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Abstract. Training a deep network to perform semantic segmentation
requires large amounts of labeled data. To alleviate the manual effort
of annotating real images, researchers have investigated the use of syn-
thetic data, which can be labeled automatically. Unfortunately, a net-
work trained on synthetic data performs relatively poorly on real images.
While this can be addressed by domain adaptation, existing methods all
require having access to real images during training. In this paper, we
introduce a drastically different way to handle synthetic images that
does not require seeing any real images at training time. Our approach
builds on the observation that foreground and background classes are
not affected in the same manner by the domain shift, and thus should
be treated differently. In particular, the former should be handled in
a detection-based manner to better account for the fact that, while
their texture in synthetic images is not photo-realistic, their shape looks
natural. Our experiments evidence the effectiveness of our approach on
Cityscapes and CamVid with models trained on synthetic data only.
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1 Introduction

As for many other computer vision tasks, deep networks have proven highly
effective to perform semantic segmentation. Their main drawback, however, is
their requirement for vast amounts of labeled data. In particular, acquiring such
data for semantic segmentation is very expensive. For instance, pixel labeling
of one Cityscapes image takes 90 minutes on average [7]. As a consequence,
there has been a significant effort in the community to rely on the advances of
computer graphics to generate synthetic datasets [36, 35, 37].

Despite the increasing realism of such synthetic data, there remain significant
perceptual differences between synthetic and real images. Therefore, the perfor-
mance of a state-of-the-art semantic segmentation network, such as [4, 25, 52, 28],
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Fig. 1. Visual comparison of different classes in real Cityscapes images (Top) and syn-
thetic GTA5 ones (Middle). Background classes (first 4 columns) are much less affected
by the domain shift than foreground ones (last 3 columns), which present clearly no-
ticeable differences in texture, but whose shape remain realistic. (Bottom) We compare
the accuracy of a semantic segmentation network (DeepLab) and of a detection-based
model (Mask R-CNN), both trained on synthetic data only, on the foreground classes
of Cityscapes. Note that the detection-based approach, by leveraging shape, yields
significantly better results than the segmentation one.

trained on synthetic data and tested on real images remains disappointingly low.
While domain adaptation methods [6, 19, 20, 51, 27, 5] can improve such perfor-
mance by explicitly accounting for the domain shift between real and synthetic
data, they require having access to a large set of real images, albeit unsupervised,
during training. As such, one cannot simply deploy a model trained off-line on
synthetic data in a new, real-world environment.

In this paper, we introduce a drastically different approach to addressing the
mismatch between real and synthetic data, based on the following observation:
Not all classes suffer from the same type and degree of perceptual differences.
In particular, as can be seen in Fig. 1, the texture of background classes in
synthetic images looks more realistic than that of foreground classes1. Neverthe-
less, the shape of foreground objects in synthetic images looks very natural. We
therefore argue that these two different kinds of classes should be treated differ-
ently. Specifically, we argue that semantic segmentation networks are well-suited
to handle background classes because of their texture realism. By contrast, we
expect object detectors to be more appropriate for foreground classes, particu-
larly considering that modern detectors rely on generic object proposals. Indeed,
when dealing with all possible texture variations of all foreground object classes,

1 We distinguish foreground classes from background ones primarily based on whether
they have a well-defined shape and come in instances, or they are shapeless and iden-
tified by texture or material property. In essence, this corresponds to the distinction
between things and stuff in [17]. See Fig. 1 for examples.
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Fig. 2. Aerial views of our synthetic VEIS environment.

the main source of information to discriminate a foreground object from the
background is shape.

To empirically sustain our claim that detectors are better-suited for fore-
ground classes, we trained separately a DeepLab [4] semantic segmentation net-
work and a Mask R-CNN [16], performing object detection followed by binary
segmentation and class prediction, on synthetic data. At the bottom of Fig. 1,
we compare the mean Intersection over Union (mIoU) of these two models on the
foreground classes of Cityscapes. Note that, except for motorcycle, the detector-
based approach outperforms the semantic segmentation network on all classes.

Motivated by this observation, we therefore develop a simple, yet effective
semantic segmentation framework that better leverages synthetic data during
training. In essence, our model combines the foreground masks produced by
Mask R-CNN with the pixel-wise predictions of the DeepLab semantic segmen-
tation network. Our experiments on Cityscapes [7] and CamVid [3] demonstrate
that this yields significantly higher segmentation accuracies on real data than
only training a semantic segmentation network on synthetic data. Furthermore,
our approach outperforms the state-of-the-art domain adaptation techniques [6,
19, 20, 51] without having seen any real images during training, and can be fur-
ther improved by making use of unsupervised real images.

Furthermore, as a secondary contribution, we introduce a virtual environ-
ment created in the Unity3D framework, called VEIS (Virtual Environment for
Instance Segmentation). This was motivated by the fact that existing synthetic
datasets [37, 36, 35] do not provide instance-level segmentation annotations for
all the foreground classes of standard real datasets, such as CityScapes. VEIS
automatically annotates synthetic images with instance-level segmentation for
foreground classes. It captures urban scenes, such as those in Fig. 2 shown from
an aerial view, using a virtual camera mounted on a virtual car, yielding images
such as those of Fig. 6. While not highly realistic, we show that, when used with
a detector-based approach, this data allows us to boost semantic segmentation
performance, despite it being of only little use in a standard semantic segmen-
tation framework. We will make our data and the VEIS environment publicly
available.
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2 Related work

Semantic segmentation, that is, understanding an image at pixel-level, has been
widely studied by the computer vision community [43, 46, 15, 26, 11, 33, 42, 25,
28, 4, 53, 52]. As for many other tasks, the most recent techniques rely on deep
networks [4, 25, 52, 28]. Unfortunately, in contrast with image recognition prob-
lems, obtaining fully-supervised data for semantic segmentation, with pixel-level
annotations, is very expensive and time-consuming. Two trends have therefore
been investigated to overcome this limitation: Weakly-supervised methods and
the use of synthetic data.

Weakly-supervised semantic segmentation aims to leverage a weaker form of
annotation, such as image tags [23, 30, 32, 34, 40, 41, 49, 48, 29], bounding boxes [8,
21], scribbles [2] and object size statistics [31], which are cheaper to obtain.
While great progress has been made in this area, most existing methods focus
only on foreground object classes and treat the background as one single entity.
However, having detailed information about the different background classes
is crucial in many practical scenarios, such as automated driving, where one
needs to differentiate, e.g., the road from a grass field. To the best of our knowl-
edge, [39] constitutes the only method that considers multiple background classes
for weakly-supervised semantic segmentation. This is achieved by leveraging both
appearance and motion via a two-stream architecture trained using a loss based
on classifier heatmaps. While this method is reasonably effective at segment-
ing background classes, there is still a huge gap compared to fully-supervised
methods, especially in the foreground classes.

With the advance of computer graphics, generating fully-supervised synthetic
data has become an attractive alternative to weakly-supervised learning. This
has led to several datasets, such as SYNTHIA [37], GTA5 [36] and VIPER [35],
as well as virtual environments to generate data [9]. Unfortunately, despite the
growing realism of such synthetic data, simply training a deep network on syn-
thetic images to apply it to real ones still yields disappointing results. This
problem is due to the domain shift between real and synthetic data, and has
thus been tackled by domain adaptation methods [6, 19, 20, 51, 27, 5], which, in
essence, aim to reduce the gap between the feature distributions of the two
domains. In [20], this is achieved by a domain adversarial training strategy in-
spired by the method of [12, 13]. This is further extended in [5] to align not only
global, but also class-specific statistics. Domain adversarial training is combined
in [6] with a feature regularizer based on the notion of distillation [18]. In [51],
a curriculum style learning is introduced to align the label distribution over
both entire images and superpixels. By contrast, [19] and [27] rely on a gener-
ative approach with cycle consistency to adapt the pixel-level and feature-level
representations. While these methods outperform simply training a network on
the synthetic data, without any form of adaptation, they all rely on having ac-
cess to real images, without supervision, during training. As such, they cannot
be directly deployed in a new environment without undergoing a new training
phase.
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Here, we follow an orthogonal approach to leverage synthetic data, based
on the observation that foreground and background classes are subject to dif-
ferent perceptual mismatches between synthetic and real images. We therefore
propose to rely on a standard semantic segmentation network for background
classes, whose textures look quite realistic, and on a detection-based strategy for
foreground objects because, while their textures look less natural, their shapes
are realistic. Our experiments evidence that this outperforms state-of-the-art
domain adaptation strategies. However, being orthogonal to domain adaptation,
our method could also be used in conjunction with domain adaptation tech-
niques. As a matter of fact, [45], which also argues that modern detectors rely
on shape and discard the background texture, introduces a domain adaptation
approach for the task of object detection, which could potentially be leveraged
to deal with the foreground classes in our approach. We believe, however, that
this goes beyond the scope of this paper.

3 Method

In this section, we introduce our approach to effectively use synthetic data for
semantic segmentation in real driving scenarios. Note that, while we focus on
driving scenarios, our approach generalizes to other semantic segmentation prob-
lems. However, synthetic data is typically easier to generate for urban scenes.
Below, we first consider the case where we do not have access to any real images
during training. We then introduce a simple strategy to leverage the availability
of unsupervised real images.

3.1 Detection-based Semantic Segmentation

As discussed above, and illustrated by Fig. 1, the perceptual differences of fore-
ground and background classes in synthetic and real images are different. In fact,
background classes in synthetic images look quite realistic, presenting very nat-
ural textures, whereas the texture of foreground classes does look synthetic, but
their shape is realistic. We therefore propose to handle the background classes
with a semantic segmentation network, but rather make use of a detection-based
technique for the foreground classes. Below, we describe this in more detail, and
then discuss how we perform semantic segmentation on a real image.

Dealing with Foreground Classes. To handle the background classes, we
make use of the VGG16-based DeepLab model, depicted in Fig. 3. Specifically,
we use DeepLab with a large field of view and dilated convolution layers [4]. We
train this model on the GTA5 dataset [36] in which the background classes look
photo-realistic. The choice of this dataset above others was also motivated by
the fact that it contains all the classes of the commonly used real datasets, such
as Cityscapes and CamVid. To train our model, we use the cross-entropy loss
between the network’s predictions and the ground-truth pixel-wise annotations
of the synthetic images. Note that the network is trained on all classes, both
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Fig. 3. Dealing with background classes. We make use of the DeepLab semantic
segmentation framework trained on synthetic GTA5 [36] frames with corresponding
per-pixel annotations.

Fig. 4. Dealing with foreground classes. We rely on the detection-based Mask R-
CNN framework trained on our synthetic VEIS data with instance-level annotations.
Note that these annotations were obtained automatically.

foreground and background, but, as explained later, the foreground predictions
are mostly discarded by our approach.

Dealing with Foreground Classes. For foreground classes, our goal is to
make use of a detection-based approach, which, as argued in Section 1, relies
more strongly on object shape than on texture, thus making texture realism of
the synthetic data less crucial. Since our final goal is to produce a pixel-wise seg-
mentation of the objects, we propose to rely on a detection-based instance-level
semantic segmentation technique. Note that, once an object has been detected,
segmenting it from the background within its bounding box is a comparatively
easier task than semantic segmentation of an entire image. Therefore, texture
realism is also not crucial here. To address this task, we make use of Mask
R-CNN [16], which satisfies our criteria: As illustrated in Fig. 4, it relies on an
initial object detection stage, followed by a binary mask extraction together with
object classification. Since existing synthetic datasets do not provide instance-
level segmentations for all foreground classes of standard real datasets, we train
Mask R-CNN using our own synthetic data, discussed in Section 4. We make
use of the standard architecture described in [16], as well as of the standard loss,
which combines detection, segmentation, classification and regression terms.

Prediction on Real Images. The two networks described above are trained
using synthetic data only. At test time, we can then feed a real image to each
network to obtain predictions. However, our goal is to obtain a single, pixel-
wise semantic segmentation, not two separate kinds of outputs. To achieve this,
as illustrated in Fig. 5, we fuse the two kinds of predictions, starting from the
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Fig. 5. Fusing foreground and background predictions. Our approach combines
the detection-based foreground predictions with the results of the semantic segmenta-
tion approach. Note that we do not require seeing any real images during training.

Mask R-CNN ones. Specifically, given the Mask R-CNN predictions, we follow a
strategy inspired by the panoptic segmentation procedure of [22], which consti-
tutes an NMS-like approach to combine instance segments. More precisely, we
first sort the predicted segments according to their confidence scores, and then
iterate over this sorted list, starting from the most confident segment. If the cur-
rent segment candidate overlaps with a previous segment, we remove the pixels
in the overlapping region. The original procedure of [22] relies on two different
thresholds: One to discard the low-scoring segments and the other to discard
non-overlapping yet too small segment regions. The values of these thresholds
were obtained by grid search on real images. Since we do not have access to the
ground-truth annotations of the real images, and in fact not even access to the
real images during training, we ignore these two heuristics to discard segments,
and thus consider all segments and all non-overlapping segment regions when
combining the Mask R-CNN predictions.

Combining the Mask R-CNN predictions yield a semantic segmentation map
that only contains foreground classes and has a large number of holes, where no
foreground objects were found. To obtain our final semantic segmentation map,
we fill these holes with the predictions obtained by the DeepLab network. That
is, every pixel that is not already assigned to a foreground class takes the label
with highest probability at that pixel location in the DeepLab result.

3.2 Leveraging Unsupervised Real Images

The method described in Section 3.1 uses only synthetic images during training.
In some scenarios, however, it is possible to have access to unlabeled real images
at training time. This is in fact the assumption made by domain adaptation
techniques. To extend our approach to this scenario, we propose to treat the
predictions obtained by the method of Section 3.1 as pseudo ground-truth labels
for the real images. To be precise, we make a small change to these predictions: In
the holes left after combining the Mask R-CNN predictions, we assign the pixels
that are predicted as foreground classes by the DeepLab model to an ignore

label, so that they are not used for training. This is motivated by the fact that,
as discussed above, the predictions of foreground classes by a standard semantic
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Fig. 6. Example images and corresponding instance-level annotations, obtained auto-
matically, from our synthetic VEIS dataset.

segmentation network are not reliable. We then use the resulting pseudo-labels
as ground-truth to train a DeepLab semantic segmentation network from real
images. As will be shown in our results, thanks to the good quality of our initial
predictions, this helps further boost segmentation accuracy.

4 The VEIS Environment and Dataset

In this section, we introduce our Virtual Environment for Instance Segmenta-
tion (VEIS) and the resulting dataset used in our experiments. While there are
already a number of synthetic datasets for the task of semantic segmentation in
urban scenes [37, 36, 35], they each suffer from some drawbacks. In particular,
GTA5 [36] does not have instance-level annotations, and is thus not suitable for
our purpose. By contrast, SYNTHIA [37] and VIPER [35] do have instance-level
annotations, but not for all foreground classes of commonly-used real datasets,
such as Cityscapes. For instance, train, truck, traffic light and traffic sign are
missing in SYNTHIA, and rider, traffic sign, train and bicycle in VIPER. Fur-
thermore, [36, 35] were acquired using the commercial game engine Grand Theft
Auto V (GTAV), which only provides limited freedom for customization and
control over the scenes to be captured, thus making it difficult to obtain a large
diversity and good balance of classes. Obtaining ground-truth instance-level an-
notations in the GTAV game also involves a rather complicated procedure [35].

Environment. To alleviate these difficulties, we used the Unity3D [47] game
engine, in which one can manually design scenes with common urban struc-
tures and add freely-available 3D objects, representing foreground classes, to
the scene. Example 3D scenes are shown in Fig. 2. Having access to the source
code and manually constructing the scenes both facilitate generating annota-
tions such as instance-level pixel-wise labels automatically. Specifically, before
starting to generate the frames, our framework counts the number of instances
of each class, and then assigns a unique ID to each instance. These unique IDs
then automatically create unique textures and shaders for their corresponding
instances. When data generation starts, both the original textures and shaders



Effective use of synthetic data for urban scene semantic segmentation 9

and the automatically created ones are rendered, thus allowing us to capture the
synthetic image and the instance-level semantic segmentation map at the same
time and in real time. Creating VEIS took 1 day to 1 person. This is very little
effort, considering that VEIS allows us to have access to a virtually unlimited
number of annotated images with the object classes of standard real urban scene
datasets, such as CamVid and CityScapes.

As can be seen from the samples shown in Fig. 6, the images generated by
VEIS look less photo-realistic than those of [36, 35]. Therefore, as evidenced by
our experiments, using them to train a semantic segmentation network does not
significantly help improve accuracy on real images compared to using existing
synthetic datasets. However, using these images within our proposed detection-
based framework allows us to significantly improve semantic segmentation qual-
ity. This is due to the fact that, while not realistic in texture, the foreground
objects generated by VEIS are realistic in shape, and our environment allowed
us to cover a wide range of shape and pose variations.

Note that, in principle, we could have used other open source frameworks to
generate our data, such as CARLA [9], implemented as an open-source layer of
the Unreal Engine 4 (UE4) [10]. However, CARLA is somewhat too advanced
for the purpose of our investigation. It targets the complete autonomous driving
pipeline, with three different approaches covering a standard modular pipeline,
an end-to-end approach based on imitation learning, and an end-to-end approach
based on reinforcement learning. Since our goal was only to generate synthetic
images covering a large diversity of foreground objects, we found Unity3D to be
sufficient and easier to deploy.

The VEIS Dataset. Using our VEIS environment, we generated images from
two different types of scenes: 1) A multi-class, complex scene, where a city-
like environment was synthesized with various objects of different classes. 2) A
single-class, simple scene, where one or multiple objects of a single class were
placed in a single road with background items (e.g., road, sidewalk, building,
tree, sky), and images from multiple views were captured. Our VEIS dataset
then contains 30180 frames from the multi-class scene and 31125 frames from
the single-class scene, amounting to a total of 61305 frames with corresponding
instance-level semantic segmentation. Note that the instance-level annotations
were obtained with no human intervention. Some statistics of this dataset are
shown in Table 1. In particular, we used a small amount of unique 3D objects
for most of the classes and just repeated them in the scenes but with varying
pose and articulation where applicable.

5 Experiments

In this section, we first describe the datasets used in our experiments and provide
details about our learning and inference procedures. We then present the results
of our model and compare it to state-of-the-art weakly-supervised semantic seg-
mentation and domain adaptation methods.
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Table 1. Some statistics of our synthetic data
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5.1 Datasets

To train our model and the baseline, we make use of the synthetic GTA5
dataset [36] and of our new VEIS dataset introduced in Section 4. Further-
more, we also provide results of fully-supervised models trained on the synthetic
SYNTHIA [37] and VIPER [35] datasets. At test time, we evaluate the models
on the real images of the CityScapes [7] and CamVid [3] road scene datasets.
Below, we briefly discuss the characteristics of these datasets.
GTA5 [36] was captured using the Grand Theft Auto V video game and con-
tains 24966 photo-realistic images with corresponding pixel-level annotations.
The resolution of the images is 1920 × 1080 and the class definitions of the
semantic categories are compatible with those in the Cityscapes dataset.
VIPER [35] is a slightly more recent dataset than GTA5, also acquired using
the Grand Theft Auto V video game, but covering a wider range of weather con-
ditions. It contains more than 250K high-resolution (1920×1080) video frames,
all annotated with ground-truth labels for both low-level and high-level vision
tasks, including optical flow, semantic instance segmentation, object detection
and tracking, object-level 3D scene layout, and visual odometry. In our experi-
ments, the model exploiting VIPER was trained using the training and validation
sets of this dataset (over 180K frames). While VIPER is larger than GTA5, its
labels are not really compatible with Cityscapes. For example, the classes rider
and wall are missing; the class pole has been incorporated into infrastructure2;
the windows of the cars are not labeled as car unlike in Cityscapes. This explains
why most of our experiments rather rely on GTA5.
SYNTHIA [37] is another dataset of synthetic images, with a subset called
SYNTHIA-RAND-CITYSCAPES meant to be compatible with Cityscapes. This
subset contains 9,400 images with pixel-level semantic annotations. However,
some classes, such as train, truck and terrain, have no annotations. As for VIPER,
we show the performance of a fully-supervised method trained on SYNTHIA.
This is for the sake of completeness, even though we favor GTA5 since it contains
all the classes of Cityscapes.
Cityscapes [7] is a large-scale dataset of real images, containing high-quality
pixel-level annotations for 5000 images collected in street scenes from 50 different
cities. There is also another set of images with coarse level annotations. We
report the results of all models on the 500 validation images. Furthermore, the
methods that rely on unsupervised real images during training, including ours,
were trained using the 22971 train/train-extra RGB frames of this dataset.

2 To evaluate the pole class, we considered any infrastructure prediction as pole, which
is the dominant label in this slightly broader class.
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CamVid [3] consists of over 10 minutes of high quality 30 Hz footage. The
videos were captured at 960 × 720 resolution with a camera mounted inside
a car. Three of the four sequences were shot in daylight, and the fourth one
was captured at dusk. This dataset contains 32 categories. In our experiments,
following [3], we used a subset of 11 classes. The dataset is split into 367 training,
101 validation and 233 test images. Note that, as for the Cityscapes dataset, we
evaluate on the test set and, when training on unsupervised data, used the RGB
frames of training+validation without any type of annotation.

5.2 Implementation Details

As discussed in Section 3, our approach makes use of two types of networks:
DeepLab (Large FOV) [4] for semantic segmentation and Mask R-CNN [16] for
instance-level segmentation. Below, we briefly discuss these models.

DeepLab. To train our semantic segmentation networks, using either the syn-
thetic GTA5 dataset or real images with pseudo ground truth, we used a DeepLab
model with a large field of view and dilated convolution layers. We relied on
stochastic gradient descent with a learning rate starting at 25 × 10−5, with a
decrease factor of 10 every 40k iterations, a momentum of 0.9, a weight decay of
0.0005, and mini-batches of size 1. Similarly to recent methods [39, 4, 25, 52], the
weights of our semantic segmentation network were initialized with those of the
VGG-16 classifier [44] pre-trained on ImageNet [38]. Note that, because of lim-
ited GPU memory, we down-sampled the high resolution images of Cityscapes,
GTA5, VIPER, and SYNTHIA by a factor 2 when using them for training.

Mask R-CNN. To train a Mask R-CNN network, we make use of the imple-
mentation provided by the “Detectron” framework [14]. We train an end-to-end
Mask R-CNN model with a 64 × 4d ResNeXt-101-FPN backbone, pre-trained
on ImageNet, on our synthetic VEIS dataset. We use mini-batches of size 1 and
train the model for 200k iterations, starting with a learning rate of 0.001 and
reducing it to 0.0001 after 100k iterations.

5.3 Evaluated Methods

In our experiments, we report the results of the following methods:
GTA5 [6]: This baseline denotes a DeepLab model trained on GTA5 by the
authors of [6]. We directly report the numbers as provided in [6].
GTA5: This corresponds to our replication of the baseline above. We found our
implementation to yield an average accuracy 9.4% higher than the one reported
in [6]. As such, this constitutes our true baseline.
SYNTHIA: This refers to a DeepLab model trained on the SYNTHIA [37]
dataset instead of GTA5.
VIPER: This baseline denotes a DeepLab model trained on the VIPER dataset.
VEIS: This corresponds to training a DeepLab model on our new dataset. Note
that here we considered all the classes, both foreground and background ones,
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for semantic segmentation, ignoring the notion of instances.
GTA5+VEIS: This denotes a DeepLab model trained jointly on GTA5 and
our new dataset for semantic segmentation.
GTA5+VEIS and Pseudo-GT: For this baseline, we used the results of the
GTA5+VEIS baseline to generate pseudo-labels on the real images. We then
trained another DeepLab network using these pseudo-labels as ground-truth. In
essence, this corresponds to the approach discussed in Section 3.2, but without
handling the foreground classes in a detection-based manner.
Ours: This corresponds to our method in Section 3.1, which relies on the GTA5
synthetic data and uses a detection-based model for foreground classes combined
with a DeepLab semantic segmentation network for the background ones.
Ours and Pseudo-GT: This consists of using the method above (Ours) to
generate pseudo-labels on the real images, and training a DeepLab model from
these pseudo-labels, as introduced in Section 3.2.

5.4 Experimental Results

We now compare the results of the different methods discussed above on the real
images of Cityscapes and CamVid. Furthermore, we also compare our approach
to the state-of-the-art weakly supervised semantic segmentation and domain
adaptation methods on Cityscapes.

In Table 2, we provide the results of the methods described above on Cityscapes.
The foreground classes are highlighted. In essence, we can see that GTA5 per-
forms better than training DeepLab on the datasets {SYNTHIA,VIPER,VEIS}
alone, because these datasets either do not contain all the Cityscapes classes
{SYNTHIA,VIPER}, or because they are less realistic {VEIS}. Complementing
GTA5 with VEIS {GTA5+VEIS} improves the results by only a small margin,
again because of the non-photo-realistic VEIS images. By contrast, using GTA5
and VEIS jointly within our approach (Ours) yields a significant improvement.
This is because our detection-based way of dealing with foreground classes is
less sensitive to photo-realism, but focuses on shape, which does look natural in
our VEIS data. As a matter of fact, our improvement is particularly marked for
foreground classes. Finally, while using pseudo-labels from the {GTA5+VEIS}
baseline only yields a minor improvement, their use within our framework gives
a significant accuracy boost. Some qualitative results are shown in Fig. 7.

In Table 3, we compare our approach with the state-of-the-are weakly-supervised
method of [39] and with state-of-the-art domain adaptation methods. The results
for these methods were directly taken from their respective papers. Note that,
even without seeing the Cityscapes images at all, our approach (Ours) outper-
forms all these baselines. Using unsupervised Cityscapes images (Ours+pseudo-
GT) helps to further improve over the baselines. To also show that our approach
generalizes to the situation where there is no domain shift, we trained its two
components on Cityscapes and evaluated it on the Cityscapes validation set
(Fully Sup. Ours in Table 3). This significantly improves the segmentation accu-
racy of foreground classes (e.g., person, car, truck, bus, train, motorbike, bike).
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Table 2. Comparison of models trained on synthetic data. All the results are
reported on the Cityscapes validation set. Note that ps-GT (pseudo-GT) indicates the
use of unlabeled real images during training.
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GTA5 [6] 29.8 16.0 56.6 9.2 17.3 13.5 13.6 9.8 74.9 6.7 54.3 41.9 2.9 45.0 3.3 13.1 1.3 6.0 0.0 21.9

GTA5 80.5 26.0 74.7 23.0 9.8 9.1 13.4 7.3 79.4 28.6 72.1 40.4 5.1 77.8 23.0 18.6 1.2 5.3 0.0 31.3

SYNTHIA 36.7 22.7 51.0 0.3 0.1 16.6 0.1 9.5 72.5 0.0 78.4 47.5 5.6 61.4 0.0 13.0 0.0 3.2 3.1 22.1

VIPER 36.9 19.0 74.7 0.0 5.3 7.1 10.0 10.1 78.7 13.6 69.6 43.0 0.0 41.2 20.8 13.9 0.0 9.1 0.0 23.9

VEIS 70.8 9.5 50.9 0.0 0.0 0.3 15.6 26.8 66.8 12.7 52.3 44.0 14.2 60.6 10.2 8.2 3.2 5.5 11.8 24.4

GTA5+VEIS 66.2 21.6 72.3 15.7 18.3 12.3 22.3 23.8 78.4 11.3 74.6 48.7 13.3 75.1 14.3 21.2 2.1 24.2 7.3 32.8

GTA5+VEIS&ps-GT 77.6 26.8 75.5 19.4 19.5 4.8 18.7 19.8 79.5 21.7 78.9 47.3 8.7 77.6 23.1 16.1 2.2 15.6 0.0 33.3

Ours 71.9 23.8 75.5 23.4 14.9 9.3 26.7 42.5 80.1 34.0 76.3 52.2 28.5 76.2 19.6 31.6 6.9 18.1 9.8 38.0

Ours&ps-GT 79.8 29.3 77.8 24.2 21.6 6.9 23.5 44.2 80.5 38.0 76.2 52.7 22.2 83.0 32.3 41.3 27.0 19.3 27.7 42.5

Table 3. Comparison to domain adaptation and weakly-supervised methods.
All methods were trained on GTA5, except for [39] which does not use synthetic images
and Ours which uses GTA5 for background classes and VEIS for foreground. The
domain adaptation methods and Ours+Pseudo-GT make use of unlabeled real images
during training. The results are reported on the Cityscapes validation set. Note that
all the models below use the same backbone architecture as us (DeepLab or FCN8).
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Fully Sup. 95.8 70.4 85.4 42.7 41.0 21.2 33.7 44.8 86.2 51.4 88.4 58.1 30.1 86.4 43.8 56.7 42.8 33.9 54.8 56.2

Fully Sup. Ours 95.6 70.1 86.1 43.8 41.4 16.6 31.3 43.3 85.9 52.0 89.6 67.0 29.9 87.7 61.8 72.7 53.1 50.8 60.5 60.0

Weakly-Sup. [39] 75.9 1.5 41.7 14.1 15.3 6.3 4.4 7.7 58.4 12.6 56.2 16.2 6.1 41.2 22.7 16.6 20.4 15.7 14.9 23.6

FCNs in Wld [20] 70.4 32.4 62.1 14.9 5.4 10.9 14.2 2.7 79.2 21.3 64.6 44.1 4.2 70.4 8.0 7.3 0.0 3.5 0.0 27.1

Curriculum [51] 74.8 22.0 71.7 6.0 11.9 8.4 16.3 11.1 75.7 13.3 66.5 38.0 9.3 55.2 18.8 18.9 0.0 16.8 14.6 28.9

ROAD [6] 85.4 31.2 78.6 27.9 22.2 21.9 23.7 11.4 80.7 29.3 68.9 48.5 14.1 78.0 19.1 23.8 9.4 8.3 0.0 35.9

CYCADA [19] 85.2 37.2 76.5 21.8 15.0 23.8 22.9 21.5 80.5 31.3 60.7 50.5 9.0 76.9 17.1 28.2 4.5 9.8 0.0 35.4

Ours 71.9 23.8 75.5 23.4 14.9 9.3 26.7 42.5 80.1 34.0 76.3 52.2 28.5 76.2 19.6 31.6 6.9 18.1 9.8 38.0

Ours+Pseudo-GT 79.8 29.3 77.8 , 24.2 21.6 6.9 23.5 44.2 80.5 38.0 76.2 52.7 22.2 83.0 32.3 41.3 27.0 19.3 27.7 42.5

The results on CamVid in Table 4, where we compare our method to fully-
supervised techniques that make use of CamVid images and annotations to
train a model, GTA5-based baselines, and the state-of-the-art weakly-supervised
method, show a similar trend. Our approach clearly outperforms the weakly-
supervised method of [39] and a DeepLab semantic segmentation network trained
on synthetic data. In fact, on this dataset, it event outperforms some of the fully
supervised methods that rely on annotated CamVid images for training.

5.5 Shape vs. Texture in the Presence of Domain Shift

In addition to Fig. 1, we experimentally show that shape is more representa-
tive than texture for foreground classes when dealing with the domain shift. To
this end, first, we trained a binary VGG-16 classifier to determine whether a
silhouette of a foreground object comes from real or synthetic data. We used
synthetic data from our VEIS dataset and real data from Cityscapes. We found
that such a classifier was unreliable to distinguish these two classes, achieving
an accuracy of 70.0% despite our best effort to train it. Note that this is better
than chance because the synthetic silhouettes are perfect whereas the real ones
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Table 4. Comparison with fully- and weakly-supervised methods on CamVid.
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SegNet [1] 68.7 52.0 87.0 58.5 13.4 86.2 25.3 17.9 16.0 60.5 24.8 46.4

Liu and He [24] 66.8 66.6 90.1 62.9 21.4 85.8 28.0 17.8 8.3 63.5 8.5 47.2

FCN 8 [25] n/a 52.0

DeepLab-LargeFOV [4, 50] 81.5 74.6 89.0 82.2 42.3 92.2 48.4 27.2 14.3 75.4 50.1 61.6

Dilation8 [50] 82.6 76.2 89.9 84.0 46.9 92.2 56.3 35.8 23.4 75.3 55.5 65.3

Weakly Sup. [39] 58.9 46.4 83.8 26.5 12.0 64.4 8.0 11.3 3.1 1.1 11.0 29.7

GTA5 66.6 53.9 61.4 70.4 32.8 80.9 28.2 24.4 14.6 57.1 0.0 44.6

GTA5+VEIS 73.6 54.2 77.9 66.2 33.6 77.3 26.1 16.0 3.3 48.4 11.9 44.4

Ours 66.3 55.0 61.9 73.4 37.4 82.7 41.4 23.9 9.2 57.7 14.9 47.6

Ours+Pseudo-GT 72.3 55.2 72.6 73.1 37.4 83.9 39.9 33.2 1.2 55.5 12.8 48.8

Image Ground truth GTA5+VEIS Ours Ours ps-GT

Fig. 7. Qualitative results on Cityscapes.

were obtained manually. We performed the same experiment with textured fore-
ground objects (but no background) and found that the same classifier was then
successful, with an accuracy of 95.1%. This shows that texture is indeed much
more indicative of the data domain than shape, and thus supports our claim.
As a second experiment, we trained a multi-class classifier on silhouettes of syn-
thetic foreground VEIS objects and tested it on silhouettes of real Cityscapes
objects. The resulting classifier achieved an accuracy of 81.0% on the real data,
vs 89.2% on a validation set of synthetic samples. Training the same classifier
on textured silhouettes yielded an accuracy of 83.7% on real data and 94.2% on
synthetic data. In other words, there is a larger accuracy gap between the real
and synthetic domains when training on textured data, thus further showing
that shape is more robust to the domain shift.

6 Conclusion

We have introduced an approach to effectively leveraging synthetic training data
for semantic segmentation in urban scenes, by handling the foreground classes in
a detection-based manner. Our experiments have demonstrated that this outper-
forms training a standard semantic segmentation network from synthetic data
and state-of-the-art domain adaptation techniques. Nevertheless, our approach
is orthogonal to domain adaptation. As such, in the future we will investigate
how domain adaptation can be incorporated into our framework.
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