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Abstract. We present a flexible framework for robust computed tomog-
raphy (CT) reconstruction with a specific emphasis on recovering thin 1D
and 2D manifolds embedded in 3D volumes. To reconstruct such struc-
tures at resolutions below the Nyquist limit of the CT image sensor, we
devise a new 3D structure tensor prior, which can be incorporated as
a regularizer into more traditional proximal optimization methods for
CT reconstruction. As a second, smaller contribution, we also show that
when using such a proximal reconstruction framework, it is beneficial to
employ the Simultaneous Algebraic Reconstruction Technique (SART)
instead of the commonly used Conjugate Gradient (CG) method in the
solution of the data term proximal operator. We show empirically that
CG often does not converge to the global optimum for tomography prob-
lem even though the underlying problem is convex. We demonstrate that
using SART provides better reconstruction results in sparse-view settings
using fewer projection images. We provide extensive experimental results
for both contributions on both simulated and real data. Moreover, our
code will also be made publicly available.

Keywords: Super resolution · Proximal optimization · Tomography.

1 Introduction

X-ray tomography is a popular imaging technique used for reconstructing vol-
umetric properties for a large range of objects [1]. For example, it is used for
industrial inspection, luggage inspection, research and development in mechan-
ical engineering and material sciences, biomedical diagnosis and treatment, and
it serves as an input to many computer vision algorithms, including methods for
automatic segmentation, detection, and recognition. As with all imaging meth-
ods, an important goal in CT is to maximize the amount of information about a
target while minimizing the number of measurements, and therefore reducing the
acquisition time, memory consumption, and (in the case of CT) radiation dose.
This general desire comes in two variants: (a) reducing the number of projections
needed for a detailed 3D reconstruction, and (b) resolving fine structures, ideally
beyond the Nyquist limit of the individual projection images. In this paper, we
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(a) Artificial rose (b) Plumeria flower (c) Real rose (d) Toothbrush (e) Sponge

Fig. 1. Five datasets with thin 2D (a-c) and 1D (d-e) structures embedded in 3D vol-
umes. Top row: scanned objects. Middle row: representative projection images. Bottom
row: rendering results of volumes reconstructed by our method.

tackle both problems in a proximal operator framework respectively with a new
solver for the data term, and a new regularizer for volumes with thin sheets and
tube-like structures.

State of the art robust CT reconstruction usually employs iterative meth-
ods [1, 2] and poses the problem as an optimization problem of the form

min
x

f(x)
︸︷︷︸

data fidelity

+ g(Mx)
︸ ︷︷ ︸

regularizer

, (1)

where x ∈ R
n is the unknown 3D reconstruction volume, f(·) is the data fidelity

term that measures how well the volume fits the measured input projections,
and is usually of the form f(x) = ‖Ax− b‖22, where A describes the projection
geometry, and b represents the observed projection images. g(Mx) is the regu-
larizer consisting of a loss function g(.) and a linear operator M that transforms
the volume x into a sparse domain (e.g. for Total Variation, g(.) = ‖.‖1 and
M is the volume gradient operator). Problem (1) is a general model, and can
incorporate many noise models, e.g. Poisson [3, 4] or Gaussian noise [5]; and reg-
ularizers, e.g. ℓ1 [6] or Total Variation (TV) [7]. Such optimization problems are
commonly solved with proximal algorithms [8–10], which allow the decomposi-
tion of (1) into independent proximal operators, one for the linear least squares
data term, and one for the non-linear regularizer.

The regularizer can be used to enforce specific prior information about the
reconstructed volume. Our major contribution is to show that enforcing sparsity
on the eigenvalues of the 3D structure tensor allows for super-resolved recon-
struction of thin structures such as thin sheets or tubes, see for example Fig. 1.
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The intuition is that the 3D structure tensor should have two zero eigenvalues
on a 2D manifold embedded into a 3D volume, since the volume will only vary
along the normal direction. Likewise, for curves embedded in 3D, one of the
eigenvalues is expected to be zero.

The linear least squares problem in the data term requires a matrix-free solver
in order to control memory consumption, and Conjugate Gradients is frequently
used for this purpose [11, 12]. In this work we show that using the Simultaneous
Algebraic Reconstruction Technique (SART, [13, 14]) for this problem yields bet-
ter results, especially in reconstructions from a sparse numbers of projections.
While SART has historically played an important role in solving the unregular-
ized CT problem [15, 16], we demonstrate how to use it for solving the data term
proximal operator, which to our knowledge has not been done before.

We provide the following contributions:

1. We introduce a 3D structure tensor prior into tomographic reconstruction
problems, derive its proximal operator, and show its effectiveness in recon-
structing specific structural features.

2. We show how to use SART for solving the proximal operator for the data
term, and demonstrate improvements in sparse-view reconstructions.

3. We validate the efficacy of our algorithm and show superior reconstruction
quality compared to existing popular methods and software packages.

2 Related Work

X-ray tomography reconstruction has received extensive attention since the first
practical medical CT device was invented in the early 1970s by Hounsfield.
There are two general approaches for tomography reconstruction: transform-
based methods and iterative methods [1, 2]. Transform-based methods rely on
the Radon transform and its inverse, introduced in 1917. The most widely used
3D cone beam reconstruction method is the filtered backprojection algorithm
introduced by Feldkamp, Davis, and Kress and known as FDK [17]. Transform
methods are usually viewed as much faster than iterative methods, and have
therefore been the method of choice for X-ray scanner manufacturers [18].

Iterative methods on the other hand use algebraic techniques to solve the
reconstruction problem. They generally model the problem as a linear system and
solve it using established numerical linear algebraic methods [2]. One challenge
for using iterative methods in computed tomography is the memory consumption
of the system matrix. This limits the range of available algorithms to matrix-
free solvers, in which the data fidelity term is represented procedurally instead of
explicitly. The Algebraic Reconstruction Technique (ART) and its many variants
are among the best known iterative reconstruction algorithms [19–22, 13, 14].
They use variations of the projection method of Kaczmarz, have modest memory
requirements, and have been shown to yield better reconstruction results than
transform-based methods. They are matrix free, and work without having to
explicitly store the system matrix.



4 Guangming Zang et al

The importance of priors for state-of-the-art CT reconstruction cannot be
overstated, especially for sparse-view and super-resolution reconstruction. In this
setting, the number of pixels in the projection image is significantly lower than
the number of voxels in the volume to be reconstructed, so the system Ax = b

is under-determined, and the un-regularized least squares problem is ill-posed.
Regularizers (priors) are needed to restrict the solution space to a single point,
but also the choice of solver can influence which solution within the null space
of ATA is preferred.

Proximal algorithms have been widely used in many problems in machine
learning and signal processing [23, 24, 8, 9]. In particular, they have also been
used in tomography reconstruction. For example, [11] used the Alternating Di-
rection Method of Multipliers (ADMM) [8] with a Total Variation prior, where
the data term was optimized using Conjugate Gradient (CG) [25]. [6] discussed
using the Chambolle-Pock algorithm [26] for tomography reconstruction with dif-
ferent priors. [27] used ADMM with Preconditioned Conjugate Gradients [25] for
optimizing the weighted least squares data term. [28] used Linearized ADMM [9]
(also known as Inexact Split Uzawa [29]) with Ordered Subset-based meth-
ods [30] for optimizing the data term and FISTA [31] for optimizing the prior
term. However, none of these methods used SART as their data term solver
within a proximal framework. In this article, we demonstrate several advantages
of using SART over CG for this subproblem, including most notably an improved
reconstruction quality.

Recently, some methods based on deep learning have been developed for CT
reconstruction problems [32–35]. While some promising initial results have been
demonstrated, current versions are strongly data dependent, e.g. with respect
the noise level in the input. We also note that many applications of CT require
a fairly conservative behavior of the reconstruction algorithm, i.e. algorithms
should not “invent” structures. We are not aware of deep learning approaches
that can make such guarantees, while regularizers for optimization-based ap-
proaches (including the structure tensor prior in this work) can easily be designed
to favor the “simplest” reconstruction that satisfies the observed measurements.

There are currently a number of open source software packages for tomog-
raphy reconstruction. SNARK09 [36] is one of the oldest. It has several algo-
rithms implemented for 2D reconstruction, but very little support for 3D recon-
struction. The Reconstruction ToolKit (RTK) [12] is a high performance C++
toolkit focusing on 3D cone beam reconstruction that is based on the image
processing package Insight ToolKit (ITK). It includes implementations of sev-
eral algorithms, including FDK, SART, and an ADMM TV-regularized solver
with CG [11]. The ASTRA toolbox [37] is a Matlab-based GPU-accelerated
toolbox for tomography reconstruction. It includes implementations of several
algorithms, including SART, SIRT, FDK, FBP, among others. However, neither
of these packages uses SART for the data term, or supports structure tensor reg-
ularization. We demonstrate that the combination of these two methods results
in marked improvements for the reconstruction of thin features.
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3 Review of Proximal Methods

With the CT reconstruction problem expressed as an optimization problem (1),
we turn to the question of finding appropriate solvers. Like several recent ap-
proaches, we rely on proximal algorithms [8], namely the first-order primal-dual
algorithm proposed by Chambolle and Pock [26] (henceforth referred to as the
CP algorithm). Proximal algorithms are able to solve complex optimization prob-
lems by splitting them into several smaller and easier sub-problems, that are
solved independently, and then combined to find a solution to the original prob-
lem.

These simple sub-problems take the form of proximal operators [8]:

proxζh(u) , argmin
x

h(x) +
1

2ζ
‖x− u‖22, (2)

where u ∈ R
n is the input to the function and ζ ∈ R is a weighting parameter.

For the CP algorithm to work, we need to determine and implement two prox-
imal operators: The proximal operator for the data term: proxτf (u), and the
proximal operator for the convex conjugate [38] function g∗(·) of g(·) defined as:
proxµg∗(u). By using different regularization functions g(·) and matrices M , we
can plug in different priors based on different models of what the reconstructed
volume should look like.

4 Method

4.1 Motivation and Overview

The main components of our proximal framework are the regularization term
and the data term.

Regularization Term Our framework can easily incorporate different regular-
izers that have been used before in tomography reconstruction, e.g. Anisotropic
Total Variation (ATV), Isotropic Total Variation (ITV), and Sum of Absolute
Differences (SAD). Please see the supplement for more details on these. In ad-
dition, in Sec. 4.2, we propose a new 3D structure tensor prior to better handle
thin structures.

Data Term The proximal operator for the data term proxτf (u) has tradition-
ally been solved using Conjugate Gradient (CG) [27]. In particular, it can be
cast as a least squares problem, and solved using CGLS [39]. However, we find
that CG does not in general converge to the global optimum for the tomography
data term proximal operator, although it is a convex problem (see supplemental
material and [40] for experiments with two different implementations of CG as
well as the tomography system itself). These problems can be traced back to
two factors, that are both related to the size of the linear system in computed
tomography problems:
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– CG in general is known to have issues with large systems [41, 42]. Then, it
requires a good preconditioner for large and sparse systems. For tomography,
preconditioning is usually not an option, since it is infeasible to store the
system matrix A, and CG is instead used in a matrix-free fashion. In fact
support for matrix-free operation is one of the primary motivators for using
CG in this context, but it limits the choice of preconditioner to e.g. Jacobi
preconditioning, which is not very effective for tomography matrices.

– As another consequence of needing to operate in matrix free mode, the ma-
trices themselves are laden with numerical noise. Specifically, solving the
least squares problem with a system matrix ATA requires the procedural
implementation of two operations: A · x (projection) and AT · y (backpro-
jection), where x is a volume and y is the set of projection images. Because
of slight numerical discrepancies between the implementations of these two
procedural operators, the resulting matrices are not generally exact trans-
poses of each other. CG does tend to be more sensitive to this issue than
other solvers.

4.2 Structure Tensor Prior (STP)

The structure tensor [43] SK(xi) ∈ S
3
+ for a 3D volume at voxel i is a 3 × 3

positive semi-definite matrix that captures the local structure around a voxel,
and is defined as:

SK(xi) =
∑

j∈N (qi)

K(qj − qi)
(
∇xj∇xT

j

)
, (3)

where qi = [i1, i2, i3]
T ∈ R

3 is the coordinate vector of voxel i, K(qj − qi) :
R

3 → R is a 3D rotationally-symmetric smoothing kernel that down-weights
the contributions of voxel j in the set N (qi) of the l neighboors of the voxel i
and ∇xj ∈ R

3 is the local gradient at voxel j. So we can regard the structure
tensor as a weighted average of the outer product of the local gradients at the
neighborhood of the voxel.

The STP regularizer was introduced by [44, 45]. It includes the standard TV
as a special case, when the smoothing kernel is a Dirac delta i.e. it is a local

structure tensor at each voxel [45]. Intuitively, the STP tries to estimate the
volume such that its structure tensor is low rank, by minimizing the deviation
of voxel values in the region around it. We will introduce the STP and develop
its solver by extending it from the case of images in [44, 45] to 3D volumes and
by employing more efficient proximal algorithms for its computation.

The STP at a voxel i is defined as the ℓp norm of the square roots of
the eigenvalues of the structure tensor SK(xi) defined in Equation (3). Let
Λ (SK(xi)) ∈ R

3 be the vector of eigenvalues of SK(xi):

STPp(xi) = ‖
√

Λ (SK(xi))‖p (4)
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To represent the STP in a form that fits Equation (1), we define the “patch-
based Jacobian” [45] as a linear map JK : Rn → R

nl×3 between the space of vol-
umes and a set of weighted gradients that are computed from the l-neighborhood
of each of the n voxels. We can write the patch-based Jacobian at voxel i as
JK(xi) ∈ R

l×3 by stacking the weighted local gradients side-by-side:

JK(xi) =
[
κj1∇xj1 · · · κjl∇xjl

]T ∈ R
l×3, (5)

where {j1, . . . , jl} = N (qi) denotes the indices of the neighbors of voxel i (includ-
ing i itself), and κjk =

√

K(qi − qjk). The patch-based Jacobian for the whole
volume JKx ∈ R

nl×3 is now formed by stacking ”local” components JK(xi) on
top of each other. Using this linear operator JK , Equation(3) can be rewritten
as follows:

SK(xi) = JK(xi)
TJK(xi), (6)

which means that the singular values of JK(xi) are actually equal to the square
root of the eigenvalues of SK(xi) in Equation (4).

Thus we get the definition of STPp as

STPp(x) =

n∑

i=1

‖JK(xi)‖Sp
, (7)

where ‖ · ‖Sp
is the Schatten p−norm. In our experiments, we set p = 1 which is

equivalent to the nuclear norm.
We can write this regularizer in a more compact compound norm STPp(x) =

‖JKx‖1,p where the mixed norm ℓ1 − Sp or (1, p)-norm is defined for a matrix
J = JKx ∈ R

nl×3 as follows:

‖J‖1,p = ‖JKx‖1,p =
n∑

i=1

‖Ji‖Sp
, (8)

where Ji ∈ R
l×3 represents the patch-based Jacobian at some voxel i. With q

satisfying 1
p
+ 1

q
= 1, the mixed norm (∞, q) is the dual norm of the mixed norm

(1, p). We can rewrite the Eqution (8) as in [46]:

‖J‖1,p = max
H∈B∞,q

〈H, J〉Rnl×3 = max
H∈B∞,q

∑

i

tr(HT
i Ji) (9)

where B∞,q is the (∞, q) unit-norm ball.
Now, we define the regularizer function g(·) as:

g(JKx) = λ‖J‖1,p = max
H∈λB∞,q

〈H, J〉Rnl×3 (10)

where: λB∞,q refers to the (∞, q)-norm ball with a radius of λ. Thus, the opti-
mization problem in Equation (1) can be rewritten as follows:

min
x

[

‖Ax− b‖22 + max
H∈λB∞,q

〈H, J〉Rnl×3

]

(11)
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where H, J ∈ R
nl×3. This formulation is equivalent to:

min
x

max
H

[
‖Ax− b‖22 + 〈H, J〉Rnl×3 − ıλB∞,q

(H)
]

(12)

where: ıλB∞,q
(H) is the indicator function of the ball λB∞,q. Otherwise the

convex conjugate of the STP regularizer g(·) is defined by:

g∗(H) = max
J∈Rnl×3

〈H, J〉 − g(J), (13)

From Equations (12) and (13), we deduce that g∗(·) is equal to the indicator
function ıλB∞,q(·). Thus, the proximal operator of g∗(·) is the projection on the
convex ball λB∞,q:

proxηg∗(H) = ΠλB∞,q
(H) , (14)

In our case p = 1 and q = ∞, so that the projection is simply performed by soft
thresholding the singular values of each component of H.

Algorithm 1 outlines the overall steps to solve the tomography problem with
the STP prior as defined in Equation (1), where f(x) is the data term and
g(Mx) is the STP regularizer. Detailed derivations of the structure tensor prior
are provided in the supplement.

Algorithm 1 Tomography with STP regularizer

Require: λ, η, τ, θ ∈ R, b ∈ R
m, l ∈ N

1: Initialize: x̄(0) = 0
2: for t = 1 . . . T do
3: Solve

Y
t+1 = proxηg∗

(

Y
t + ηJK x̄

t
)

= ΠλB∞,q

(

Y
t + ηJK x̄

t
)

using Equation (14).
4: Solve

x
t+1 = proxτf

(

x
t − τJ

∗
KY

t+1)

using Algorithm 2 with input u = xt − τJ∗
KY t+1 and parameter τ .

5: Update
x̄
t+1 = x

t+1 + θ
(

x
t+1 − x

t
)

6: end for
return volume reconstruction x ∈ R

N = argminx ‖Ax− b‖22 + λSTPp(x).

4.3 SART For The Data Term

We now show how to use the SART algorithm to solve the data term proximal
operator proxλf (u). In particular, we want to solve:

proxλf (u) = argmin
x

‖Ax− b‖22 +
1

2λ
‖x− u‖22. (15)
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Recall that SART solves a minimum norm problem. By introducing new
variables: y =

√
2λ(b−Ax) and z = x−u, and after further manipulations, it can

be shown that solving the optimization problem in Equation (15) is equivalent
to solving:

miny,z

∥
∥
∥
∥

[
y

z

]∥
∥
∥
∥

2

2

subject to:
[

I
√
2λA

]
[
y

z

]

=
√
2λ (b−Au) , (16)

which can be written as:

minx̃ ‖x̃‖22 subject to: Ãx̃ = b̃, (17)

where x̃ ∈ R
m+n, Ã ∈ R

m×m+n, and b̃ ∈ R
m. This is now an under-determined

linear system, and can be solved using SART.
Algorithm 2 summarizes the steps for the modified SART to solve the prox-

imal operator.

Algorithm 2 SART For Solving The Data Term

Require: A ∈ R
m×n, u ∈ R

n, λ ∈ R, α ∈ R, b ∈ R
m

1: b =
√
2λb, A =

√
2λA

2: Initialize: y(0) = 0, x(0) = u

3: for t = 1 . . . T do
4: for projections S ∈ S1 . . .SN do

y
(t+1)
j = y

(t)
j + αc

(t)
j for j ∈ S

b̂
(t+1)

i =
∑

k

aikx
(t)
k + y

(t)
i

c
(t+1)
i =

bi − b̂
(t+1)

i
∑

k aik + 1

x
(t+1)
j = x

(t)
j + α

∑

i∈S
c
(t+1)
i aij

∑

i∈S
aij

for j = 1 . . . n

5: end for
6: end for

return volume reconstruction x ∈ R
n

5 Experiments

The experiments were run on a machine with two Intel Xeon E5-2697 processors
(56 cores overall) and 128 GB of RAM. We present two kinds of experiments:

1. focusing on sparse view reconstruction using the 3D Shepp-Logan phantom
and the scans of the rose in Fig. 1(c).

2. focusing on super resolution using a simulated 3D Fresnel zone plate, scans
of the artificial rose, the plumeria flower, and the toothbrush((a),(b), and
(d) in Fig. 1, respectively).
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Fig. 2. A sample slice with different number of projections from a 3D Shepp-Logan (a)
and scanned rose (b). The PSNR and SSIM values are shown at the top of each image.
For each data, we compare PCG-TV (top) with our proposed PSART-TV method
(bottom). For Shepp-Logan data, 90, 60, 45, and 30 projections as input. For the real
scanned rose, 90, 60, 45 were used projections as input.

5.1 Sparse-View Reconstruction

We first validate our choice of SART as the solver for the data term in Eq. (1). We
run experiments comparing SART head-to-head with Conjugate Gradient (CG)
in a sparse-view setting, using the TV regularizer in both cases. In particular,
we show the reconstruction quality, measured in PSNR and SSIM, as a function
of the number of projections available. We use the implementation provided in
RTK and compare to our framework using the SART proximal operator solver.
The size of the 3D Shepp-Logan volume is 300 × 300 × 300 with voxel size of
1 × 1 × 1 mm, while the volume size of the rose is 436 × 300 × 365 with voxel
size of 0.3× 0.3× 0.3 mm.

As Fig. 2 shows, SART as a solver for the data term provides better quality
than CG, which is expected given the known limitations of CG, whereby it is
prone to overfitting the projection noise in the data, which becomes even more
pronounced when the number of projections is smaller. For more details on the
experimental parameters and extensive experimental results, we refer readers to
the supplemental material.

5.2 Super Resolution Experiments

Now we run experiments to compare the new regularizer in a super-resolution
setting. We chose the following algorithms for our comparison:

– PSART-STP: this is our complete framework using the Structure Tensor
prior.

– PSART-SAD: this is our framework with the previously used SAD (Sum of
Absolute Differences) prior [40]. It was shown before [47] that SAD performs
better than TV, and so we chose it as the best alternative prior to compare
to STP.



Super-Resolution and Sparse View CT Reconstruction 11

(a) FDK (b) SART (c) PCG-TV (d) PSART-SAD (e) PSART-STP (f) Reference

Fig. 3. 2D slice from the reconstructed 3D Fresnel zone plate (top) and its Sobel filtered
visualization (bottom). The green ring in each image represents the smallest feature
we can extract according to the Nyquist limit. PSNR and SSIM of slice images (top)
from (a) to (e): FDK (17.5978, 0.9354), SART (19.5440, 0.9582), PCG-TV (22.0659,
0.9756), PSART-SAD (22.6293, 0.9781), PSART-STP (24.8331, 0.9864), Refer-
ence volume. The display window is [0, 0.8]. For Sobel filtered images, smoother features
in the superresolution frequencies for the PSART results indicate a better suitability
for post-processing tasks such as segmentation.

We compare results from our framework to state-of-the-art algorithms and
comparable implementations in RTK, namely:

– Cone Beam Filtered Back Projection (FDK) [17], as the FDK algorithm is
still the most commonly used method in practical CT scanners [18].

– Plain SART with no priors (SART).
– ADMM with ATV prior (PCG-TV) using Conjugate Gradient (CG) [11].

The initial volume for all methods is set to 0. For choosing the hyper parameters
in all the algorithms, we experiment with a range of values and pick the ones
with the best performance.

First, we use a synthetic volume dataset to demonstrate the super-resolution
capabilities of the PSART framework. Specifically, we show a cone-beam to-
mographic reconstruction of a 3D version of the Fresnel zone “plate” (a 2D
cross-section is shown in Fig. 3(f)). After adding Gaussian noise with standard
deviation σ = 2, the projection images are downsampled with the scale factor as
6.4 using bicubic interpolation, which are the input for our experiments. We run
the SART algorithm with 180 projections with the original size until convergence
(15 iterations), and considered the resulting reconstruction the reference volume
for numerical comparisons. More details for the parameters can be found in the
supplement.

Fig. 3 (top) shows a visual comparison of the different reconstruction meth-
ods, together with the obtained PSNR and SSIM values. As can be seen, the
PSART framework, with SART as a solver for the data fidelity term outper-
forms the other state-of-the-art methods, even when used in combination with
the SAD regularizer. The use of the STP provides an additional quality boost.
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Fig. 4. RMSE of the reconstructed volume as a function of iteration (left) and running
time (right) for the various methods.

(a) FDK (b) SART (c) PCG-TV

(d) PSART-SAD (e) PSART-STP (f) Reference

Fig. 5. a-f: Representative slice visualization in the sagittal plane for the volume and
its closeup view for the artificial flower data reconstructed by FDK, SART, PCG-TV,
PSART-SAD, PSART-STP, and the reference volume, respectively.

In particular, we note the improved reconstruction quality for frequencies above
the Nyquist limit for the 2D pixel sampling rate (green circle).

These results are further confirmed in Fig. 3 (bottom). Since tomographic
reconstruction is often just the first step in an image analysis pipeline, we tested
how robust and reliable the super-resolution information is for further processing
such as image segmentation. As a stand-in for more sophisticated segmentation
methods, we applied a 3D variant of the Sobel filter [48] to extract the boundaries
between the rings. Smoother results from the Sobel filter indicate that it will be
easier to trace thin structures through the volume in a segmentation process. We
can again see that PSART generates significant super-resolution information,
with PSART-STP performing best.

Fig. 4 shows the evolution of the RMSE plotted against the iteration and
running time during the zone plate volume reconstruction for each method. The
PSART methods (PSART-SAD and PSART-STP) converge faster than PCG-
TV in terms of running time, and PSART-STP converges slower than PSART-
SAD but finds a solution with lower RMSE.
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(a) FDK (b) SART (c) PCG-TV (d) PSART-SAD (e) PSART-STP (f) Reference

Fig. 6. Representative slice visualization in the axial plane for (f): the reference vol-
ume and (a)-(e): the volumes reconstructed by FDK, SART, PCG-TV, PSART-SAD,
and PSART-STP, respectively. From top to bottom: volume visualization, its edge
detection, and the closeup views.

We ran another round of experiments on real datasets that were scanned
using a Nikon X ray CT, namely artificial flowers, a plumeria flower, and a
toothbrush. These objects have the structural features we are interested in mod-
eling i.e. thin sheets and thin tubes.

The reconstructed volume size for artificial rose is 415 × 314 × 393. 120
original-size projection images are used as input for PSART-STP and the best
reconstructed result is used as the reference volume for our comparison. Fig. 5
shows reconstruction results from different methods in the sagittal plane, and the
edge detection results from applying Sobel filter are provided in the supplemen-
tary material. We can see clearly that our PSART-SAD and PSART-STP achieve
better performance than existing methods. Fig. 6 shows the results in the axial
plane. The reconstructed volume size for the plumeria is 406×259×336. Fig. 7
(a) shows the comparison to the state-of-the-art PCG-TV method. For better
visualization and comparisons, we generated a reference volume by running the
PSART-STP method with 360 original images as input until convergence.The
reconstructed volume size for the toothbrush is 690 × 668 × 776. Fig. 7 (b)
shows the comparison between PCG-TV and the proposed PSART-STP. Again,
compared to PCG-TV, our method achieves shaper results.

In summary, for both simulated and real scanned data, our PSART recon-
structions (PSART-SAD and PSART-STP) consistently give better results than
the equivalent PCG-TV. PSART-SAD works better than PCG-TV, confirming
earlier results about the SAD regularizer [47, 40]. Our PSART-STP method pro-
duces the best results in terms of both quantitative (PSNR and SSIM) and qual-
itative comparisons (visualization of volume and edge detection filter), allowing
for super-resolved reconstruction of thin structures shown in Fig. 1.
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(a) Plumeria flower (b) Toothbrush

Fig. 7. Reconstruction results for the real flower (a) and toothbrush (b) in the sagittal,
axial, and coronal planes, respectively.

6 Conclusions and Future Work

We have presented a flexible proximal framework for robust 3D cone beam re-
construction of super-resolved thin features. Our two main contributions are (a)
introduction of the 3D structure tensor as a regularizer for the tomographic re-
construction problem, and (b) the use of SART for the data-fidelity subproblem
in the proximal framework. We have experimentally demonstrated that the 3D
structure tensor prior is best suited for reconstructing specific structural fea-
tures such as thin sheets and filaments, and that using SART provides better
reconstructions than other solvers, especially in the case of under-determined
tomographic reconstruction from a small number of projections.

We have experimentally compared our framework with the popular RTK
open-source software toolkit, both on real and simulated datasets, using different
state-of-the-art priors. We showed the robustness of our algorithms in terms of
reconstruction quality.

In the future, we plan to extend our framework by adding a GPU version
providing a higher level of parallelism.

7 Acknowledgments

This work was supported by KAUST as part of VCC Center Competitive Fund-
ing.



Super-Resolution and Sparse View CT Reconstruction 15

References

1. Kak, A.C., Slaney, M.: Principles of computerized tomographic imaging. SIAM
(2001)

2. Herman, G.T.: Fundamentals of computerized tomography: image reconstruction
from projections. Springer Science & Business Media (2009)

3. Clinthorne, N.H., Pan, T.S., Chiao, P.C., Rogers, W., Stamos, J.: Preconditioning
methods for improved convergence rates in iterative reconstructions. IEEE Trans.
Med. Img. 12(1) (1993)

4. Elbakri, I.A., Fessler, J.A.: Efficient and accurate likelihood for iterative image
reconstruction in x-ray computed tomography. In: Medical Imaging, International
Society for Optics and Photonics (2003) 1839–1850

5. Xu, J., Tsui, B.M.: Quantifying the importance of the statistical assumption in
statistical x-ray ct image reconstruction. IEEE Trans. Med. Img. 33(1) (2014)

6. Sidky, E.Y., Jørgensen, J.H., Pan, X.: Convex optimization problem prototyp-
ing for image reconstruction in computed tomography with the chambolle–pock
algorithm. Physics in medicine and biology 57(10) (2012) 3065

7. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal
algorithms. Physica D: Nonlinear Phenomena 60(1) (1992) 259–268

8. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers.
Foundations and Trends R© in Machine Learning (2011)

9. Parikh, N., Boyd, S.: Proximal algorithms. Foundations and Trends in Optimiza-
tion (2013)

10. Zang, G., Idoughi, R., Tao, R., Lubineau, G., Wonka, P., Heidrich, W.: Space-time
tomography for continuously deforming objects. ACM Trans. Graph. 37(4) (2018)
100

11. Mory, C., Zhang, B., Auvray, V., Grass, M., Schafer, D., Peyrin, F., Rit, S., Douek,
P., Boussel, L.: Ecg-gated c-arm computed tomography using l1 regularization. In:
EUSIPCO, IEEE (2012)

12. Rit, S., Oliva, M.V., Brousmiche, S., Labarbe, R., Sarrut, D., Sharp, G.C.: The
reconstruction toolkit (rtk), an open-source cone-beam ct reconstruction toolkit
based on the insight toolkit (itk). In: Journal of Physics: Conference Series. (2014)

13. Andersen, A., Kak, A.C.: Simultaneous algebraic reconstruction technique (sart):
a superior implementation of the art algorithm. Ultrasonic imaging (1984)

14. Andersen, A.H.: Algebraic reconstruction in ct from limited views. IEEE Trans.
Med. Img. (1989)

15. Mueller, K., Yagel, R., Wheller, J.J.: Fast implementations of algebraic methods
for three-dimensional reconstruction from cone-beam data. IEEE Trans. Med. Img.
18(6) (1999)

16. Mueller, K., Yagel, R.: Rapid 3-d cone-beam reconstruction with the simultane-
ous algebraic reconstruction technique (sart) using 2-d texture mapping hardware.
IEEE Trans. Med. Img. (2000)

17. Feldkamp, L., Davis, L., Kress, J.: Practical cone-beam algorithm. Journal of the
Optical Society of America 1(6) (1984) 612–619

18. Pan, X., Sidky, E.Y., Vannier, M.: Why do commercial ct scanners still employ
traditional, filtered back-projection for image reconstruction? Inverse problems
25(12) (2009) 123009

19. Gordon, R., Bender, R., Herman, G.T.: Algebraic reconstruction techniques (art)
for three-dimensional electron microscopy and x-ray photography. Journal of the-
oretical Biology 29(3) (1970) 471–481



16 Guangming Zang et al

20. Lent, A.: A convergent algorithm for maximum entropy image restoration, with a
medical x-ray application. Image Analysis and Evaluation (1977) 249–257

21. Shepp, L.A., Vardi, Y.: Maximum likelihood reconstruction for emission tomogra-
phy. IEEE Trans. Med. Img. 1(2) (1982) 113–122

22. Censor, Y.: Finite series-expansion reconstruction methods. Proceedings of the
IEEE (1983)

23. Bauschke, H.H., Combettes, P.L.: Convex analysis and monotone operator theory
in Hilbert spaces. Springer Science & Business Media (2011)

24. Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing.
In: Fixed-point algorithms for inverse problems in science and engineering

25. Nocedal, J., Wright, S.: Numerical optimization. Springer Science & Business
Media (2006)

26. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems
with applications to imaging. Journal of Mathematical Imaging and Vision (2011)

27. Ramani, S., Fessler, J.A.: A splitting-based iterative algorithm for accelerated
statistical x-ray ct reconstruction. IEEE Trans. Med. Img. (2012)

28. Nien, H., Fessler, J.: Fast x-ray ct image reconstruction using a linearized aug-
mented lagrangian method with ordered subsets. IEEE Trans. Med. Img. (2015)

29. Esser, E., Zhang, X., Chan, T.F.: A general framework for a class of first order
primal-dual algorithms for convex optimization in imaging science. SIAM Journal
on Imaging Sciences 3(4) (2010) 1015–1046

30. Erdogan, H., Fessler, J.A.: Ordered subsets algorithms for transmission tomogra-
phy. Physics in medicine and biology 44(11) (1999) 2835

31. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM Journal on Imaging Sciences (2009)
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