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Abstract. This paper addresses the problem of photometric stereo for
non-Lambertian surfaces. Existing approaches often adopt simplified re-
flectance models to make the problem more tractable, but this greatly
hinders their applications on real-world objects. In this paper, we pro-
pose a deep fully convolutional network, called PS-FCN, that takes an
arbitrary number of images of a static object captured under different
light directions with a fixed camera as input, and predicts a normal map
of the object in a fast feed-forward pass. Unlike the recently proposed
learning based method, PS-FCN does not require a pre-defined set of
light directions during training and testing, and can handle multiple
images and light directions in an order-agnostic manner. Although we
train PS-FCN on synthetic data, it can generalize well on real datasets.
We further show that PS-FCN can be easily extended to handle the
problem of uncalibrated photometric stereo. Extensive experiments on
public real datasets show that PS-FCN outperforms existing approaches
in calibrated photometric stereo, and promising results are achieved in
uncalibrated scenario, clearly demonstrating its effectiveness.
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1 Introduction

Given multiple images of a static object captured under different light direc-
tions with a fixed camera, the surface normals of the object can be estimated
using photometric stereo techniques. Early photometric stereo algorithms often
assumed an ideal Lambertian reflectance model [1, 2]. Unfortunately, most of
the real-world objects are non-Lambertian, and therefore more general models
are needed to make photometric stereo methods more practical. Bidirectional
reflectance distribution function (BRDF) is a general form for describing the
reflectance property of a surface. However, it is difficult to handle general non-
parametric BRDFs in non-Lambertian photometric stereo. Many researchers
therefore adopted analytical reflectance models [3–5] to simplify the problem.
However, a specific analytical model is only valid for a small set of materials.
Besides, fitting an analytical model to all the captured data requires solving a
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Fig. 1: Given an arbitrary number of images and their associated light directions as
input, our model estimates a normal map of the object in a fast feed-forward pass.

complex optimization problem. Hence, it remains an open and challenging prob-
lem to develop a computationally efficient photometric stereo method that can
handle materials with diverse BRDFs.

Deep learning frameworks [6, 7] have shown great success in both high-level
and low-level computer vision tasks. In the context of photometric stereo, Santo
et al. [8] recently proposed a deep fully-connected network, called DPSN, to learn
the mapping between reflectance observations and surface normals in a per-pixel
manner. For each pixel, DPSN takes observations under 96 pre-defined light
directions as input and predicts a normal vector. Note that since DPSN depends
on a pre-defined set of light directions during training and testing, its practical
use is sort of limited. Besides, DPSN predicts a normal vector based solely on
the reflectance observations of a single pixel, it cannot take full advantage of the
information embedded in the neighborhood of a surface point.

In this paper, we propose a flexible fully convolutional network [9], called
PS-FCN, for estimating a normal map of an object (see Fig. 1). Convolutional
network inherently takes observations in a neighborhood into account in com-
puting the feature map, making it possible for PS-FCN to take advantage of
local context information (e.g., surface smoothness prior). PS-FCN is composed
of three components, namely a shared-weight feature extractor for extracting fea-
ture representations from the input images, a fusion layer for aggregating fea-
tures from multiple input images, and a normal regression network for inferring
the normal map (see Fig. 3).

Unlike [8], PS-FCN does not depend on a pre-defined set of light directions
during training and testing, and allows the light directions used in testing differ-
ent from those used in training. It takes an arbitrary number of images with their
associated light directions as input, and predicts a normal map of the object in
a fast feed-forward pass. It can handle multiple images and light directions in an
order-agnostic manner. To simulate real-world complex non-Lambertian surfaces
for training PS-FCN, we create two synthetic datasets using shapes from the
blobby shape dataset [10] and the sculpture shape dataset [11], and BRDFs from
the MERL BRDF dataset [12]. After training on synthetic data, we show that
PS-FCN can generalize well on real datasets, including the DiLiGenT benchmark
[13], the Gourd&Apple dataset [14], and the Light Stage Data Gallery [15]. We
further demonstrate that PS-FCN can be easily extended to handle the problem
of uncalibrated photometric stereo, which reiterates the flexibility of our model.
Extensive experiments on public real datasets show that PS-FCN outperforms
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existing approaches in calibrated photometric stereo, and promising results are
achieved in uncalibrated scenario, clearly demonstrating its effectiveness.

2 Related work

In this section, we briefly review representative non-Lambertian photometric
stereo techniques. More comprehensive surveys of photometric stereo algorithms
can be found in [16, 13]. Non-Lambertian photometric stereo methods can be
broadly divided into four categories, namely outlier rejection based methods,
sophisticated reflectance model based methods, exemplar based methods, and
learning based methods.

Outlier rejection based methods assume non-Lambertian observations to
be local and sparse such that they can be treated as outliers. Various out-
lier rejection methods have been proposed based on rank minimization [17],
RANSAC [18], taking median values [19], expectation maximization [20], sparse
Bayesian regression [21], etc. Outlier rejection methods generally require lots of
input images and have difficulty in handling objects with dense non-Lambertian
observations (e.g., materials with broad and soft specular highlights).

Many sophisticated reflectance models have been proposed to approximate
the non-Lambertian model, including analytical models like Torrance-Sparrow
model [3], Ward model [4], Cook-Torrance model [5], etc. Instead of rejecting
specular observations as outliers, sophisticated reflectance model based methods
fit an analytical model to all observations. These methods require solving com-
plex optimization problems, and can only handle limited classes of materials.
Recently, bivariate BRDF representations [22, 23] were adopted to approximate
isotropic BRDF, and a symmetry-based approach [24] was proposed to handle
anisotropic reflectance without explicitly estimating a reflectance model.

Exemplar based methods usually require the observation of an additional ref-
erence object. Using a reference sphere, Hertzmann and Seitz [25] subtly trans-
formed the non-Lambertian photometric stereo problem to a point matching
problem. Exemplar based methods can deal with objects with spatially-varying
BRDFs without knowing the light directions, but the requirement of known
shape and material of the reference object(s) limits their applications. As an
extension, Hui and Sankaranarayanan [26] introduced a BRDF dictionary to
render virtual spheres without using a real reference object, but at the cost of
requiring light calibration and longer processing time.

Recently, Santo et al. [8] proposed a deep fully-connected network, called
DPSN, to regress per-pixel normal given a fixed number of observations (e.g., 96)
captured under a pre-defined set of light directions. For each image point of the
object, all its observations are concatenated to form a fixed-length vector, which
is fed into a fully-connected network to regress a single normal vector. DPSN
can handle diverse BRDFs without solving a complex optimization problem or
requiring any reference objects. However, it requires a pre-defined set of light
directions during training and testing, which limits its practical uses. In contrast,
our PS-FCN does not depend on a pre-defined set of light directions during



4 G. Chen, K. Han and K.-Y. K. Wong

training and testing, and allows the light directions used in testing to be different
from those used in training. It takes an arbitrary number of images with their
light directions as input, and predicts a normal map of the object in a fast feed-
forward pass. It can handle multiple images and light directions in an order-
agnostic manner.

Typically, photometric stereo methods require calibrated light directions, and
the calibration process is often very tedious. A few works have been devoted to
handle uncalibrated photometric stereo (e.g., [27–32]). These methods can infer
surface normals in the absence of calibrated light directions. Our PS-FCN can be
easily extended to handle uncalibrated photometric stereo, by simply removing
the light directions during training. Afterwards, it can solely rely on the input
images without known light directions to predict the normal map of an object.

3 Problem formulation

In this paper, we follow the conventional practice by assuming orthographic
projection, directional lights, and the viewing direction pointing towards the
viewer. Given q color images of an object with p pixels captured under different
light directions3, a normal matrix N3×p, a light direction matrix L3×q, and an
observation matrix I3×p×q can be constructed. We further denote the BRDFs
for all observations as Θ3×p×q, where each 3-vector Θ:,i,j is a function of the
normal, light direction, and viewing direction at (i, j). The image formation
equation can be written as

I = Θ ◦ repmat(N⊤L, 3), (1)

where ◦ represents element-wise multiplication, and repmat(X, 3) repeats the
matrix X three times along the first dimension.

For a Lambertian surface, the BRDF for a surface point degenerates to an
unknown constant vector. Theoretically, with three or more independent ob-
servations, the albedo scaled surface normal can be solved using linear least
squares [1]. However, pure Lambertian surfaces barely exist. We therefore have
to consider a more complex problem of non-Lambertian photometric stereo, in
which we estimate the normal matrix N from an observation matrix I and light
direction matrix L under unknown general BRDFs Θ.

We design a learning framework based on (1) to tackle the problem of non-
Lambertian photometric stereo. Different from previous methods which approx-
imate Θ with some sophisticated reflectance models, our method directly learns
the mapping from (I,L) to N without explicitly modeling Θ.

3 Images are normalized by light intensities, and each light direction is represented by
a unit 3-vector.
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4 Learning photometric stereo

In this section, we first introduce our strategy for adapting CNNs to handle a
variable number of inputs, and then present a flexible fully convolutional net-
work, called PS-FCN, for learning photometric stereo.

4.1 Max-pooling for multi-feature fusion

CNNs have been successfully applied to dense regression problems like depth
estimation [33] and surface normal estimation [34], where the number of input
images is fixed and identical during training and testing. Note that adapting
CNNs to handle a variable number of inputs during testing is not straightfor-
ward, as convolutional layers require the input to have a fixed number of channels
during training and testing. Given a variable number of inputs, a shared-weight
feature extractor can be used to extract features from each of the inputs (e.g.,
siamese networks), but an additional fusion layer is required to aggregate such
features into a representation with a fixed number of channels. A convolutional
layer is applicable for multi-feature fusion only when the number of inputs is
fixed. Unfortunately, this is not practical for photometric stereo where the num-
ber of inputs often varies.

One possible way to tackle a variable number of inputs is to arrange the inputs
sequentially and adopt a recurrent neural network (RNN) to fuse them. For
example, [35] introduced a RNN framework to unify single- and multi-image 3D
voxel prediction. The memory mechanism of RNN enables it to handle sequential
inputs, but at the same time also makes it sensitive to the order of inputs. This
order sensitive characteristic is not desirable for photometric stereo as it will
restrict the illumination changes to follow a specific pattern, making the model
less general.
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Fig. 2: A toy example for max-pooling and average-pooling mechanisms on multi-
feature fusion.

More recently, order-agnostic operations (e.g., pooling layers) have been ex-
ploited in CNNs to aggregate multi-image information. Wiles and Zisserman [11]
used max-pooling to fuse features of silhouettes from different views for novel
view synthesis and 3D voxel prediction. Hartmann et al. [36] adopted average-
pooling to aggregate features of multiple patches for learning multi-patch simi-
larity. In general, max-pooling operation can extract the most salient informa-
tion from all the features, while average-pooling can smooth out the salient and
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Fig. 3: Network architecture of PS-FCN.

non-activated features. Fig. 2 illustrates how max-pooling and average-pooling
operations aggregate two features with a toy example.

For photometric stereo, we argue that max-pooling is a better choice for ag-
gregating features from multiple inputs. Our motivation is that, under a certain
light direction, regions with high intensities or specular highlights provide strong
clues for surface normal inference (e.g., for a surface point with a sharp specular
highlight, its normal is close to the bisector of the viewing and light directions).
Max-pooling can naturally aggregate such strong features from images captured
under different light directions. Besides, max-pooling can ignore non-activated
features during training, making it robust to cast shadow. As will be seen in
Section 6, our experimental results do validate our arguments. We observe from
experiments that each channel of the feature map fused by max-pooling is highly
correlated to the response of the surface to a certain light direction. Strong re-
sponses in each channel are found in regions with surface normals having similar
directions. The feature map can therefore be interpreted as a decomposition of
the images under different light directions (see Fig. 5).

4.2 Network architecture

PS-FCN is a multi-branch siamese network [37] consisting of three components,
namely a shared-weight feature extractor, a fusion layer, and a normal regression

network (see Fig. 3). It can be trained and tested using an arbitrary number of
images with their associated light directions as input.

For an object captured under q distinct light directions, we repeat each light
direction (i.e., a 3-vector) to form a 3-channel image having the same spatial
dimension as the input image (3 × h × w), and concatenate it with the input
image. Hence, the input to our model has a dimension of q × 6 × h × w. We
separately feed the image-light pairs to the shared-weight feature extractor to
extract a feature map from each of the inputs, and apply a max-pooling operation
in the fusion layer to aggregate these feature maps. Finally, the normal regression
network takes the fused feature map as input and estimates a normal map of
the object.

The shared-weight feature extractor has seven convolutional layers, where
the feature map is down-sampled twice and then up-sampled once, resulting in
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a down-sample factor of two. This design can increase the receptive field and
preserve spatial information with a small memory consumption. The normal
regression network has four convolutional layers and up-samples the fused feature
map to the same spatial dimension as the input images. An L2-normalization
layer is appended at the end of the normal regression network to produce the
normal map.

PS-FCN is a fully convolutional network, and it can be applied to datasets
with different image scales. Thanks to the max-pooling operation in the fusion
layer, it possesses the order-agnostic property. Besides, PS-FCN can be easily
extended to handle uncalibrated photometric stereo, where the light directions
are not known, by simply removing the light directions during training.

4.3 Loss function

The learning of our PS-FCN is supervised by the estimation error between the
predicted and the ground-truth normal maps. We formulate our loss function
using the commonly used cosine similarity loss

Lnormal =
1

hw

∑

i,j

(1−Nij · Ñij), (2)

where Nij and Ñij denote the predicted normal and the ground truth, respec-
tively, at the point (i, j). If the predicted normal has a similar orientation as the
ground truth, the dot-product Nij · Ñij will be close to 1 and the loss will be
small, and vice versa. Other losses like mean square error can also be adopted.

5 Dataset

The training of PS-FCN requires the ground-truth normal maps of the objects.
However, obtaining ground-truth normal maps of real objects is a difficult and
time-consuming task. Hence, we create two synthetic datasets for training and
one synthetic dataset for testing. The publicly available real photometric stereo
datasets are reserved to validate the generalization ability of our model. Exper-
imental results show that our PS-FCN trained on the synthetic datasets gener-
alizes well on the challenging real datasets.

5.1 Synthetic data for training

We used shapes from two existing 3D datasets, namely the blobby shape dataset
[10] and the sculpture shape dataset [11], to generate our training data using the
physically based raytracer Mitsuba [38]. Following DPSN [8], we employed the
MERL dataset [12], which contains 100 different BRDFs of real-world materials,
to define a diverse set of surface materials for rendering these shapes. Note that
our datasets explicitly consider cast shadows during rendering. For the sake of
data loading efficiency, we stored our training data in 8-bit PNG format.
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(a) Blobby shape. (b) Sculpture shape.

Fig. 4: Examples of the synthetic training data.

Blobby dataset We first followed [8] to render our training data using the
blobby shape dataset [10], which contains 10 blobby shapes with various normal
distributions. For each blobby shape, 1, 296 regularly-sampled views (36 azimuth
angles × 36 elevation angles) were used, and for each view, 2 out of 100 BRDFs
were randomly selected, leading to 25,920 samples (10× 36× 36× 2). For each
sample, we rendered 64 images with a spatial resolution of 128 × 128 under
light directions randomly sampled from a range of 180◦× 180◦, which is more
general than the range (74.6◦× 51.4◦) used in the real data benchmark [13]. We
randomly split this dataset into 99 : 1 for training and validation (see Fig. 4(a)).

Sculpture dataset The surfaces in the blobby shape dataset are usually
largely smooth and lack of details. To provide more complex (realistic) nor-
mal distributions for training, we employed 8 complicated 3D models from the
sculpture shape dataset introduced in [11]. We generated samples for the sculp-
ture dataset in exactly the same way we did for the blobby shape dataset, except
that we discarded views containing holes or showing uniform normals (e.g., flat
facets). The rendered images are with a size of 512×512 when a whole sculpture
shape is in the field of view. We then regularly cropped patches of size 128×128
from the rendered images and discarded those with a foreground ratio less than
50%. This gave us a dataset of 59,292 samples, where each sample contains 64
images rendered under different light directions. Finally, we randomly split this
dataset into 99 : 1 for training and validation (see Fig. 4(b)).

Data augmentation To narrow the gap between real and synthetic data, data
augmentation was carried out on-the-fly during training. Given an image of size
128× 128, we randomly performed image rescaling (with the rescaled width and
height within the range of [32, 128], without preserving the original aspect ratio)
and noise perturbation (in a range of [-0.05, 0.05]). Image patches of size 32×32
were then randomly cropped for training.

5.2 Synthetic data for testing

To quantitatively evaluate the performance of our model on different materials
and shapes, we rendered a synthetic test dataset using a Sphere shape and a
Bunny shape. Each shape was rendered with all of the 100 BRDFs from MERL
dataset under 100 randomly sampled light directions. Similarly, the light direc-
tions were sampled from a range of 180◦× 180◦. As a result, we obtained 200
testing samples, and each sample contains 100 images.
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5.3 Real data for testing

We employed three challenging real non-Lambertian photometric stereo datasets
for testing, namely the DiLiGenT benchmark [13], the Gourd&Apple dataset[14],
and the Light Stage Data Gallery [15]. Note that none of these datasets were
used during training.

The DiLiGenT benchmark [13] contains 10 objects of various shapes with
complex materials. For each object, 96 images captured under different pre-
defined light directions and its ground-truth normal map are provided. We quan-
titatively evaluated our model on both the main and test datasets of this bench-
mark.

The Gourd&Apple dataset [14] and the Light Stage Data Gallery [15] are
two other challenging datasets that without ground-truth normal maps. The
Gourd&Apple dataset is composed of three objects, namely Gourd1, Gourd2,
and Apple. They provide 102, 98 and 112 image-light pairs, respectively. The
Light Stage Data Gallery [15] is composed of six objects, and 253 image-light
pairs are provided for each object.4 We qualitatively evaluated our model on
these two datasets to further demonstrate the transferability of our model.

6 Experimental evaluation

In this section, we present experimental results and analysis. We carried out
network analysis for PS-FCN on the synthetic test dataset, and compared our
method with the previous state-of-the-art methods on the DiLiGenT benchmark
[13]. Mean angular error (MAE) in degree was used to measure the accuracy
of the predicted normal maps. We further provided qualitative results on the
Gourd&Apple dataset [14] and the Light Stage Data Gallery [15].

6.1 Implementation details

Our framework was implemented in PyTorch [39] with 2.2 million learnable
parameters. We trained our model using a batch size of 32 for 30 epochs, and
it only took a few hours for training to converge using a single NVIDIA Titan
X Pascal GPU (e.g., about 1 hour for 8 image-light pairs per sample on the
blobby dataset, and about 9 hours for 32 image-light pairs per sample on both
the blobby and sculpture datasets). Adam optimizer [40] was used with default
parameters (β1 = 0.9 and β2 = 0.999), where the learning rate was initially set
to 0.001 and divided by 2 every 5 epochs. Our code, model and datasets are
available at https://guanyingc.github.io/PS-FCN.

6.2 Network analysis

We quantitatively analyzed PS-FCN on the synthetic test dataset. In particular,
we first validated the effectiveness of max-pooling in multi-feature fusion by

4 In our experiment, for each object in the Light Stage Data Gallery, we only used the
133 pairs with the front side of the object under illumination.
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Table 1: Results of network analysis on the synthetic test dataset. The numbers rep-
resent the average MAE of all the objects (the lower the better). B and S stand for
the blobby and sculpture training datasets respectively. († indicates the number of
per-sample image-light pairs used is identical during training and testing.)

Variants Tested with # images
ID Data Fusion Type Train # 1 8 16 32 100

0 B Avg-p 16 38.60 8.96 6.70 6.13 5.61
1 B Avg-p 32 45.04 10.94 7.28 6.00 5.52
2 B Conv † - - 7.09 6.49 -

3 B Max-p 1 22.47 14.58 13.95 13.88 13.67
4 B Max-p 8 27.96 7.40 6.24 5.87 5.82
5 B Max-p 16 46.85 8.44 6.24 5.64 5.43
6 B Max-p 32 45.17 11.84 6.64 5.50 5.30

7 B + S Max-p 8 26.65 7.20 6.17 5.71 5.66
8 B + S Max-p 16 36.07 7.71 5.94 5.29 5.03
9 B + S Max-p 32 51.18 9.12 6.01 4.91 4.55

comparing it with average-pooling and convolutional layers. We then investigated
the influence of per-sample input number during training and testing. Besides, we
investigated the influence of the complexity of training data. Last, we evaluated
the performance of PS-FCN on different materials. For all the experiments in
network analysis, we performed 100 random trials (save for the experiments using
all 100 image-light pairs per sample during testing) and reported the average
results which are summarized in Tab. 1.

Effectiveness of max-pooling Experiments with IDs 0, 1, 5 & 6 in Tab. 1
compared the performance of average-pooling and max-pooling for multi-feature
fusion. It can be seen that max-pooling performed consistently better than
average-pooling, when the per-sample input number during testing was ≥ 16.
Similarly, experiments with IDs 2, 5 & 6 showed that fusion by convolutional
layers on the concatenated features was sub-optimal. This could be explained
by the fact that the weights of the convolutional layers are related to the order
of the concatenated features, while the orders of the input image-light pairs are
random in our case, thus increasing the difficulty for the convolutional layers
to find the relations among multiple features. Fig. 5 visualizes the fused fea-
tures (by max-pooling) of Sphere (blue-rubber) & Bunny (dark-red-paint) in
synthetic test dataset, and pot2 & bear in DiLiGenT main dataset. Note that
all the image-light pairs were used as input and the features were normalized to
[0, 1].

Effects of input number Referring to the experiments with IDs 3 − 6 in
Tab. 1, for a fixed number of inputs during training, the performance of PS-
FCN increased with the number of inputs during testing. For a fixed number
of inputs during testing, PS-FCN performed better when the number of inputs
during training was close to that during testing.

Effects of training data By comparing experiments with IDs 4−6 (where the
models were trained only on the blobby dataset) with experiments with IDs 7−9
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Fig. 5: Visualization of the learned feature map after fusion. The first two columns show
the images and ground-truth normal maps. Each of the subsequent columns (a-h) shows
one particular channel of the fused feature map. 8 out of the 128 channels of the feature
map are presented. Note that different regions with similar normal directions are fired
in different channels. Each channel can therefore be interpreted as the probability of
the normal belonging to a certain direction (or alternatively as the object shading
rendered under a certain light direction). Accurate normal maps can then be inferred
from these probability distributions.
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Fig. 6: Quantitative comparison between PS-FCN and L2 Baseline [1] on the samples
of Sphere rendered with 100 different BRDFs. Images in the upper-left corner show
the corresponding samples.

(where the models were trained on both the blobby dataset and the sculpture
dataset), we can see that the additional sculpture dataset with a more complex
normal distribution helped to boost the performance. This suggests that the
performance of PS-FCN could be further improved by introducing more complex
and realistic training data.

Results on different materials Fig. 6 compares PS-FCN (trained with 32
per-sample inputs on both synthetic datasets) with L2 Baseline [1] on samples of
Sphere that were rendered with 100 different BRDFs. It can be seen that PS-FCN
significantly outperformed L2 Baseline. Note that PS-FCN generally performed
better on materials with a light color than those with a dark color. This might
be explained by the fact that max-pooling always tries to aggregate the most
salient features for normal inference, and the image intensities of objects with
a dark color are mostly very small. As a result, fewer useful features could be
extracted to infer normals for objects of dark materials.
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Table 2: Comparison of results on the DiLiGenT benchmark main dataset. The numbers
represent the MAE (the lower the better). Results of PS-FCN under two different
testing settings are reported, e.g., PS-FCN (B+S+32, 16) indicates the model trained
on both the blobby dataset and the sculpture dataset with a per-sample input number
of 32, and tested with a per-sample input number of 16. (Note that the result of PS-
FCN (B+S+32, 16) is the average of 100 random trials.)

Method ball cat pot1 bear pot2 buddha goblet reading cow harvest Avg.

L2 [1] 4.10 8.41 8.89 8.39 14.65 14.92 18.50 19.80 25.60 30.62 15.39
AZ08 [14] 2.71 6.53 7.23 5.96 11.03 12.54 13.93 14.17 21.48 30.50 12.61
WG10 [17] 2.06 6.73 7.18 6.50 13.12 10.91 15.70 15.39 25.89 30.01 13.35
IA14 [23] 3.34 6.74 6.64 7.11 8.77 10.47 9.71 14.19 13.05 25.95 10.60
ST14 [22] 1.74 6.12 6.51 6.12 8.78 10.60 10.09 13.63 13.93 25.44 10.30
DPSN [8] 2.02 6.54 7.05 6.31 7.86 12.68 11.28 15.51 8.01 16.86 9.41

PS-FCN (B+S+32, 16) 3.31 7.64 8.14 7.47 8.22 8.76 9.81 14.09 8.78 17.48 9.37
PS-FCN (B+S+32, 96) 2.82 6.16 7.13 7.55 7.25 7.91 8.60 13.33 7.33 15.85 8.39

Objects GT Normal Ours Est. & Error Map DPSN Est. & Error Map

0
◦

≥90
◦

Fig. 7: Qualitative results on the DiLiGenT benchmark main dataset. The black boxes
in the ground-truth normal maps are regions with cast shadows. Our method can
produce more robust estimations in those regions compared with DPSN [8].

6.3 Benchmark comparisons

DiLiGenT benchmark main dataset We compared PS-FCN against the re-
cently proposed learning based method DPSN [8] and other previous state-of-the-
art methods. Quantitative results on the main dataset of the DiLiGenT bench-
mark are shown in Tab. 2. Compared with other methods, PS-FCN performed
particularly well on objects with complicated shapes (e.g., buddha, reading, and
harvest) and/or spatially varying materials (e.g., pot2, goblet and cow). Our
best performer, which achieved an average MAE of 8.39◦, was trained with 32
per-sample inputs on both synthetic datasets and tested with all 96 inputs for
each object. With only 16 inputs per object during testing, PS-FCN still out-
performed the previous methods in terms of the average MAE. Fig. 7 presents
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Table 3: Comparison of results on the DiLiGenT benchmark test dataset. The numbers
represent the MAE (the lower the better).

Method cat pot1 bear pot2 buddha goblet reading cow harvest Avg.

IA14 [23] 5.61 6.33 5.12 8.83 11.00 10.54 13.27 11.18 24.82 10.74
ST14 [22] 6.43 6.64 6.09 8.94 10.92 10.33 14.16 10.82 25.43 11.08
DPSN [8] 5.82 8.26 6.32 9.02 12.80 12.04 16.11 8.00 17.78 10.68

PS-FCN (B+S+32, 96) 6.24 7.59 5.42 7.11 8.30 8.62 13.43 7.98 15.93 8.96

the qualitative comparison between PS-FCN and DPSN. It can be seen that
PS-FCN is more robust in regions with cast shadows.
DiLiGenT benchmark test dataset We further evaluated our model on the
test dataset of the DiLiGenT benchmark, with the ground-truth normal maps
withheld by the original authors (see. Tab. 3). Similar to the results on the main
dataset, PS-FCN outperformed other methods on the test dataset. More results
of the other methods can be found on the benchmark website5 for comparison.
Uncalibrated photometric stereo extension PS-FCN can be easily ex-
tended to handle uncalibrated photometric stereo by simply removing the light
directions from the input. To verify the potential of our framework towards un-
calibrated photometric stereo, we trained an uncalibrated variant of our model,
denoted as UPS-FCN, taking only images as input (note that we assume the
images were normalized by the light intensities). UPS-FCN was trained on both
synthetic datasets using 32 image-light pairs as input. We compared our UPS-
FCN with the existing uncalibrated methods. The results are reported in Tab. 4,
our UPS-FCN outperformed existing methods in terms of the average MAE,
which demonstrates the effectiveness and flexibility of our model.

Table 4: Comparison of results for uncalibrated photometric stereo on the DiLiGenT
benchmark main dataset. The numbers represent the MAE (the lower the better).

Method ball cat pot1 bear pot2 buddha goblet reading cow harvest Avg.

AM07 [27] 7.27 31.45 18.37 16.81 49.16 32.81 46.54 53.65 54.72 61.70 37.25
SM10 [28] 8.90 19.84 16.68 11.98 50.68 15.54 48.79 26.93 22.73 73.86 29.59
WT13 [29] 4.39 36.55 9.39 6.42 14.52 13.19 20.57 58.96 19.75 55.51 23.93
PF14 [30] 4.77 9.54 9.51 9.07 15.90 14.92 29.93 24.18 19.53 29.21 16.66
LC18 [32] 9.30 12.60 12.40 10.90 15.70 19.00 18.30 22.30 15.00 28.00 16.30

UPS-FCN 6.62 14.68 13.98 11.23 14.19 15.87 20.72 23.26 11.91 27.79 16.02

6.4 Testing on other real datasets

Due to absence of ground-truth normal maps, we qualitatively evaluated our
best-performing model PS-FCN (B+S+32) on the Gourd&Apple dataset [14]
and the Light Stage Data Gallery [15]. Fig. 8 shows the estimated normal maps

5
https://sites.google.com/site/photometricstereodata/home/summary-of-benchmarking-results
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Fig. 8: Qualitative results for the Gourd&Apple dataset and Light Stage Data Gallery.
For each shape, a sample input image, the estimated normal map, and two views of
the reconstructed surfaces are shown. (Best viewed in PDF with zoom.)

and surfaces reconstructed using [41]. The reconstructed surfaces convincingly
reflect the shapes of the objects, demonstrating the accuracy of the normal maps
predicted by PS-FCN.

7 Conclusions

In this paper, we have proposed a flexible deep fully convolutional network, called
PS-FCN, that accepts an arbitrary number of images and their associated light
directions as input and regresses an accurate normal map. Our PS-FCN does
not require a pre-defined set of light directions during training and testing, and
allows the light directions used in testing different from that used in training.
It can handle multiple images and light directions in an order-agnostic manner.
In order to train PS-FCN, two synthetic datasets with various realistic shapes
and materials have been created. After training, PS-FCN can generalize well
on challenging real datasets. In addition, PS-FCN can be easily extended to
handle uncalibrated photometric stereo. Results on diverse real datasets have
clearly shown that PS-FCN outperforms previous calibrated photometric stereo
methods, and promising results have been achieved in uncalibrated scenario.
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