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Abstract. When lossy video compression algorithms are applied, com-
pression artifacts often appear in videos, making decoded videos un-
pleasant for human visual systems. In this paper, we model the video
artifact reduction task as a Kalman iltering procedure and restore de-
coded frames through a deep Kalman iltering network. Diferent from
the existing works using the noisy previous decoded frames as temporal
information in the restoration problem, we utilize the less noisy previ-
ous restored frame and build a recursive iltering scheme based on the
Kalman model. This strategy can provide more accurate and consistent
temporal information, which produces higher quality restoration results.
In addition, the strong prior information of prediction residual is also
exploited for restoration through a well designed neural network. These
two components are combined under the Kalman framework and op-
timized through the deep Kalman iltering network. Our approach can
well bridge the gap between the model-based methods and learning-based
methods by integrating the recursive nature of the Kalman model and
highly non-linear transformation ability of deep neural network. Exper-
imental results on the benchmark dataset demonstrate the efectiveness
of our proposed method.

Keywords: Compression artifact reduction, deep neural network, Kalman
model, recursive iltering, video restoration

1 Introduction
Compression artifact reduction methods aim at generating artifact-free images
from lossy decoded images. To store and transfer a large amount of images and
videos on the Internet, image and video compression algorithms (e.g., JPEG,
H.264) are widely used [1–3]. However, these algorithms often introduce un-
desired compression artifacts, such as blocking, blurring and ringing artifacts.
Thus, compression artifact reduction has attracted increasing attention and
many methods have been developed in the past few decades.
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Fig. 1. Diferent methodologies for video artifact reduction (a) the traditional pipeline
without considering previous restored frames. (b) our Kalman iltering pipeline. Arti-
fact reduction results between (c) Xue et al. [21] and (d) our proposed deep Kalman
iltering network. (e) original frame (f) decoded frame (g) quantized prediction residual
(h) distortion between the original frame and the decoded frame.

Early works use manually designed ilters [4, 5] and sparse coding methods
[6–9] to remove compression artifacts. Recently, convolutional neural network
(CNN) based approaches have been successfully applied for a lot of computer
vision tasks [10–20], such as super-resolution [15,16], denoising [17] and artifact
reduction [18–20]. In particular, Dong et al. [18] irstly proposed a four-layer
neural network to eliminate the JPEG compression artifacts.

For the video artifact reduction task, our motivations are two-fold. First,
the restoration process for the current frame could beneit from the previous
restored frames. A reason is that when compared to the decoded frame, the pre-
vious restored frame can provide more accurate information. Therefore temporal
information (such as motion clues) from neighbouring frames is more precise and
robust, and can provide the potential to further improve the performance. In ad-
dition, the dependence of previous restored frames naturally leads to a recursive
pipeline for video artifact reduction. Therefore it recursively restores the cur-
rent frame by potentially utilizing all past restored frames, which means we can
leverage efective information propagated from previous estimations. Currently,
most of the state-of-the-art deep learning approaches for compression artifact
reduction are limited to remove artifacts in a single image [16–19]. Although the
video artifact reduction method [21] or video super-resolution methods [22–24]
try to combine temporal information for the restoration tasks, their methods
ignore the previous restored frame and restore each frame separately as shown
in Fig. 1(a). Therefore, the video artifact reduction performance can be further
improved by using an appropriate dynamic iltering scheme.

Second, modern video compression algorithms may contain powerful prior
information that can be utilized to restore the decoded frame. It has been ob-
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served that practical video compression standards are not optimal according to
the information theory [9], therefore the resulting compression code streams still
have redundancies. It is possible, at least theoretically, to improve the restoration
results by exploiting the knowledge hidden in the code streams. For video com-
pression algorithms, inter prediction is a fundamental technique used to reduce
temporal redundancy. Therefore, the decoded frame consists of two components:
prediction frame and quantized prediction residual. As shown in Fig. 1(g)-(h),
the distortion between the original frame and the decoded frame has a strong
relationship with quantized prediction residual, i.e., the region which has high
distortion often corresponds to high quantized prediction residual values. There-
fore, it is possible to enhance the restoration by employing this task-speciic prior
information.

In this paper, we propose a deep Kalman iltering network (DKFN) for video
artifact reduction. The proposed approach can be used as a post-processing tech-
nique, and thus can be applied to diferent compression algorithms. Speciically,
we model the video artifact reduction problem as a Kalman iltering procedure,
which can recursively restore the decoded frame and capture information that
propagated from previous restored frames. To perform Kalman iltering for de-
coded frames, we build two deep convolutional neural networks: prediction net-
work and measurement network. The prediction network aims to obtain prior
estimation based on the previous restored frame. At the same time, we inves-
tigate the quantized prediction residual in the coding algorithms and a novel
measurement net incorporating this strong prior information is proposed for ro-
bust measurement. After that, the restored frame can be obtained by fusing
the prior estimation and the measurement under the Kalman framework. Our
proposed approach bridges the gap between model-based methods and learning-
based methods by integrating the recursive nature of the Kalman model and
highly non-linear transform ability of neural network. Therefore, our approach
can restore high quality frames from a series of decoded video frames. To the best
of our knowledge, we are the irst to develop a new deep convolutional neural
network under the Kalman iltering framework for video artifact reduction.

In summary, the main contributions of this work are two-fold. First, we for-
mulate the video artifact reduction problem as a Kalman iltering procedure,
which can recursively restore the decoded frames. In this procedure, we utilize
the CNN to predict and update the state of Kalman iltering. Second, we employ
the quantized prediction residual as the strong prior information for video arti-
fact reduction through deep neural network. Experimental results show that our
proposed approach outperforms the state-of-the-art methods for reducing video
compression artifacts.

2 Related Work
2.1 Single Image Compression Artifact Reduction
A lot of methods have been proposed to remove the compression artifacts. Early
methods [25, 26] designed new ilters to reduce blocking and ringing artifacts.
One of the disadvantages for these methods is that such manually designed
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ilters cannot suiciently handle the compression degradation and may over-
smooth the decoded images. Learning methods based on sparse coding were
also proposed for image artifact reduction [8,9,27]. Chang et al. [8] proposed to
learn a sparse representation from a training image set, which is used to reduce
artifacts introduced by compression. Liu et al. [9] exploited the DCT information
and built a sparsity-based dual domain approach.

Recently, deep convolutional neural network based methods have been suc-
cessfully utilized for the low-level computer vision tasks. Dong et al. [18] pro-
posed artifact reduction CNN (ARCNN) to remove the artifacts from JPEG
compression. Inspired by ARCNN, several methods have been proposed to re-
duce compression artifact by using various techniques, such as residual learn-
ing [28], skip connection [28, 29], batch normalization [17], perceptual loss [30],
residual block [20] and generative adversarial network [20]. For example, Zhang
et al. [17] proposed a 20-layer neural network based on batch normalization and
residual learning to eliminate Gaussian noise with unknown noise level. Tai et
al. [16] proposed a memory block, consisting of a recursive unit and a gate unit,
to explicitly mine persistent memory through an adaptive learning process. In
addition, a lot of methods [31–33] were proposed to learn the image prior by
using CNN and achieved competitive results for the image restoration tasks.

As mentioned in [9], compression code streams still have redundancies. There-
fore, it is possible to obtain a more robust estimation by exploiting the prior
knowledge hidden in the encoder. However, most of the previous works do not
exploit this important prior information. Although the works in [9, 19, 27] pro-
posed to combine DCT information, it is not suicient especially for the video
artifact reduction task. In our work, we further exploit the prior information
in the code streams and incorporate prediction residual into our framework for
robust compression artifact reduction.
2.2 Deep Learning for Video Restoration
Due to the popularity of neural networks for image restoration, several CNN
based methods [21,22,34–36] were also proposed for the video restoration tasks.
For video super-resolution, Liao et al. [34] irst generated an ensemble of SR
draft via motion compensation, and then used a CNN model to restore the
high resolution frame from all drafts. Kappeler et al. [35] estimated optical low
and selected the corresponding patches across frames to train a CNN model for
video super-resolution. Based on the spatial transformation network (STN) [36],
the works in [21–24] aligned the neighboring frames according to the estimated
optical low or transform parameters and increased the temporal coherence for
the video SR task. Tao et al. [22] achieved sub-pixel motion compensation and
resolution enhancement with high performance. Xue et al. [21] utilized a joint
training strategy to optimize the motion estimation and video restoration tasks
and achieved the state-of-the-art results for video artifact reduction.

Compared to the methods for single image compression artifact reduction
(see Section 2.1), the video restoration methods exploit temporal information.
However, these methods process noisy/low-resolution videos separately without
considering the previous restored frames. Therefore, they cannot improve video
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restoration performance by utilizing more accurate temporal information. In our
work, we recursively restore each frame in the videos by leveraging the previous
restored frame for video artifact reduction. Although the work [37, 38] try to
combine deep neural network and Kalman ilter, they are not designed for the
image/video enhancement tasks.

3 Methodology
We irst give a brief introduction about the basic Kalman ilter and then describe
our formulation for video artifact reduction and the corresponding network de-
sign.

Introduction of Denotations Let V = {X|X1, X2, ..., Xt−1, Xt, . . .} denote an
uncompressed video sequence, where Xt ∈ Rmn×1 is a video frame at time step t

and mn represents the spatial resolution. In order to simplify the description, we
only analyze video frame with a single channel, although we consider RGB/YUV
channels in our implementation. After compression, Xc

t is the decoded frame of
Xt. X̂−

t denotes the prior estimation and X̂t denotes the posterior estimation for
restoring Xt from the decoded frame Xc

t . Rc
t is the quantized prediction residual

in video coding standards, such as H.264. Rt is the corresponding unquantized
prediction residual.

3.1 Brief Introduction of Kalman Filter
Kalman ilter [39] is an eicient recursive ilter that estimates the internal state
from a series of noisy measurements. In artifact reduction task, the internal
state is the original image to be restored, and the noisy measurements can be
considered as the images with compression artifacts.

Preliminary Formulation The Kalman ilter model assumes that the state
Xt at time t is changed from the state Xt−1 at time t− 1 according to

Xt = AtXt−1 + wt−1, (1)
where At is the transition matrix at time t and wt−1 is the process noise. The
measurement Zt of the true state Xt is deined as follows,

Zt = HXt + vt, (2)
where H is the measurement matrix and vt represents the measurement noise.
However, the system may be non-linear in some complex scenarios. Therefore,
a non-linear model for the transition process in Eq.(1) can be formulated as
follows,

Xt = f(Xt−1, wt−1), (3)
where f(·) is the non-linear transition model. Linear Kalman ilter corresponds
to Eq. (1) and Eq. (2). Non-linear Kalman ilter corresponds to Eq. (3) and Eq.
(2).

Kalman Filtering As shown in Fig. 2(a), Kalman iltering consists of two
steps, prediction and update.

In the prediction step, it calculates the prior estimation from the posterior
estimation of the previous time step. For non-linear model Eq. (3) and Eq. (2),
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Fig. 2. (a) Basic Kalman model. (b) Overview of the proposed deep Kalman iltering
network for video artifact reduction. Xc

t is the decoded frame at time t. X̂t−1 represents
the restored frame from t− 1. The prediction network generates prior estimate X̂−

t for
original frame based on Xc

t and X̂t−1. The measurement network uses the decoded
frame Xc

t and the quantized prediction residual Rc

t to obtain an initial measurement
Zt. After that, we can build the posterior estimate by fusing the prior estimate X̂−

t

and the measurement Zt.

the prediction step is accomplished by two sub-steps as follows,
Prior state estimation: X̂−

t = f(X̂t−1, 0), (4)
Covariance estimation: P−

t = AtPt−1A
T
t +Qt−1, (5)

where Qt−1 is the covariance of the process noise wt−1 at time t − 1, P−

t is
a covariance matrix used for the update step. At in Eq. (5) is deined as the
Jacobian matrix of f(·), i.e., At =

∂f(X̂t−1,0)
∂X

[40]. Prediction procedure for the
linear model can be considered as a special case by setting f(X̂t−1, 0) = AtX̂t−1.

In the update step, Kalman ilter will calculate the posterior estimate by
fusing the prior estimate from the prediction step and the measurement. Details
about the update step can be found in Section 3.6.

An overview of Kalman iltering is shown in Fig. 2(a). First, the prediction
step uses the estimated state X̂t−1 at time t−1 to obtain a prior state estimation
X̂−

t at time t. Then the prior state estimation X̂−

t and the measurement Zt are
used by the update step to obtain the posterior estimation of the state, denoted
by X̂t. These two steps are performed recursively.

3.2 Overview of our Deep Kalman Filtering Network

Fig. 2(b) shows an overview of the proposed deep Kalman iltering network. In
this framework, the previous restored frame X̂t−1 and the decoded frame Xc

t are
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used for obtaining a prior estimate X̂−

t . Then the measurement Zt obtained from
the measurement network and the prior estimate X̂−

t are used by the update
step for obtaining the posterior estimation X̂t.

The proposed DKFN framework follows the Kalman iltering procedure by
using the prediction and update steps for obtaining the predicted state X̂t. The
main diferences to the original Kalman iltering are as follows.

First, in the prior estimation sub-step of the prediction step, we use the
temporal mapping sub-network as the non-linear function f(·) in Eq. (3) to ob-
tain the prior state estimation. Speciically, the temporal mapping sub-network
takes the previous restored frame X̂t−1 and the decoded frame Xc

t as the input
and generates the prior estimate X̂−

t for the current frame. Details are given in
Section 3.3.

Second, in the covariance estimation sub-step, the transition matrix At in
Eq. (5) is approximated by a linearization sub-network. In conventional non-
linear Kalman ilter, the Jacobian matrix of the non-linear function f(·) is used
to obtain At. For our CNN implementation of f(·), however, it is too complex
to compute, especially when we need to compute the Jacobian matrix for each
pixel location. Therefore, we approximate the calculation of Jacobian matrix by
using a linearization sub-network. Details are given in Section 3.4.

Third, in the update procedure, we use a measurement network to generate
the measurement. In comparison, the conventional Kalman ilter might directly
use the decoded frame with compression artifacts as the measurement. Details
are given in Section 3.5.

3.3 Temporal Mapping Network
Mathematical Formulation Based on the temporal characteristic of video
sequences, the temporal mapping sub-network is used for implementing the non-
linear function f(·) in the prior state estimation as follows:

X̂−

t = F(X̂t−1, X
c
t ; θf ), (6)

where θf are the trainable parameters. Eq.(6) indicates that the prior estimation
of the current frame Xt is related with its estimated temporal neighbouring frame
X̂t−1 and its decoded frame Xc

t at the current time step. This formulation is
based on the following assumptions. First, temporal evolution characteristic can
provide a strong motion clue to predict Xt based on the previous frame X̂t−1.
Second, due to the existence of complex motion scenarios with occlusion, it is
necessary to exploit the information from the decoded frame Xc

t to build a more
accurate estimation for Xt. Based on this assumption, our formulation in Eq. (6)
adds the decoded frame Xc

t as the extra input to the transition function f(·)
deined in Eq. (4).

Network Implementation The temporal mapping sub-network architecture
is shown in Fig. 3(a). Speciically, each residual block contains two convolutional
layers with the pre-activation structure [41]. We use convolutional layers with
3× 3 kernels and 64 output channels in the whole network except the last layer.
The last layer is a simple convolutional neural network with one feature map
without non-linear transform. Generalized divisive normalization (GDN) and
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(b) Linearization Network.
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(c) Measurement network.

Fig. 3. Network architecture of the proposed (a) Temporal Mapping Network (b) Lin-
earization network. (c) Measurement Network. For better illustration, we omit the
matrix conversion process of Xt, X̂

c

t and Rc

t from R
mn×1 to R

m×n. Here ‘Conv,3x3,64’
represents the convolution operation with the 3x3 kernel and 64 feature maps. ‘Re-
shape, m×n’ is the operation that reshapes one matrix to m×n.

⊕
and

⊗
represent

element-wise addition and matrix multiplication.

inverse GDN (IGDN) [42] are used because they are well-suited for Gaussianizing
data from natural images. More training details are discussed in Section 3.7.

3.4 Linearization Network

Linearization network aims to learn a linear transition matrix At for the co-
variance estimation in Eq. (5) adaptively for diferent image regions. It is non-
trivial to calculate the Jacobian matrix of transition function F(·) and linearize
it through Taylor series. Therefore, we use a simple neural network to learn a
transition matrix. Speciically, given the prior estimation X̂−

t , previous restored
frame X̂t−1 and decoded frame Xc

t , the problem is expressed by the following
way,

X̂−

t = F(X̂t−1, X
c
t ; θf ) ≈ ÃtX̂t−1, where Ãt = G(X̂t−1, X

c
t ; θm), (7)

G(X̂t−1, X
c
t ; θm) is the linearization network with the parameters θm. Ãt is the

output of this network. The network architecture is shown in Fig. 3(b). Given
X̂t−1, X

c
t ∈ Rmn×1, the network will generate a transition matrix Ãt ∈ Rmn×mn

as an approximation to At in Eq. (5).
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3.5 Measurement Network
Since prediction based coding is one of the most important techniques for video
coding standards (such as MPEG2, H.264 or H.265), we take this coding ap-
proach into consideration when designing the measurement network. In predic-
tion based coding, the decoded frame Xc

t can be decoupled into two components,
i.e., Xc

t = X
p
t + Rc

t , where X
p
t and Rc

t represent the prediction frame and the
quantized prediction residual, respectively. Note that quantization is only used
for the prediction residual and the distortion in compression only comes from
Rc

t . In addition, for non-predictive video codecs, such as JPEG2000, we use an
existing warp operation [23,36] from the previous decoded frame to the current
decoded frame, and the diference between them is considered as the prediction
residual Rc

t . For most of video codecs (e.g.,H.264 and H.265), we can directly
utilize the quantized prediction residual in the code streams.

We obtain the measurement using the quantized prediction residual Rc
t as

follows,
Zt = X

p
t + R̂t, where R̂t = M(Xc

t , R
c
t ; θz), (8)

where R̂t is the restored residual to remove the efect of quantization so that Zt is
close to the original image Xt. We use a deep neural network as shown in Fig. 3(c)
(with same architecture as Fig. 3(a)) for the function M(·). This network takes
the decoded frame Xc

t and the quantized prediction residual Rc
t as the input and

estimates the restored residual R̂t. There are two advantages of our formulation
for measurement. On one hand, instead of utilizing the decoded frame Xc

t as
the measurement, our measurement formulation avoids explicitly modeling the
complex relationship between original frames and decoded frames. On the other
hand, most of the existing artifact reduction methods can be embedded into
our model as the measurement method, which provides a lexible framework to
obtain a more accurate measurement value.

3.6 Update Step

Given the prior state estimation X̂−

t from the temporal mapping network (Sec-
tion 3.3), the transition matrix Ãt obtained from the linearization network (Sec-
tion 3.4), and the measurement Zt obtained from the measurement network
(Section 3.5), we can use the following steps1 to obtain the posterior estimation
of the restored image:

P−

t = ÃtPt−1Ã
T
t +Qt−1, (9)

Kt = P−

t HT(HP−

t HT + Ut)
−1, (10)

X̂t = X̂−

t +Kt(Zt −HX̂−

t ), (11)
Pt = (I −KtH)P−

t , (12)
where X̂t represents the posterior estimation for the image Xt. P−

t and Pt are
the estimated state covariance matrixs for the prior estimation and the posterior
estimation respectively. Kt is the Kalman gain at time t. H is the measurement
1 Eq. (9) corresponds to the covariance estimation and listed here for better presen-

tation.
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matrix deined in Eq. (2) and is assumed to be an identity matrix in this work.
Qt−1 and Ut are the process noise covariance matrix and the measurement noise
covariance matrix respectively. We assume Qt−1 and Ut to be constant over time.
For more details about the update procedure of Kalman iltering, please refer
to [40].
Discussion Our approach can solve the error accumulation problem of the
recursive pipeline through the adaptive Kalman gain. For example, when the
errors accumulate in the previous restored frames, the degree of reliability for
prior estimation (i.e., information from the previous frame) will be decreased and
the inal result will depend more on the measurement (i.e., the current frame).
3.7 Training Strategy
There are three sets of trainable parameters θf , θm and θz in our approach. First,
the parameters θf in the temporal mapping network are optimized as follows,

Lf (θf ) = ||Xt −F(X̂t−1, X
c
t ; θf )||

2
2, (13)

Note that in the minimization procedure for Eq. (13), the restored frame of
the previous one X̂t−1 is required. This leads to the chicken-and-egg problem. A
straightforward method is to feed several frames of a clip into the network and
train all the input frames in the iteration. However, this strategy increases GPU
memory consumption signiicantly and simultaneous training multi-frames for
a video clip is non-trivial. Alternatively, we adopt an on-line update strategy.
Speciically, the estimation results X̂t in each iteration will be saved in a bufer.
In the following iterations, X̂t in the bufer will be used to provide more accurate
temporal information when estimating Xt+1. Therefore, each training sample in
the bufer will be updated in an epoch. We only need to optimize one frame for
a video clip in each iteration, which is more eicient.

After that, the parameters θf are ixed and we can optimize the linearization
network G(θm) by using the following loss function:

Lm(θm) = ||X̂−

t − G(X̂t−1, X
c
t ; θm)X̂t−1||

2
2, (14)

Note that we use a small patch size (4 × 4) to reduce the computational cost
when optimizing θm.

Then, we will train the measurement net and optimize θz based on the fol-
lowing loss function,

Lz(θz) = ||Xt − (M(Xc
t , R

c
t ; θz) +X

p
t )||

2
2, (15)

Finally, we ine-tune the whole deep Kalman iltering network based on the
loss L deined as follows,

L(θ) = ||Xt − X̂t||
2
2, (16)

θ are the trainable parameters in the deep Kalman iltering network.

4 Experiments
To demonstrate the efectiveness of the proposed model for video artifact reduc-
tion, we perform the experiments on the benchmark dataset Vimeo-90K [21].
Our approach is implemented by using the Tensorlow [43] platform. It takes 22
hours to train the whole model by using two Titan X GPUs.
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JPEG2000 ARCNN Tolow Ours

(37.20/0.951) (38.03/0.968) (39.32/0.977) (40.48/0.981)

(32.24/0.954) (32.91/0.959) (33.92/0.967) (35.17/0.973)

Fig. 4. Quantitative (PSNR/SSIM) and visual comparison of JPEG2000 artifact re-
duction on the Vimeo dataset for q=20.

4.1 Experimental Setup

Dataset. The Vimeo-90K dataset [21] is recently built for evaluating diferent
video processing tasks, such as video denoising, video super-resolution (SR) and
video artifact reduction. It consists of 4,278 videos with 89,800 independent clips
that are diferent from each other in content. All frames have the resolutio of
448× 256. For video compression artifact reduction, we follow [21] to use 64,612
clips for training and 7,824 clips for performance evaluation. In this section,
PSNR and SSIM [44] are utilized as the evaluation metrics.

To demonstrate the efectiveness of the proposed method, we generate com-
pressed/decoded frames through two coding settings, i.e.,codec HEVC (x265)
with quantization parameter qp = 32 and qp = 37 and codec JPEG2000 with
quality q = 20 and q = 40.
Implementation Details. For model training, we use the Adam solver [45]
with the initial learning rate of 0.001, β1 = 0.9 and β2 = 0.999. The learning
rate is divided by 10 after every 20 epochs. We apply gradient clip with global
norm 0.001 to stabilize the training process. The mini-batch size is set to 32.
We use the method in [46] for weight initialization. Our approach takes 0.15s to
restore a color image with the size of 448x256.

We irst train the temporal mapping network using the loss Lf in Eq. (13).
After 40 epochs, we ix the parameters θf and train the linearization network
by using the loss Lm. Then we train the measurement network using the loss
Lz in Eq. (15). After 40 epochs, the training loss will become stable. Finally,
we ine-tune the whole model. In the following experiments, we train diferent
models for diferent codecs or quality levels.
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HEVC ARCNN HEVC-LF Ours

(34.31/0.941) (35.45/0.954) (34.86/0.949) (40.10/0.977)

(32.61/0.910) (33.47/0.922) (32.87/0.913) (37.11/0.958)

Fig. 5. Quantitative (PSNR/SSIM) and visual comparison of diferent methods for
HEVC artifact reduction on the Vimeo dataset at qp=37.

4.2 Experimental Results

Comparison with the State-of-the-art Methods. To demonstrate the ef-
fectiveness of our approach, we compare it with several recent image and video
artifact reduction methods: ARCNN [18], DnCNN [17],V-BM4D [47] and Tolow
[21]. In addition, modern video codecs already have a default artifact reduction
scheme. For example, HEVC utilizes loop ilter [1] (HEVC-LF) to reduce the
blocking artifacts. This technique is also included for comparison.

For ARCNN [18] and DnCNN [17], we use the code provided by the authors
and train their models on the Vimeo training dataset. For V-BM4D and Tolow,
we directly cited their results in [21]. The results of HEVC-LF are generated by
enabling loop ilter and SAO [1] in HEVC codec (x265). For fair comparison with
the existing approaches, we follow [21] and only evaluate the 4th frame of each
clip in the Vimeo dataset. The quantitative results are reported in Table 1 and
Table 2. As we can see, our proposed approach outperforms the state-of-the-art
methods by more than 0.6db in term of PSNR.

Dataset Setting ARCNN [18] DnCNN [17] V-BM4D [47] Tolow [21] Ours

Vimeo q=20 36.11/0.960 37.26/0.967 35.75/0.959 36.92/0.966 37.93/0.971
q=40 34.21/0.944 35.22/0.953 33.99/0.940 34.97/0.953 35.88/0.958

Table 1. Average PSNR/SSIM results on the Vimeo dataset for JPEG2000 artifact
reduction (q=20,40).

Qualitative comparisons of ARCNN [18], Tolow [21], HEVC-LF [1] and ours
are shown in Fig. 4 and Fig. 5. In these igures, the blocking artifacts exist in
JPEG2000/HEVC decoded frame, our proposed method successfully removes
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Dataset Setting ARCNN [18] DnCNN [17] HEVC-LF [1] Ours

Vimeo qp=32 34.87/0.954 35.58/0.961 34.19/0.950 35.81/0.962
qp=37 32.54/0.930 33.01/0.936 31.98/0.923 33.23/0.939

Table 2. Average PSNR/SSIM results on the Vimeo test sequences for HEVC artifact
reduction (qp=32,37).

MN PR TM RF PSNR/SSIM
✓ 37.15/0.967
✓ ✓ 37.49/0.968

✓ 37.35/0.967
✓ ✓ 37.76/0.970

✓ ✓ ✓ ✓ 37.93/0.971

Table 3. Ablation study of the proposed deep Kalman iltering method on the Vimeo-
90k dataset. The results with or without using the prediction residual (PR) in the
measurement network (MN) are reported in the irst two rows. The results with or
without using the recursive iltering (RF) scheme in the temporal network (TM) are
reported in the 3

rd and 4
th rows. Our full model is MN+PR+TM+RF (the 5

th row).

these artifacts while other methods still have observable artifacts. For example,
the equipment (the fourth row in Fig. 4) and the railing (the fourth row in Fig.
5) both have complex texture and structure, our method can well recover these
complex regions while other baseline methods may fail.
Ablation Study of Measurement Network(MN). In this subsection, we in-
vestigate the efectiveness of the proposed measurement network. Note that the
output of our measurement network itself can be readily used as the artifact
reduction result. So the results in this subsection are obtained without using
the temporal mapping network. In order to validate that prediction residual can
serve as important prior information for improving the performance, we train
another model with the same architecture but without using prediction resid-
ual (PR) as the input. Therefore, it generates restored frames by only using
the decoded frames as the input. Quantitative results on the Vimeo-90k dataset
are listed in Table 3. When compared with our simpliied model without pre-
diction residual(see the 1st row), our simpliied model with prediction residual
(MN+PR, see the 2nd row) can boost the performance by 0.34dB in term of
PSNR. It demonstrates that incorporating strong prior information can improve
the restoration performance.
Ablation Study on the Temporal Mapping Network(TM). We further
evaluate the efectiveness of the temporal mapping network. Note that the out-
put of our temporal mapping network itself can be also readily used for the
video artifact reduction. So the results in this subsection are obtained without
using the measurement network. For comparison, we train another model, which
utilizes the same network architecture as our temporal mapping network but
the input is the concatenation of Xc

t and Xc
t−1. Namely, it restores the current

frame without considering previous restored frames. The quantitative results
are reported in Table 3. When compared with our simpliied model without
using recursive iltering(RF) (see the 3rd row), our simpliied model with recur-
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Test Dataset Tolow [21] DnCNN [17] Ours
HEVC Sequneces 32.37/0.948 33.19/0.953 33.83/0.958
MPI Sintel datast 34.78/0.959 36.40/0.969 37.01/0.973

Table 4. Average PSNR/SSIM results evaluated on two new datasets for video artifact
reduction (JPEG2000, q=20) for cross dataset validation.

sive iltering (TM+RF, see the 4th row) can signiicantly improve the quality of
restored frame by 0.41dB in term of PSNR. A possiable explanation is our recur-
sive iltering scheme can efectively leverage information from previous restored
frames, which provides more accurate pixel information.

It is worth mentioning that the result in the 5th row is the best as we combine
the outputs from both the measurement network and the temporal mapping
network through the Kalman update process.
Cross dataset validation. The results on the HEVC standard sequences (Class
D) and the MPI Sintel Flow dataset in Table 4 show that our approach performs
better than the state-of-the-art methods.
Comparison with the RNN based approach. We use the recurrent network
to completely replace the Kalman ilter in Fig. 2. Speciically, the same CNN
architecture is used to extract the features from the distorted frames at each time
step and a convolutional gated recurrent unit (GRU) module is used to restore
the original image based on these features. The result of our work is 37.93dB,
which outperforms the recurrent network based method(37.10dB). One possible
explanation is that it is diicult to train the recurrent network, while our pipeline
makes it easier to learn the network by using the domain knowledge of prediction
residual and combining both measurement and prior estimation.

5 Conclusions
In this paper, we have proposed a deep Kalman iltering network for video ar-
tifact reduction. We model the video compression artifact reduction task as
a Kalman iltering procedure and update the state function by learning deep
neural networks. Our framework can take advantage of both the recursive na-
ture of Kalman iltering and representation learning ability of neural network.
Experimental results have demonstrated the superiority of our deep Kalman il-
tering network over the state-of-the-art methods. Our methodology can also be
extended to solve other low-level computer vision tasks, such as video super-
resolution or denoising, which will be studied in the future.
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