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Abstract. In the field of generic object tracking numerous attempts
have been made to exploit deep features. Despite all expectations, deep
trackers are yet to reach an outstanding level of performance compared
to methods solely based on handcrafted features. In this paper, we inves-
tigate this key issue and propose an approach to unlock the true potential
of deep features for tracking. We systematically study the characteristics
of both deep and shallow features, and their relation to tracking accuracy
and robustness. We identify the limited data and low spatial resolution as
the main challenges, and propose strategies to counter these issues when
integrating deep features for tracking. Furthermore, we propose a novel
adaptive fusion approach that leverages the complementary properties
of deep and shallow features to improve both robustness and accuracy.
Extensive experiments are performed on four challenging datasets. On
VOT2017, our approach significantly outperforms the top performing
tracker from the challenge with a relative gain of 17% in EAO.

1 Introduction

Generic object tracking is the problem of estimating the trajectory of a target in
a video, given only its initial state. The problem is particularly difficult, primarily
due to the limited training data available to learn an appearance model of the
target online. Existing methods rely on rich feature representations to address
this fundamental challenge. While handcrafted features have long been employed
for this task, recent focus has been shifted towards deep features. The advantages
of deep features being their ability to encode high-level information, invariant
to complex appearance changes and clutter.

Despite the outstanding success of deep learning in a variety of computer
vision tasks, its impact in generic object tracking has been limited. In fact,
trackers based on handcrafted features [1, 7, 8, 22, 37] still provide competitive
results, even outperforming many deep trackers on standard benchmarks [16,
36]. Moreover, contrary to the trend in image classification, object trackers do
not tend to benefit from deeper and more sophisticated network architectures
(see figure 1). In this work, we investigate the reasons behind the limited success
of deep networks in visual object tracking.
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Fig. 1: Tracking performance on the Need for Speed dataset [12] when using deep
features extracted from different networks. In all cases, we employ the same shallow
representation, consisting of HOG and Color Names. The baseline ECO [7] does not
benefit from more powerful network architectures, e.g. ResNet. Instead, our approach
is able to exploit more powerful representations, achieving a consistent gain going from
handcrafted features towards more powerful network architectures.

We distinguish two key challenges generally encountered when integrating
deep features into visual tracking models. Firstly, compared to traditional hand-
crafted approaches, it is well known that deep models are data-hungry. This
becomes a major obstacle in the visual tracking scenario, where training data
is extremely scarce and a robust model must be learned from a single labeled
frame. Even though pre-trained deep networks are frequently employed, the tar-
get model must learn the discriminative activations possessing invariance to-
wards unseen appearance changes.

The second challenge for deep features is accurate target prediction. Not only
is precise target localization crucial for tracking performance, it also affects the
learning of the model since new frames are annotated by the tracker itself. As
a result, inaccurate predictions may lead to model drift and eventual tracking
failure. Deep convolutional layers generally trade spatial resolution for increased
high-level invariance to account for appearance changes. Consequently, many
trackers complement the deep representation with shallow-level activations [11,
23] or handcrafted features [7] for improved localization accuracy. This raises
the question of how to optimally fuse the fundamentally different properties of
shallow and deep features in order to achieve both accuracy and robustness.
Contributions: In this paper, we analyze the influential characteristics of deep
and shallow features for visual tracking. This is performed by (i) systematically
studying the impact of a variety of data augmentation techniques and (ii) in-
vestigating the accuracy-robustness trade-off in the discriminative learning of
the target model. Our findings suggest that extensive data augmentation leads
to a remarkable performance boost for the deep-feature-based model while of-
ten harming its shallow counterpart. Furthermore, we find that the deep model
should be trained for robustness, while the shallow model should emphasize
accurate target localization. These results indicate that the deep and shallow
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models should be trained independently and fused at a later stage. As our sec-
ond contribution, we propose a novel fusion strategy to combine the deep and
shallow predictions in order to exploit their complementary characteristics. This
is obtained by introducing a quality measure for the predicted state, taking both
accuracy and robustness into account.

Experiments are performed on five challenging benchmarks: Need for Speed,
VOT2017, Temple128, UAV123 and OTB-2015. Our results clearly demonstrate
that the proposed approach provides a significant improvement over the baseline
tracker. Further, our approach sets a new state-of-the-art on all four tracking
datasets. On the VOT2017 benchmark, our approach achieves an EAO score of
0.378, surpassing the competition winners (0.323) with a relative gain of 17%.

2 Related Work

Deep learning has pervaded many areas of computer vision. While these tech-
niques have also been investigated for visual tracking, it has been with limited
success. The SINT method [30] learns a similarity measure offline on a video
dataset, and localizes the target using the initial labeled sample. Another ap-
proach is to directly regress the relative target location given an input patch [14,
33]. Li et al. [18] tackle the tracking problem in an end-to-end fashion by training
a classifier online. The FCNT [34] employs both pre-trained deep features and
an online trained model. MDNet [26] further pre-trains a model offline using a
multi-domain procedure. Following the end-to-end philosophy, recent works [31,
28] have investigated integrating Discriminative Correlation Filters (DCF) [3,
10] as a computational block in a deep network. The work of [31] integrate DCF
into the Siamese framework [2]. Further, [28] employs DCF as a one-layer CNN
for end-to-end training.

Other DCF methods focus on integrating convolutional features from a fixed
pre-trained deep network [6, 7, 9, 11, 23, 27, 38]. Ma et al. [23] propose a hier-
archical ensemble method of independent DCF trackers to combine multiple
convolutional layers. Qi et al. [27] learn a correlation filter per feature map, and
combine the individual predictions with a modified Hedge algorithm. The MCPF
tracker proposed by Zhang et al. [38] combines the deep DCF with a particle
filter. Danelljan et al. [11] propose the continuous convolution operator tracker
(C-COT) to efficiently integrate multi-resolution shallow and deep feature maps.
The subsequent ECO tracker [7] improves the C-COT tracker in terms of per-
formance and efficiency. In this work we adopt the ECO tracking framework due
to its versatility and popularity: in the most recent edition of VOT2017 [16], five
of the top 10 trackers were based on either ECO or its predecessor C-COT.

3 Analyzing Deep Features for Tracking

Deep learning has brought remarkable performance improvements in many com-
puter vision areas, such as object classification, detection and semantic segmen-
tation. However, its impact is yet to be fully realized in the context of generic
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visual object tracking. In this section, we analyze the causes behind the below-
expected performance of deep trackers and propose strategies to address them.

3.1 Motivation

In our quest to seek a better understanding of deep features for tracking, we
investigate their properties in relation to the well studied shallow features. One
of the well known issues of deep learning is the need for large amounts of labeled
training data. Still, thousands of training samples are required to fine-tune a
pre-trained deep network for a new task. Such amount of data is however not
available in the visual tracking scenario, where initially only a single labeled
frame is provided. This poses a major challenge when learning deep-feature-
based models for visual tracking.

To maximally exploit the available training data, deep learning methods gen-
erally employ data augmentation strategies. Yet, data augmentation is seldom
used in visual tracking. In fact, the pioneering work of Bolme et al. [3] utilized
augmented gray-scale image samples to train a discriminative tracking model.
Since then, state-of-the-art deep DCF tracking methods have ignored data aug-
mentation as a strategy for acquiring additional training data. In section 3.3
we therefore perform a thorough investigation of data augmentation techniques
with the aim of better understanding deep features for tracking.

Another challenge when integrating deep features is their low spatial reso-
lution, hampering accurate localization of the target. Object trackers based on
low-level handcrafted features are primarily trained for accurate target localiza-
tion to avoid long-term drift. However, this might not be the optimal strategy
for deep features which exhibit fundamentally different properties. Deep features
generally capture high-level semantics while being invariant to, e.g., small trans-
lations and scale changes. From this perspective it may be beneficial to train
the deep model to emphasize robustness rather than accuracy. This motivates
us to analyze the accuracy/robustness trade-off involved in the model learning,
to gain more knowledge about the properties of deep and shallow features. This
analysis is performed in section 3.4.

3.2 Methodology

To obtain a clearer understanding of deep and shallow features, we aim to isolate
their impact on the overall tracking performance. The analysis is therefore per-
formed with a baseline tracker that exclusively employs either shallow or deep
features. This exclusive treatment allows us to directly measure the impact of,
e.g., data augmentation on both shallow and deep features separately.

We use the recently introduced ECO tracker [7] as a baseline, due to its
state-of-the-art performance. For shallow features, we employ a combination of
Histogram of Oriented Gradients (HOG) [5] and Color Names (CN) [35], as it
has been used in numerous tracking approaches [7, 10, 19, 15, 21]. For the deep
representation, we first restrict our analysis to ResNet-50, using the activations
from the fourth convolutional block. Generalization to other networks is further
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presented in section 5.4. The entire analysis is performed on the OTB-2015 [36]
dataset.

3.3 Data Augmentation

Data augmentation is a standard strategy to alleviate problems with limited
training data. It can lead to a better generalization of the learned model for
unseen data. However, data augmentation can also lead to lower accuracy in
the context of visual tracking due to increased invariance of the model to small
translations or scale changes. Therefore, it is unclear whether data augmentation
is helpful in the case of tracking.

We separately investigate the impact of different data augmentation tech-
niques on both shallow as well as deep features. We consider the following data
augmentation techniques:
Flip: The sample is horizontally flipped.
Rotation: Rotation from a fixed set of 12 angles ranging from −60◦ to 60◦.
Shift: Shift of n pixels both horizontally and vertically prior to feature extrac-
tion. The resulting feature map is shifted back n/s pixels where s is the stride
of the feature extraction.
Blur: Blur with a Gaussian filter. This is expected to simulate motion blur and
scale variations, which are both commonly encountered in tracking scenarios.
Dropout: Channel-wise dropout of the sample. This is performed by randomly
setting 20% of the feature channels to zero. As usual, the remaining feature
channels are amplified in order to preserve the sample energy.

Figure 2a shows the impact of data augmentation on tracking performance
(in AUC score [36]). It can be seen that the deep features consistently benefit
from data augmentation. All augmentations, except for ’shift’, give over 1%
improvement in tracking performance. The maximum improvement is obtained
using ’blur’ augmentation, where a gain of 4% is obtained over the baseline, which
employs no data augmentation. Meanwhile, shallow features do not benefit from
data augmentation. This surprising difference in behavior of deep and shallow
features can be explained by their opposing properties. Deep features capture
higher level semantic information that is invariant to the applied augmentations
like ’flip’, and can thus gain from the increased training data. On the other
hand, the shallow features capture low-level information that is hampered by
augmentations like ’flip’ or ’blur’. The use of data augmentation thus harms the
training in this case.

3.4 Robustness/Accuracy Trade-off

When comparing the performance of trackers, there are two important criteria:
accuracy and robustness. The former is the measure of how accurately the target
is localized during tracking. Robustness, on the other hand, is the tracker’s
resilience to failures in challenging scenarios and its ability to recover. In other
words, robustness is a measure of how often the target is successfully localized.
Generally, both accuracy and robustness are of importance, and a satisfactory
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Fig. 2: Impact of data augmentation (a) and label score function width (b) on shallow
(blue) and deep (red) features on OTB-2015. The results are reported as area-under-
the-curve (AUC). While deep features significantly benefit from data augmentation, the
results deteriorate for shallow features. Similarly, a sharp label function is beneficial
for the shallow features, whereas the deep features benefit from a wide label function.

trade-off between these properties is sought since they are weakly correlated [17].
This trade-off can be controlled in the construction and training of the tracker.

In a discriminative tracking framework, the appearance model can be learned
to emphasize the accuracy criterion by only extracting positive samples very
close to the target location. That is, only very accurate locations are treated as
positive samples of the target appearance. Instead, increasing the region from
which target samples are extracted allows for more positive training data. This
has the potential of promoting the generalization and robustness of the model,
but can also result in poor discriminative power when the variations in the target
samples become too large.

We analyze the effect of training the tracking model for various degrees of
accuracy-robustness trade-off when using either shallow or deep features. In
DCF-based trackers, such as the baseline ECO, the size of the region from which
positive training samples are extracted is controlled by the width of the label
score function. ECO employs a Gaussian function for this task, with standard
deviation proportional to the target size with a factor of σ. We analyze differ-
ent values of σ for both shallow and deep features. Figure 2b shows the results
of this experiment. We observe that the deep features are utilized best when
trained with higher value of σ, with σ = 1

4
giving the best results. This behavior

can be attributed to the invariance property of the deep features. Since they
are invariant to small translations, training deep features to get higher accu-
racy might lead to a suboptimal model. The shallow features on the other hand,
perform best when trained with a low σ and give inferior results when trained
with a higher σ. This is due to the fact that the shallow features capture low
level, higher resolution features, and hence are well suited to give high accuracy.
Furthermore, due to their large variance to small transformations, the model is
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Table 1: Impact of data augmentation (denoted Aug) and wider label score func-
tion (denoted σ) on deep features. Results are shown in terms of AUC score on the
OTB-2015 dataset. Both data augmentation and wider label scores provide significant
improvement. The best result is obtained when employing both techniques.

ResNet ResNet+Aug ResNet+σ ResNet+Aug+σ

AUC 56.2 61.5 60.5 62.0

unable to handle the larger number of positive training samples implied by a
higher σ, resulting in poor performance.

3.5 Observations

The aforementioned results from section 3.3 and section 3.4 show that the deep
model significantly improves by the use of data augmentation and by training
for increased robustness instead of accuracy. We further evaluate the combined
effects of data augmentation and higher σ on the deep model. Table 1 shows the
results on the OTB-2015 dataset in terms of the AUC measure. The baseline
tracker (left) does not employ data augmentation and uses the default value
σ = 1

12
. Combining all the data augmentation techniques evaluated in section 3.3

provides an improvement of 5.3% in AUC over the baseline. Training with a σ-
parameter of 1

4
further improves the results by 0.5%. Thus our analysis indicates

the benefit of using both data augmentation as well as a wider label function
when training the deep-feature-based model.

Results from section 3.3 and section 3.4 thus highlight the complementary
properties of deep and shallow features. Their corresponding models need to
be trained differently, in terms of data and annotations, in order to best exploit
their true potential. We therefore argue that the shallow and deep models should
be trained independently. However, this raises the question of how to fuse these
models in order to leverage their complementary properties, which we address
in the next section.

4 Adaptive Fusion of Model Predictions

As previously discussed, the deep and shallow models possess different char-
acteristics regarding accuracy and robustness. This is demonstrated in figure 3,
showing detection scores from the shallow and deep models for an example frame.
We propose a novel adaptive fusion approach that aims at fully exploiting their
complementary nature, based on a quality measure described in section 4.1. In
section 4.2 we show how to infer the deep and shallow weights and obtain the
final target prediction.

4.1 Prediction Quality Measure

Our aim is to find a quality measure for the target prediction, given the detection
score y over the search region of the image. We see the score y as a function over
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(a) Image sample (b) Deep score (c) Shallow score (d) Fused score

Fig. 3: Visualization of the detection scores produced by the deep and shallow models
for a sample frame (a). The deep score (b) contains a robust mode with high confidence,
but it only allows for coarse localization. Meanwhile, the shallow score (c) has sharp
peaks enabling accurate localization, but also contains distractor modes. Our approach
fuses these scores by adaptively finding the optimal weights for each model, producing
a sharp and unambiguous score function (d).

the image coordinates, where y(t) ∈ R is the target prediction score at location
t ∈ R

2. We require that the quality measure rewards both the accuracy and
robustness of the target prediction. The former is related to the sharpness of the
detection score around the prediction. A sharper peak indicates more accurate
localization capability. The robustness of the prediction is derived from the mar-
gin to distractor peaks. If the margin is small, the prediction is ambiguous. On
the other hand, a large margin indicates that the confidence of the prediction is
significantly higher than at other candidate locations.

We propose the minimal weighted confidence margin as a quality measure of
a candidate target prediction t∗,

ξt∗{y} = min
t

y(t∗)− y(t)

∆(t− t∗)
. (1)

The confidence margin in the numerator is computed as the difference between
the confidence score y(t∗) at the candidate prediction t∗ and the score y(t) at a
location t. The margin is weighted by the distance between t∗ and the location
t, computed by a distance measure ∆ : R2 → [0, 1] satisfying ∆(0) = 0 and
lim|τ |→∞ ∆(τ) = 1. We also assume ∆ to be twice continuously differentiable
and have a positive definite Hessian at τ = 0. For our purpose, we use

∆(τ) = 1− e−
κ

2
|τ |2 . (2)

Here, κ is a parameter controlling the rate of transition ∆(τ) → 1 when |τ | is
increasing. As we will see, κ has a direct interpretation related to the behavior of
the quality measure (1) close to the target prediction t ≈ t∗. From the definition
(1) it follows that ξt∗{y} ≥ 0 if and only if y(t∗) is a global maximum of y.

To verify that the proposed quality measure (1) has the desired properties
of promoting both accuracy and robustness, we analyze the cases (a) where t is
far from the prediction t∗ and (b) when t → t∗. In the former case, we obtain
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|t− t∗| ≫ 0 implying that ∆(t− t∗) ≈ 1. In this case, we have that

ξt∗{y} ≤
y(t∗)− y(t)

∆(t− t∗)
≈ y(t∗)− y(t) , whenever |t− t∗| ≫ 0 . (3)

As a result, the quality measure ξt∗{y} is approximately bounded by the score-
difference to the most significant distractor peak y(t) outside the immediate
neighborhood of the prediction t∗. Hence, a large quality measure ξt∗{y} ensures
that there are no distractors making the prediction ambiguous. Conversely, if
there exists a secondary detection peak y(t) with a similar score y(t) ≈ y(t∗),
then the quality of the prediction is low ξt∗{y} ≈ 0.

In the other case we study how the measure (1) promotes an accurate predic-
tion by analyzing the limit t → t∗. We assume that the detection score function
y is defined over a continuous domain Ω ⊂ R

2 and is twice continuously differ-
entiable. This assumption is still valid for discrete scores y by applying suitable
interpolation. The ECO framework in fact outputs scores with a direct con-
tinuous interpretation, parametrized by its Fourier coefficients. In any case, we
assume the prediction t∗ to be a local maximum of y. We denote the gradient
and Hessian of y at t as ∇y(t) and Hy(t) respectively. Since t∗ is a local maxi-
mum we conclude ∇y(t∗) = 0 and 0 ≥ λ∗

1 ≥ λ∗
2, where λ

∗
1, λ

∗
2 are the eigenvalues

of Hy(t∗). Using (2), we obtain the result4

ξt∗{y} ≤
|λ∗

1|

κ
. (4)

Note that the eigenvalue |λ∗
1| represents the minimum curvature of the score

function y at the peak t∗. Thus, |λ∗
1| is a measure of the sharpness of the peak

t∗. The quality bound (4) is proportional to the sharpness |λ∗
1|. A high quality

value ξt∗{y} therefore ensures that the peak is distinctive, while a flat peak will
result on a low quality value. The parameter κ controls the trade-off between
the promotion of robustness and accuracy of the prediction. From (4) it follows
that κ represents the sharpness |λ∗

1| that yields a quality of at most ξt∗{y} = 1.
Our approach can be generalized to scale transformations and other higher-

dimensional state spaces by extending t to the entire state vector. In this paper,
we employ 2-dimensional translation and 1-dimensional scale transformations. In
the next section, we show that (1) can be used for jointly finding the prediction
t∗ and the optimal importance weights for the shallow and deep scores.

4.2 Target Prediction

We present a fusion approach based on the quality measure (1), that combines
the deep and shallow model predictions to find the optimal state. Let yd and
ys denote the scores based on deep and shallow features respectively. The fused
score is obtained as a weighted combination of the two scores

yβ(t) = βdyd(t) + βsys(t) , (5)

4 See the supplementary material for a derivation.
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Fig. 4: An illustration of our fusion approach, based on solving the optimization prob-
lem (7). A one-dimensional detection score yβ(t) (blue curve) is plotted for a particular
choice of model weights β, with the candidate state t∗ corresponding to the global max-
imum. The left-hand side of (7c) (dashed curves) is plotted for different values of the
slack variable ξ, representing the margin. We find the maximum value of ξ satisfying
the inequality (7c), which in this case is ξ = 0.4.

where β = (βd, βs) are the weights for the deep and shallow scores, respectively.
Our aim is to jointly estimate the score weights β and the target state t∗ that
maximize the quality measure (1). This is achieved by minimizing the loss

minimize: Lt∗(β) = −ξt∗{yβ}+ µ
(

β2

d + β2

s

)

(6a)

subject to: βd + βs = 1 , βd ≥ 0 , βs ≥ 0 . (6b)

Note that we have added a regularization term, controlled by the parameter
µ, penalizing large deviations in the weights. The score weights themselves are
constrained to be non-negative and sum up to one.

To optimize (6), we introduce a slack variable ξ = ξt∗{yβ}, resulting in the
equivalent minimization problem

minimize: Lt∗(ξ, β) = −ξ + µ
(

β2

d + β2

s

)

(7a)

subject to: βd + βs = 1 , βd ≥ 0 , βs ≥ 0 (7b)

yβ(t
∗)− ξ∆(t∗ − t) ≥ yβ(t) , ∀t ∈ Ω . (7c)

A visualization of this reformulated problem and the constraint (7c) is shown in
figure 4. For any fixed state t∗, (7) corresponds to a Quadratic Programming
(QP) problem, which can be solved using standard techniques. In practice, we
sample a finite set of candidate statesΩ based on local maxima from the deep and
shallow scores. Subsequently, (7) is optimized for each state t∗ ∈ Ω by solving a
three-parameter QP problem, adding minimal computational overhead. We then
select the candidate state t∗ with lowest overall loss (7a) as our final prediction.

5 Experiments

5.1 Implementation Details

Our tracker is implemented in Matlab using MatConvNet [32]. Based on the anal-
ysis in section 3.4, we select σd = 1/4 and σs = 1/16 for deep and shallow label
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functions respectively, when training the models. As concluded in section 3.3, we
employ the proposed data augmentation techniques only for deep features. For
the fusion method presented in section 4, the regularization parameter µ in (6)
is set to 0.15. We set the κ parameter in the distance measure (2) to be inversely
proportional to the target size with a factor of 8. All parameters were set using
a separate validation set, described in the next section. We then use the same
set of parameters for all datasets, throughout all experiments.

5.2 Evaluation Methodology

We evaluate our method on four challenging benchmarks: the recently introduced
Need For Speed (NFS) [12], VOT2017 [16], UAV123 [24], and Temple128 [20].
NFS consists of 100 high frame rate (240 fps) videos as well as their 30 fps
versions. We use the 30 fps version of the dataset for our experiments. Mean
overlap precision (OP) and area-under-the-curve (AUC) scores are used as eval-
uation measures. The OP score is computed as the percentage of frames in a
video where the intersection-over-union (IOU) overlap with the ground-truth
exceeds a certain threshold. The mean OP over all videos is plotted over the
range of IOU thresholds [0, 1] to get the success plot. The area under this plot
gives the AUC score. We refer to [36] for details. Due to the stochastic nature
of the dropout augmentation, we run our tracker 10 times on each sequence
and report average scores to robustly estimate the performance on all datasets.
Details about VOT2017, UAV123 and Temple128 are provided in section 5.5.
Validation set: We use a subset of the popular OTB-2015 dataset [36] as our
validation set for tuning all hyperparameters. The OTB-2015 dataset has been
commonly used for evaluation by the tracking community. However, the dataset
has saturated in recent years with several trackers [7, 26] achieving over 90% OP
score at threshold 0.5 due to the majority of relatively easy videos. Instead, we
are primarily interested in advancing tracking performance in the challenging and
unsolved cases, where deep features are of importance. We therefore construct a
subset of hard videos from OTB-2015 to form our validation set, termed OTB-
H. To find the hardest videos in OTB-2015, we consider the per-video results
of four deep-feature-based trackers with top overall performance on the dataset:
ECO [7], C-COT [11], MDNet [26], and TCNN [25]. We first select sequences for
which the average IOU is less than 0.6 for at least two of the four trackers. We
further remove sequences overlapping with the VOT2017 dataset. The resulting
OTB-H contains 23 sequences, which we use as the validation set when setting
all the parameters. The remaining 73 easier videos form the OTB-E dataset that
we use in our ablative studies as a test set along with NFS dataset.

5.3 Ablative Study

We first investigate the impact of the observations from section 3 in a tracking
framework employing both deep and shallow features. To independently evaluate
our contributions, we fuse the model predictions as in (5) with fixed weights β.
By varying these weights, we can further analyze the contribution of the deep
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Fig. 5: Analysis of tracking robustness and accuracy using the OP scores at IOU
thresholds of 0.5 and 0.75 respectively on the NFS and OTB-E datasets. We plot the
performance of our approach using sum-fusion with fixed weights (red) for a range of
different shallow weights βs. These results are also compared with the baseline ECO
(orange) and our adaptive fusion (blue). For a wide range of βs values, our sum-fusion
approach outperforms the baseline ECO in robustness on both datasets. Our adaptive
fusion achieves the best performance both in terms of accuracy and robustness.

and shallow models to the final tracking accuracy and robustness. We employ
the widely used PASCAL criterion as an indicator of robustness. It measures
the percentage of successfully tracked frames using an IOU threshold of 0.5,
equivalent to OP at 0.5. Furthermore, we consider a localization to be accurate

if its IOU is higher than 0.75, since this is the upper half [0.75, 1] of the IOU
range [0.5, 1] representing successfully tracked frames.

Figure 5 plots the accuracy and robustness indicators, as described above, on
NFS and OTB-E for different values of the shallow model weight βs. In all cases,
the deep weight is set to βd = 1−βs. We also show the performance of the baseline
ECO, using the same set of deep and shallow features. We observe that our
tracker with a fixed sum-fusion outperforms the baseline ECO for a wide range of
weights βs. This demonstrates the importance of employing specifically tailored
training procedures for deep and shallow features, as observed in section 3.5.

Despite the above improvements obtained by our analysis of deep and shallow
features, we note that optimal robustness and accuracy are mutually exclusive,
and cannot be obtained even by careful selection of the weight parameter βs.
While shallow features (large βs) are beneficial for accuracy, deep features (small
βs) are crucial for robustness. Figure 5 also shows the results of our proposed
adaptive fusion approach (section 4), where the model weights β are dynamically
computed in each frame. Compared to using a sum-fusion with fixed weights, our
adaptive approach achieves improved accuracy without sacrificing robustness.
Figure 6 shows a qualitative example of our adaptive fusion approach.

5.4 Generalization to Other Networks

With the advent of deep learning, numerous network architectures have been
proposed in recent years. Here, we investigate the generalization capabilities of
our findings across different deep networks. Table 2 shows the performance of the
proposed method and baseline ECO on three popular architectures: VGG-M [4],
GoogLeNet [29], and ResNet-50 [13]. The results are reported in terms of AUC
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(a) βd = 0.01
βs = 0.99

(b) βd = 0.90
βs = 0.10

(c) βd = 0.10
βs = 0.90

(d) βd = 0.87
βs = 0.13

Fig. 6: Qualitative example of our fusion approach. The adaptively computed model
weights βd, βs are shown for four frames from the Soccer sequence. The shallow model
is prominent early in the sequence (a), before any significant appearance change. Later,
when encountered with occlusions, clutter and out-of-plane rotations (b,d), our fusion
emphasizes the deep model due to its superior robustness. In (c), where the target
undergoes scale changes, our fusion exploits the shallow model for better accuracy.

Table 2: Generalization of our tracker across different network architectures. Results
are shown in terms of AUC scores on the NFS and OTB-E dataset. The baseline ECO
fails to exploit the power of more sophisticated architectures. Instead, our approach
provides consistent gains over ECO when moving towards more advanced networks.

VGG-M GoogLeNet ResNet-50
OTB-E NFS OTB-E NFS OTB-E NFS

ECO 74.8 45.3 74.4 45.4 74.3 45.7
Ours 74.2 49.7 76.0 51.6 78.0 54.1

scores on NFS and OTB-E datasets. ECO fails to exploit more sophisticated
deeper architectures: GoogLeNet and ResNet. In case of ResNet, our approach
achieves a significant gain of 3.7% and 8.4% on OTB-E and NFS datasets respec-
tively. These results show that our analysis in section 3 and the fusion approach
proposed in section 4 generalizes across different network architectures.

5.5 State-of-the-Art

Here, we compare our tracker with state-of-the-art methods on four challenging
tracking datasets. Further details are provided in the supplementary material.
VOT2017 Dataset [16]: On VOT2017, containing 60 videos, tracking perfor-
mance is evaluated both in terms of accuracy (average overlap during successful
tracking) and robustness (failure rate). The Expected Average Overlap (EAO)
measure, which merges both accuracy and robustness, is then used to obtain
the overall ranking. The evaluation metrics are computed as an average over 15
runs (see [16] for further details). The results in table 3 are presented in terms of
EAO, robustness, and accuracy. Our approach significantly outperforms the top
ranked method LSART with a relative gain of 17%, achieving an EAO score of
0.378. In terms of robustness, our approach obtains a relative gain of 17% com-
pared to LSART. Furthermore, we achieve the best results in terms of accuracy,
demonstrating the overall effectiveness of our approach.
Need For Speed Dataset [12]: Figure 7a shows the success plot over all the
100 videos. The AUC scores are reported in the legend. Among previous methods,
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Table 3: Comparison with the state-of-the-art in terms of expected average overlap
(EAO), robustness (failure rate), and accuracy on the VOT2017 benchmark. We com-
pare with the top-10 trackers in the competition. Our tracker obtains a significant
relative gain of 17% in EAO, compared to the top-ranked method (LSART).

MCPF SiamDCF CSRDCF CCOT MCCT Gnet ECO CFCF CFWCR LSART Ours

EAO 0.248 0.249 0.256 0.267 0.270 0.274 0.280 0.286 0.303 0.323 0.378
Robustness 0.427 0.473 0.356 0.318 0.323 0.276 0.276 0.281 0.267 0.218 0.182
Accuracy 0.510 0.500 0.491 0.494 0.525 0.502 0.483 0.509 0.484 0.493 0.532
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Fig. 7: Success plots on the NFS (a), Temple128 (b), and UAV123 (c) datasets. Our
tracker significantly outperforms the state-of-the-art on all datasets.

CCOT [11] and ECO [7] achieve AUC scores of 49.2% and 47.0% respectively.
Our approach significantly outperforms CCOT with a relative gain of 10%.
Temple128 Dataset [20]: Figure 7b shows the success plot over all 128 videos.
Among the existing methods, ECO achieves an AUC score of 60.5%. Our ap-
proach outperforms ECO with an AUC score of 62.2%.
UAV123 Dataset [24]: This dataset consists of 123 aerial tracking videos cap-
tured from a UAV platform. Figure 7c shows the success plot. Among the existing
methods, ECO achieves an AUC score of 53.7%. Our approach outperforms ECO
by setting a new state-of-the-art, with an AUC of 55.0%.

6 Conclusions

We perform a systematic analysis to identify key causes behind the below-
expected performance of deep features for visual tracking. Our analysis shows
that individually tailoring the training for shallow and deep features is crucial
to obtain both high robustness and accuracy. We further propose a novel fusion
strategy to combine the deep and shallow appearance models leveraging their
complementary characteristics. Experiments are performed on four challenging
datasets. Our experimental results clearly demonstrate the effectiveness of the
proposed approach, leading to state-of-the-art performance on all datasets.
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