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Abstract. We present a novel hierarchical triplet loss (HTL) capable
of automatically collecting informative training samples (triplets) via a
defined hierarchical tree that encodes global context information. This
allows us to cope with the main limitation of random sampling in training
a conventional triplet loss, which is a central issue for deep metric learn-
ing. Our main contributions are two-fold. (i) we construct a hierarchical
class-level tree where neighboring classes are merged recursively. The
hierarchical structure naturally captures the intrinsic data distribution
over the whole dataset. (ii) we formulate the problem of triplet collec-
tion by introducing a new violate margin, which is computed dynamically
based on the designed hierarchical tree. This allows it to automatically
select meaningful hard samples with the guide of global context. It en-
courages the model to learn more discriminative features from visual sim-
ilar classes, leading to faster convergence and better performance. Our
method is evaluated on the tasks of image retrieval and face recognition,
where it can obtain comparable performance with much fewer iterations.
It outperforms the standard triplet loss substantially by 1%− 18%, and
achieves new state-of-the-art performance on a number of benchmarks.

Keywords: Deep Metric Learning · Image Retrieval · Triplet Loss ·
Anchor-Neighbor Sampling

1 Introduction

Distance metric learning or similarity learning is the task of learning a distance
function over images in visual understanding tasks. It has been an active re-
search topic in computer vision community. Given a similarity function, images
with similar content are projected onto neighboring locations on a manifold,
and images with different semantic context are mapped apart from each other.
With the boom of deep neural networks (DNN), metric learning has been turned
from learning distance functions to learning deep feature embeddings that bet-
ter fits a simple distance function, such as Euclidean distance or cosine distance.

⋆ Weilin Huang is the corresponding author (e-mail:whuang@malong.com).
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Metric learning with DNNs is referred as deep metric learning, which has re-
cently achieved great success in numerous visual understanding tasks, includ-
ing images or object retrieval [26, 30, 34], single-shot object classification [30,
34, 32], keypoint descriptor learning [12, 24], face verification [22, 20], person re-
identification [30, 23], object tracking [29] and etc.

Recently, there is a number of widely-used loss functions developed for deep
metric learning, such as contrastive loss [27, 6], triplet loss [22] and quadruplet
loss [5]. These loss functions are calculated on correlated samples, with a com-
mon goal of encouraging samples from the same class to be closer, and pushing
samples of different classes apart from each other, in a projected feature space.
The correlated samples are grouped into contrastive pairs, triplets or quadru-
plets, which form the training samples for these loss functions on deep metric
learning. Unlike softmax loss used for image classification, where the gradient is
computed on each individual sample, the gradient of a deep metric learning loss
often depends heavily on multiple correlated samples. Furthermore, the num-
ber of training samples will be increased exponentially when the training pairs,
triplets or quadruplets are grouped. This generates a vast number of training
samples which are highly redundant and less informative. Training that uses ran-
dom sampling from them can be overwhelmed by redundant samples, leading to
slow convergence and inferior performance.

Deep neural networks are commonly trained using online stochastic gradient
descent algorithms [19], where the gradients for optimizing network parameters
are computed locally with mini-batches, due to the limitation of computational
power and memory storage. It is difficult or impossible to put all training samples
into a single mini-batch, and the networks can only focus on local data distribu-
tion within a mini-batch, making it difficult to consider global data distribution
over the whole training set. This often leads to local optima and slow conver-
gence. This common challenge will be amplified substantially in deep metric
learning, due to the enlarged sample spaces where the redundancy could become
more significant. Therefore, collecting and creating meaningful training samples
(e.g., in pairs, triplets or quadruplets) has been a central issue for deep metric
learning, and an efficient sampling strategy is of critical importance to this task.
This is also indicated in recent literature [22, 35, 20, 1].

Our goal of this paper is to address the sampling issue of conventional triplet
loss [22]. In this work, we propose a novel hierarchical triplet loss (HTL) able
to automatically collect informative training triplets via an adaptively-learned
hierarchical class structure that encodes global context in an elegant manner.
Specifically, we explore the underline data distribution on a manifold sphere,
and then use this manifold structure to guide triplet sample generation. Our
intuition of generating meaningful samples is to encourage the training samples
within a mini-batch to have similar visual appearance but with different semantic
content (e.g., from different categories). This allows our model to learn more
discriminative features by identifying subtle distinction between the close visual
concepts. Our main contribution are described as follows.
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—We propose a novel hierarchical triplet loss that allows the model to collect
informative training samples with the guide of a global class-level hierarchical
tree. This alleviates main limitation of random sampling in training of deep
metric learning, and encourages the model to learn more discriminative features
from visual similar classes.

—We formulate the problem of triplet collection by introducing a new violate
margin, which is computed dynamically over the constructed hierarchical tree.
The new violate margin allows us to search informative samples, which are hard
to distinguish between visual similar classes, and will be merged into a new class
in next level of the hierarchy. The violate margin is automatically updated, with
the goal of identifying a margin that generates gradients for violate triplets,
naturally making the collected samples more informative.

— The proposed HTL is easily implemented, and can be readily integrated
into the standard triplet loss or other deep metric learning approaches, such as
contrastive loss, quadruplet loss, recent HDC [38] and BIER [17]. It significantly
outperforms the standard triplet loss on the tasks of image retrieval and face
recognition, and obtains new state-of-art results on a number of benchmarks.

2 Related work

Deep Metric Learning. Deep metric learning maps an image into a feature
vector in a manifold space via deep neural networks. In this manifold space, the
Euclidean distance (or the cosine distance) can be directly used as the distance
metric between two points. The contribution of many deep metric learning al-
gorithms, such as [26, 22, 5, 2, 3], is the design of a loss function that can learn
more discriminant features. Since neural networks are usually trained using the
stochastic gradient descent (SGD) in mini-batches, these loss functions are dif-
ficult to approximate the target of metric learning - pull samples with the same
label into nearby points and push samples with different labels apart.

Informative Sample Selection. Given N training images, there are about
O(N2) pairs, O(N3) triplets, and 0(N4) quadruplets. It is infeasible to traverses
all these training tuples during training. Schroff at. el. [22] constructed a mini-
batch of with 45 identities and each of which has 40 images. There are totally
1800 images in a mini-batch, and the approach obtained the state-of-art results
on LFW face recognition challenge [8]. While it is rather inconvenient to take
thousands of images in a mini-batch with a large-scale network, due to the lim-
itation of GPU memory. For deep metric learning, it is of great importance to
selecting informative training tuples. Hard negative mining [4] is widely used to
select hard training tuples. Our work is closely related to that of [35, 7] which
inspired the current work. Distance distribution was applied to guide tuple sam-
pling for deep metric learning [35, 7]. In this work, we strive to a further step by
constructing a hierarchical tree that aggregates class-level global context, and
formulating tuple selection elegantly by introducing a new violate margin.
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(a) Caltech-UCSD Bird Species Dataset (b) Data Distribution and Triplets in a Mini-Batch 

Fig. 1. (a) Caltech-UCSD Bird Species Dataset [31]. Images in each row are from the
same class. There are four classes in different colors — red, green, blue and yellow.
(b) Data distribution and triplets in a mini-batch. Triplets in the top row violate the
triplet constrain in the traditional triplet loss. Triplets in the bottom row are ignored
in the triplet loss, but are revisited in the hierarchical triplet loss.

3 Motivation: Challenges in Triplet Loss

We start by revisiting the main challenges in standard triplet loss [22], which we
believe have a significant impact to the performance of deep triplet embedding.

3.1 Preliminaries

Let (xi, yi) be the i-th sample in the training set D = {(xi, yi)}
N

i=1. The fea-
ture embedding of xi is represented as φ (xi,θ) ∈ R

d, where θ is the learnable
parameters of a differentiable deep networks, d is the dimension of embedding
and yi is the label of xi. φ (·,θ) is usually normalized into unit length for the
training stability and comparison simplicity as in [22]. During the neural net-
work training, training samples are selected and formed into triplets, each of
which Tz = (xa,xp,xn) are consisted of an anchor sample xa, a positive sample
xp and a negative sample xn. The labels of the triplet Tz =

(

x
z
a,x

z
p,x

z
n

)

satisfy
ya = yp 6= yn. Triplet loss aims to pull samples belonging to the same class
into nearby points on a manifold surface, and push samples with different labels
apart from each other. The optimization target of the triplet Tz is,
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1

2
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of positive pairs. For all the triplets T in the training set

D = {(xi, yi)}
N

i=1, the final objective function to optimize is,

L =
1

Z

∑

T z∈T

ltri (Tz) ,

where Z is the normalization term. For training a triplet loss in deep metric
learning, the violate margin plays a key role to sample selection.
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3.2 Challenges

Challenge 1: triplet loss with random sampling. For many deep metric
learning loss functions, such as contrastive loss [6], triplet loss [22] and quadru-
plet loss [5], all training samples are treated equally with a constant violate
margin, which only allows training samples that violate this margin to produce
gradients. For a training set D = {(xi, yi)}

N

k=1 with N samples, training a triplet
loss will generate O

(

N3
)

triplets, which is infeasible to put all triplets into a
single mini-batch. When we sample the triplets over the whole training set ran-
domly, it has a risk of slow convergence and pool local optima. We identify the
problem that most of training samples obey the violate margin when the model
starts to converge. These samples can not contribute gradients to the learning
process, and thus are less informative, but can dominate the training process,
which significantly degrades the model capability, with a slow convergence. This
inspired current work that formulates the problem of sample selection via set-
ting a dynamic violate margin, which allows the model to focus on a small set
of informative samples.

However, identifying informative samples from a vast number of the gener-
ated triplets is still challenging. This inspires us to strive to a further step, by
sampling meaningful triplets from a structural class tree, which defines class-
level relations over all categories. This transforms the problem of pushing hard
samples apart from each other into encouraging a larger distance between two
confusing classes. This not only reduces the search space, but also avoid over-
fitting the model over individual samples, leading to a more discriminative model
that generalizes better.

Challenge 2: risk of local optima. Most of the popular metric learning al-
gorithms, such as the contrastive loss, the triplet loss, and the quadruplet loss,
describe similarity relationship between individual samples locally in a mini-
batch, without considering global data distribution. In triplet loss, all triplet is
treated equally. As shown in Fig. 1, when the training goes after several epoches,
most of training triplets dose not contribute to the gradients of learnable param-
eters in deep neural networks. There has been recent work that aims to solve
this problem by re-weighting the training samples, as in [36]. However, even
with hard negative mining or re-weighting, the triplets can only see a few sam-
ples within a mini-batch, but not the whole data distribution. It is difficult for
the triplet loss to incorporate the global data distribution on the target mani-
fold space. Although the data structure in the deep feature space are changed
dynamically during the training process, the relative position of data points can
be roughly preserved. This allows us to explore the data distribution obtained in
the previous iterations to guide sample selection in the current stage. With this
prior knowledge of data structure, a triplet, which does not violate the original
margin α, is possible to generate gradients that contribute to the network train-
ing, as shown in Fig. 1. Discriminative capability can be enhanced by learning
from these hard but informative triplets.
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4 Hierarchical Triplet Loss

We describe details of the proposed hierarchical triplet loss, which contains two
main components, constructing a hierarchical class tree and formulating the
hierarchical triplet loss with a new violate margin. The hierarchical class tree is
designed to capture global data context, which is encoded into triplet sampling
via the new violate margin, by formulating the hierarchical triplet loss.

(a) Hierarchical Tree (b) Data Distribution Visualization by t-SNE

Fig. 2. (a) A toy example of the hierarchical tree H. Different colors represent different
image classes in CUB-200-2011 [31]. The leaves are the image classes in the training
set. Then they are merged recursively until to the root node. (b) The training data
distribution of 100 classes visualized by using t-SNE [16] to reduce the dimension of
triplet embedding from 512 to 2.

4.1 Manifold Structure in Hierarchy

We construct a global hierarchy at the class level. Given a neural network
φt (·,θ) (∈ R

d) pre-trained using the traditional triplet loss, we get the hier-
archical data structure based on sample rules. Denote the deep feature of a
sample xi as ri = φt (xi,θ). We first calculate a distance matrix of C classes in
the whole training set D. The distance between the p-th class and the q-th class
is computed as,

d (p, q) =
1

npnq

∑

i∈p,j∈q

‖ri − rj‖
2
,

where np and nq are the numbers of training samples in the p-th and the q-th
classes respectively. Since the deep feature ri is normalized into unit length, the
value of the interclass distance d (p, q) varies from 0 to 4.

We build hierarchical manifold structure by creating a hierarchical tree, ac-
cording to the computed interclass distances. The leaves of the hierarchical tree
are the original image classes, where each class represents a leave node at the
0-th level. Then hierarchy is created by recursively merging the leave notes at
different levels, based on the computed distance matrix. The hierarchical tree is
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set into L levels, and the average inner distance d0 is used as the threshold for
merging the nodes at the 0-th level.

d0 =
1

C

C
∑

c=1





1

n2
c − nc

∑

i∈c,j∈c

‖ri − rj‖
2



 .

where nc is the number of samples in the c-th class. Then the nodes are merged
with different thresholds. At the l-th level of the hierarchical tree, the merging

threshold is set to dl =
l(4−d0)

L
+ d0. Two classes with a distance less than dl are

merged into a node at the l-th level. The node number at the l-th level is Nl. The
nodes are merged from the 0-th level to the L-th level. Finally, we generate a
hierarchical treeH which starts from the leave nodes of original image classes to a
final top node, as shown in Fig. 2 (a). The constructed hierarchical tree captures
class relationships over the whole dataset, and it is updated interactively at the
certain iterations over the training.

4.2 Hierarchical Triplet Loss

We formulate the problem of triplet collection into a hierarchical triplet loss.
We introduce a dynamical violate margin, which is the main difference from the
conventional triplet loss using a constant violate margin.

Anchor neighbor sampling. We randomly select l′ nodes at the 0-th level of
the constructed hierarchical tree H. Each node represents an original class, and
collecting classes at the 0-th level aims to preserve the diversity of training sam-
ples in a mini-batch, which is important for training deep networks with batch
normalization [9]. Then m − 1 nearest classes at the 0-th level are selected for
each of the l′ nodes, based on the distance between classes computed in the fea-
ture space. The goal of collecting nearest classes is to encourage model to learn
discriminative features from the visual similar classes. Finally, t images for each
class are randomly collected, resulting in n (n = l′mt) images in a mini-batch
M. Training triplets within each mini-batch are generated from the collected n

images based on class relationships. We write the anchor-neighbor sampling into
A-N sampling for convenience.

Triplet generation and dynamic violate margin. Hierarchical triplet loss
(computed on a mini-batch ofM ) can be formulated as,

LM =
1

2ZM

∑

T z∈T M

[∥

∥x
z
a − x

z
p

∥

∥− ‖xz
a − x

z
n‖+ αz

]

+
.

where TM is all the triplets in the mini-batch M, and ZM = A2
l′mA2

tC
1
t is

the number of triplets. Each triplet is constructed as Tz = (xa,xp,xn), and
the training triplets are generated as follows. A2

l′m indicates randomly selecting
two classes - a positive class and a negative class, from all l′m classes in the
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(a) Anchor Neighbor Sampling (b) Convolutional Neural Network (c) Parameter Optimize and 

Tree Update

Hierarchical Tree

Data Distribution in t-SNE

Update

Loss on Tree

Anchor-Neighbor Groups

Fig. 3. (a)Sampling strategy of each mini-batch. The images in red stand for anchors
and the images in blue stand for the nearest neighbors. (b) Train CNNs with the
hierarchical triplet loss. (c) Online update of the hierarchical tree.

mini-batch. A2
t means selecting two samples - a anchor sample (xz

a) and a pos-
itive sample (xz

p), from the positive class, and C1
t means randomly selecting a

negative sample (xz
n) from the negative class. A2

l′m, A2
t and C1

t are notations in
combinatorial mathematics. See reference [13] for details.

αz is a dynamic violate margin, which is different from the constant margin of
traditional triplet loss. It is computed according to the class relationship between
the anchor class ya and the negative class yn over the constructed hieratical class
tree. Specifically, for a triplet Tz, the violate margin αz is computed as,

αz = β + dH(ya,yn) − sya
,

where β (= 0.1) is a constant parameter that encourages the image classes to
reside further apart from each other than the previous iterations. H (ya, yn) is
the hierarchical level on the class tree, where the class ya and the class yn are
merged into a single node in the next level. dH(ya,yn) is the threshold for merging

the two classes on H, and sya
= 1

n2
ya

−nya

∑

i,j∈ya
‖ri − rj‖

2
is the average dis-

tance between samples in the class ya. In our hierarchical triplet loss, a sample
xa is encouraged to push the nearby points with different semantic meanings
apart from itself. Furthermore, it also contributes to the gradients of data points
which are very far from it, by computing a dynamic violate margin which en-
codes global class structure via H. For every individual triplet, we search on H
to encode the context information of the data distribution for the optimization
objective. Details of training process with the proposed hierarchical triplet loss
are described in Algorithm 1.

Implementation Details.All our experiments are implemented using Caffe [10]
and run on an NVIDIA TITAN X(Maxwell) GPU with 12GB memory. The net-
work architecture is a GoogLeNet [28] with batch normalization [9] which is
pre-trained on the ImageNet dataset [21]. The 1000-way fully connected layer is
removed, and replace by a d dimensional fully connected layer. The new added
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Table 1. Comparisons on the In-Shop Clothes Retrieval dataset [15].

R@ 1 10 20 30 40 50

FashionNet+Joints[15] 41.0 64.0 68.0 71.0 73.0 73.5
FashionNet+Poselets[15] 42.0 65.0 70.0 72.0 72.0 75.0
FashionNet[15] 53.0 73.0 76.0 77.0 79.0 80.0
HDC[38] 62.1 84.9 89.0 91.2 92.3 93.1
BIER[18] 76.9 92.8 95.2 96.2 96.7 97.1

Ours Baseline 62.3 85.1 89.0 91.1 92.4 93.4
A-N Sampling 75.3 91.8 94.3 96.2 96.7 97.5
HTL 80.9 94.3 95.8 97.2 97.4 97.8

layer is initialized with random noise using the ”Xaiver” filler. We modify the
memory management of Caffe [10] to ensure it can take 650 images in a mini-
batch for GoogLeNet with batch normalization. The input images are resized
and cropped into 224 × 224, and then subtract the mean value. The optimiza-
tion method used is the standard SGD with a learning rate 1e−3.

Algorithm 1: Training with hierarchical triplet loss

Input: Training data D = {(xi, yi)}
N

k=1. Network φ (·,θ) is initialized
with a pretrained ImageNet model. The hierarchical class tree H
is built according to the features of the initialized model. The
margin αz for any pair of classes is set to 0.2 at the beginning.

Output: The learnable parameters θ of the neural network φ (·,θ).
1 while not converge do
2 t← t+ 1 ;
3 Sample anchors randomly and their neighborhoods according to H ;
4 Compute the violate margin for different pairs of image classes by

searching through the hierarchical tree H ;
5 Compute the hierarchical triplet loss in a mini-batch LM;
6 Backpropagate the gradients produced at the loss layer and update

the learnable parameters ;
7 At each epoch, update the hierarchical tree H with current model.

5 Experimental Results and Comparisons

We evaluate the proposed hierarchical triplet loss on the tasks of image re-
trieval and face recognition. Extensive experiments are conducted on a num-
ber of benchmarks, including In-Shop Clothes Retrieval [15] and Caltech-UCSD

Birds 200 [31] for image retrieval, and LFW [8] for face verification. Descriptions
of dataset and implementation details are presented as follows.
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Fig. 4. Anchor-Neighbor visualization on In-Shop Clothes Retrieval training set [15].
Each row stands for a kind of fashion style. The row below each odd row is one of
neighborhoods of the fashion style in the odd row.

5.1 In-Shop Clothes Retrieval

Datasets and performance measures. The In-Shop Clothes Retrieval dataset
[15] is very popular in image retrieval. It has 11735 classes of clothing items and
54642 training images. Following the protocol in [15, 38], 3997 classes are used
for training (25882 images) and 3985 classes are for testing (28760 images). The
test set are partitioned into the query set and the gallery set, both of which
has 3985 classes. The query set has 14218 images and the gallery set has 12612
images. As in Fig. 4, there are a lot image classes that have very similar contents.

For the evaluation, we use the most common Recall@K metric. We extract
the features of each query image and search the K most similar images in the
gallery set. If one of the K retrieved images have the same label with the query
image, the recall will increase by 1, otherwise will be 0. We evaluate the recall
metrics with K ∈ {1, 2, 4, 8, 16, 32}.
Implementation details. Our network is based on GoogLeNet V2 [9]. The
dimension d of the feature embedding is 128. The triplet violate margin is set to
0.2. The hierarchical tree has 16 levels including the leaves level which contains
the images classes. At the first epoch, the neural network is trained with the
standard triplet loss which samples image classes for mini-batches randomly.
Then during the training going on, the hierarchical tree is updated and used
in the following steps. Since there are 3997 image classes for training and there
many similar classes, the whole training needs 30 epoch and the batch size is
set to 480. For every 10 epoch, we decrease the learning rate by multiplying 0.1.
The testing codes are gotten from HDC [38].
Result comparison. We compare our method with existing state-of-the-art
algorithms and our baseline — triplet loss. Table 1 lists the results of image
retrieval on In-Shop Clothes Retrieval. The proposed method achieves 80.9%
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Table 2. Comparison with the state-of-art on the CUB-200-2011 dataset [31].

R@ 1 2 4 8 16 32

LiftedStruct[26] 47.2 58.9 70.2 80.2 89.3 93.2
Binomial Deviance[30] 52.8 64.4 74.7 83.9 90.4 94.3
Histogram Loss[30] 50.3 61.9 72.6 82.4 88.8 93.7
N-Pair-Loss[25] 51.0 63.3 74.3 83.2 - -
HDC[38] 53.6 65.7 77.0 85.6 91.5 95.5
BIER[18] 55.3 67.2 76.9 85.1 91.7 95.5

Ours Baseline 55.9 68.4 78.2 86.0 92.2 95.5
HTL 57.1 68.8 78.7 86.5 92.5 95.5

Recall@1, and outperforms the baseline algorithm — triplet loss by 18.6%. It
indicates that our algorithm can improve the discriminative power of the original
triplet loss by a large margin. State-of-the-art algorithms, including HDC [38],
and BIER [18], used boosting and ensemble method to take the advantage of
different features and get excellent results. Our method demonstrates that by in-
corporate the global data distribution into deep metric learning, the performance
will be highly improved. The proposed hierarchical loss get 80.9% Recall@1,
which is 4.0% higher than BIER [18] and 18.8% higher than HDC [38].

5.2 Caltech-UCSD Birds 200-2011

Datasets and performance measures. The Caltech-UCSD Birds 200 dataset
(CUB-200-2011) [31] contains photos of 200 bird species with 11788 images.
CUB-200-2011 serves as a benchmark in most existing work on deep metric
learning and image retrieval. The first 100 classes (5864 images) are used for
training, and the rest (5924 images) of classes are used for testing. The rest
images are treated as both the query set and the gallery set. For the evaluation,
we use the same Recall@K metric as in Section In-Shop Clothes Retrieval. Here,
K ∈ {1, 2, 4, 8, 16, 32}.
Implementation details. The dimension d of the feature embedding is 512.
The triplet violate margin is set to 0.2. As in the previous section, the hierarchical
tree is still set to 16 levels. All the training details are almost the same with the
In-Shop Clothes Retrieval dataset. But since there are only 100 image classes for
training, the dataset is very easy to get overfitting. When we train 10 epoches,
the training stopped. The batch size is set to 50. For every 3 epoch, we decrease
the learning rate by multiplying 0.1.
Result comparison. Table 2 lists the results of image retrieval on Caltech-

UCSD Birds 200-2011. The baseline — triplet loss already get the state-of-art
results with 55.9% Recall@1 compared with the previous state-of-art HDC 54.6%
and BIER 55.3%. If we use the anchor-neighbor sampling and the hierarchical
loss, we get 57.1% Recall@1. Since there are only 100 classes and 6000 images
for training, the network is very easy to get overfitting. The performance gain
gotten by the hierarchical loss is only 1.2% Recall@1.
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5.3 Cars-196 [11] and Stanford Online Products [26]

Details of the Cars-196 and Stanford Online Products [26] are described in [11,
26]. The dimension of the feature embedding is set to 512. The triplet violate
margin is set to 0.2, with a hierarchical tree of depth = 16. The whole training
needs 30 epoch and the batch size is set to 50. For every 10 epoch, we decrease
the learning rate by multiplying 0.1.

Results are presented in Table 3, where the proposed HTL outperforms our
baseline, BIER and HDC, with clear margins on both datasets. Specifically, on
the Cars-196, HTL achieves 81.4% Recall@1, which outperforms orginal triplet
loss by 2.2%, and previous state-of-art by 3.4%. On the Stanford Online Prod-
ucts, HTL achieves 74.8% Recall@1, outperforming triplet loss by 2.2%, and
previous state-of-art by 2.1%. These results demonstrate that the proposed HTL
can improve original triplet loss efficiently, and further proved the generalization
ability of HTL.
Table 3. Comparison with the state-of-art on the cars-196 and Stanford products.

Cars-196 Stanford Online Products

R@ 1 2 4 8 16 32 1 10 100 100

HDC 73.7 83.2 89.5 93.8 96.7 98.4 69.5 84.4 92.8 97.7

BIER 78.0 85.8 91.1 95.1 97.3 98.7 72.7 86.5 94.0 98.0

Baseline 79.2 87.2 92.1 95.2 97.3 98.6 72.6 86.2 93.8 98.0

HTL(depth=16) 81.4 88.0 92.7 95.7 97.4 99.0 74.8 88.3 94.8 98.4

5.4 LFW Face Verification

Datasets and performance measures. The CASIA-WebFace dataset [37] is
one of the publicly accessible datasets for face recognition. It has been the most
popular dataset for the training of face recognition algorithms, such as in [1,
33, 14]. CASIA-WebFace has 10575 identities and 494414 images. We following
the testing protocol in [37] to test the performance of our algorithms. The face
verification results on LFW dataset [8] is reported.
Implementation details. Since the triplet loss is very sensitive to the noise,
we clear the CASIA-WebFace using the pre-trained model of VGG-Face [20]
and manually remove some noises. About 10% images are removed. Then the
remained faces are used to train a SoftMax classifier. The network parameters
are initialized by a pre-trained ImageNet model. We fine-tune the pre-trained
classification network for face recognition using the hierarchical loss.
Result comparison. The triplet loss gets 98.3% accuracy on the LFW face ver-
ification task, which is 1.12% lower than the SpereFace[14] — 99.42% which uses
the same dataset for training. When we substitute the triplet loss with the hier-
archical triplet loss, the results comes to 99.2. It’s comparable with state-of-art
results. This indicates that the hierarchical triplet loss has stronger discrimi-
native power than triplet loss. While, since the triplet based method are very
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sensitive to noise, the hierarchical triplet loss get inferior performance compared
with SphereFace [14] 99.42% and FaceNet [22] 99.65% .

5.5 Sampling Matter and Local Optima

(a) Image Retrieval Results on In-Shop Clothes (b) Image Retrieval Results on CUB 200-2011

Fig. 5. (a) Image retrieval results on In-Shop Clothes [15] with various batch sizes. (b)
Image retrieval results on CUB-200-2011 [31].

Sampling Matter. We investigate the influence of batch size on the test set
of In-Shop Clothes Retrieval. Fig. 5 (a) shows that when the batch size grows
from 60 to 480, the accuracy increases in the same iterations. When the training
continues, the performance will fluctuates heavily and get overfitting. Besides,
when come to the same results at 60% Recall@1, both the anchor-neighbor sam-
pling with triplet loss and the hierarchical loss converge at about 2 times faster
than random sampling (Batch Size = 480). Fig. 5 (b) shows the compares the
convergence speed of the triplet loss (our baseline), the hierarchical triplet loss
and the HDC [38] on the test set of Caltech-UCSD Birds 200. Compared to the
60000 iterations (see in [38]), the hierarchical triplet loss converges in 1000 itera-
tions. The hierarchical triplet loss with anchor-Neighborhood sampling converge
faster traditional and get better performance than HDC [38].

Pool Local Optima. In Table 1 and Table 2, we can find that the triplet loss
get inferior performance than the hierarchical triplet loss on both the In-Shop

Clothes Retrieval and Caltech-UCSD Birds 200. In the Fig. 5, the accuracy of
the triplet loss start to fluctuate when the training continues going after the loss
drops to very low. In fact, there are always very few or zeros triplets in mini-batch
even when the network isn’t gotten the best results. Then they don’t produce
gradients and will decay the learnable parameters in networks by SGD [19]. So
we incorporate the hierarchical structure to make points in the mini-batch know
the position of point that are already far away, and then attempt to push them
further from itself and its neighborhood classes.
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5.6 Ablation Study

We perform ablation studies on In-Shop Clothes and CUB-200-2011, as reported
in Table 4. First, directly applying hard negative sampling (HNS) to the whole
training set is difficult to obtain a performance gain. Actually, our baseline model
applies a semi-HNS, which outperforms HNS. We design a strong class-level
constrain - Anchor-Neighbor Sampling of HTL, which encourages the model to
learn discriminative features from visual similar classes. This is the key to per-
formance boost. Second, we integrated the proposed anchor-neighbor sampling
and dynamic violate margin into HDC where a contrastive loss is used. As shown
in Table 4 (bottom), HDC+ got an improvement of 7.3% R@1 on the In-Shop
Clothes Retrieval, suggesting that our methods work practically well with a con-
trastive loss and HDC. Third, HTL with a depth of 16 achieves best performance
at R@1 of 80.9%. This is used as default setting in all our experiments. We also
include results of “flat” tree with depth=1. Results suggest that the “flat” tree
with the proposed dynamic violate margin improves the R@1 from 75.3% to
78.9%, and hierarchy tree improves it further to 80.9%.

Table 4. Ablation Studies on In-Shop Clothes Retrieval and CUB-200-2011.

In-Shop Clothes CUB-200-2011

R@ 1 10 20 30 40 50 1 2 4 8 16 32

On Triplets with Sampling

Random Sampling 59.3 83.5 87.9 90.5 91.3 93.0 51.4 63.9 74.8 83.4 90.0 94.3

Hard Negative Mining 60.1 84.3 88.2 90.2 91.5 92.6 51.6 63.9 74.2 84.4 89.9 94.6

Semi-Hard Negative Mining 62.3 85.1 89.0 91.1 92.4 93.4 55.9 68.4 78.2 86.0 92.2 95.5

Anchor-Neighbor Sampling (HTL) 75.3 91.8 94.3 96.2 96.7 97.5 56.4 68.5 78.5 86.2 92.4 95.5

HTL with A-N Sampling + Dynamic Violate Margin(αz)

Class Proxy(flat/depth=1) 78.9 93.4 94.8 96.0 96.5 97.5 56.0 68.1 78.2 86.2 92.3 95.5

HTL(depth=8) 78.7 93.3 94.6 96.2 96.9 97.4 56.2 68.5 78.3 86.1 92.3 95.5

HTL(depth=16) 80.9 94.3 95.8 97.2 97.4 97.8 57.1 68.8 78.7 86.5 92.5 95.5

HTL(depth=32) 79.3 93.8 95.0 96.9 97.1 97.5 56.4 68.5 78.5 86.2 92.3 95.5

HDC+: Contrastive Loss with A-N Sampling + Dynamic Violate Margin(αz)

HDC 62.1 84.9 89.0 91.2 92.3 93.1 53.6 65.7 77.0 85.6 91.5 95.5

HDC+ 69.4 88.6 93.4 94.1 95.3 96.5 54.1 66.3 77.2 85.6 91.7 95.5

6 Conclusion
We have presented a new hierarchical triplet loss (HTL) which is able to select
informative training samples (triplets) via an adaptively-updated hierarchical
tree that encodes global context. HTL effectively handles the main limitation
of random sampling, which is a critical issue for deep metric learning. First,
we construct a hierarchical tree at the class level which encodes global context
information over the whole dataset. Visual similar classes are merged recursively
to form the hierarchy. Second, the problem of triplet collection is formulated by
proposing a new violate margin, which is computed dynamically based on the
designed hierarchical tree. This allows it to learn from more meaningful hard
samples with the guide of global context. The proposed HTL is evaluated on the
tasks of image retrieval and face recognition, where it achieves new state-of-the-
art performance on a number of standard benchmarks.
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