.59 0.58 0.45 0.54 0.59 0.57 0.67 0.51
MGG-NO-HEAD 0.10 0.23 0.35 0.10 0.25 0.35 0.10 0.22 0.34

MGG-NO-VO 0.14 0.15 0.17 0.15 0.18 0.18 0.14 0.14 0.17
MGG-BASELINE 0.13 0.12 0.40 0.14 0.11 0.40 0.13 0.12 0.39

with, which was biased by our instructions and our environment. However, this
is ecologically valid, as typical viewing angles are not that far from level.

Table 1 also provides the results for the estimated VFoA. On average, we
can correctly identify the VFoA target 48% of the time, much better than the
baseline (13%), and better than the ablated MGG-NO-VO version (31%). The
later result suggests, perhaps not surprisingly, that learning the 3D locations
that people might be looking at provides additional information beyond gaze
angles determined from image data alone.

Results for object discovery are shown in Table 2. Here we define success by
correctly estimating the location within one meter. We correctly identified 48%
of the instances that are available to be identified across the eight videos (recall).
In addition, among the ones our method proposes as interesting locations, 59%
are correct (precision). The average distance error is a little more than half a
meter, which is driven by the choice of the one-meter threshold. Figure 6 shows
some example frames of the resulting inferred 3D scene when running the full
algorithm (MGG) compared with the baseline (MGG-BASELINE).
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Fig. 6. Visualization of the inferred 3D targets in three scene settings. The top row
shows a visualization of the results of the baseline algorithm (MGG-BASELINE), in
which the yaw of the gaze direction is set based on the walking directions, and the
static objects are estimated from the gaze intersections. The bottom row shows the
results of the proposed method on the same frames of the same videos. The arrow on
the head indicates the gaze direction and the arrow on the body cylinder indicates
the body direction. A tracked person's VFoA is indicated by a lin e segment from their
head connecting to one of the discovered 3D points (yellow spheres) or one of the other
tracked people. In the last column, the objects are outside the visible image area.

Experiments on TUD benchmark videos. We compared tracking per-
formance to a similar system for tracking only [13], to evaluate whetherincor-
porating gaze tracking and object inference reduce the tracking performance.
We found that we in fact do better on the TUD data, suggesting that the joint
inference is helpful.

Table 3. Tracking results
on the TUD dataset. We
compare to [13], which
shows that joint inference
over additional scene at-
tributes yielded a tracking
performance boost as well.

video
Brau et al. [13] Proposed
MOTA MOTP MOTA MOTP

TUD-Campus 0.84 0.19 0.91 0.11
TUD-Crossing 0.80 0.22 0.80 0.10

TUD-Stadtmitte 0.70 0.27 0.76 0.06
mean 0.78 0.23 0.82 0.08

7 Conclusion

We demonstrated the feasibility of discovering interesting visual locations, speci-
�ed in 3D, from multiple person gazes observed in monocular video. In particular,
on a data set developed for the task, we found that we can infer what peopleare
looking at 59% of the time, and where it is within about .58m. We also found
that joint inference over the various scene attributes generally improved the ac-
curacy of the individual estimates. In brief, gaze is both part of scenesemantics,
and can help determine other aspects of scene semantics.












