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Abstract. Interactive image segmentation is critical for many image
editing tasks. While recent advanced methods on interactive segmen-
tation focus on the region-based paradigm, more traditional boundary-
based methods such as Intelligent Scissor are still popular in practice
as they allow users to have active control of the object boundaries. Ex-
isting methods for boundary-based segmentation solely rely on low-level
image features, such as edges for boundary extraction, which limits their
ability to adapt to high-level image content and user intention. In this
paper, we introduce an interaction-aware method for boundary-based
image segmentation. Instead of relying on pre-defined low-level image
features, our method adaptively predicts object boundaries according to
image content and user interactions. Therein, we develop a fully con-
volutional encoder-decoder network that takes both the image and user
interactions (e.g. clicks on boundary points) as input and predicts seman-
tically meaningful boundaries that match user intentions. Our method
explicitly models the dependency of boundary extraction results on im-
age content and user interactions. Experiments on two public interactive
segmentation benchmarks show that our method significantly improves
the boundary quality of segmentation results compared to state-of-the-
art methods while requiring fewer user interactions.

1 Introduction

Separating objects from their backgrounds (the process often known as interac-
tive object selection or interactive segmentation) is commonly required in many
image editing and visual effect workflows [6, 25, 33]. Over the past decades, many
efforts have been dedicated to interactive image segmentation. The main goal of
interactive segmentation methods is to harness user input as guidance to infer
the segmentation results from image information [11, 18,22, 36, 30]. Many exist-
ing interactive segmentation methods follow the region-based paradigm in which
users roughly indicate foreground and/or background regions and the algorithm
infers the object segment. While the performance of region-based methods has
improved significantly in recent years, it is still often difficult to accurately trace
the object boundary, especially for complex cases such as textures with large
patterns or low-contrast boundaries (Fig. 1).

To segment objects with high-quality boundaries, more traditional boundary-
based interactive segmentation tools [11,16, 28] are still popular in practice [6,
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Fig. 1: Boundary-based segmentation with interactive boundary prediction. Our
method adaptively predicts appropriate boundary maps for boundary-based seg-
mentation, which enables segmentation results with better boundary quality
compared to region-based approaches ([36,37]) in challenging cases such as thin,
elongated objects (1°* row), highly textured regions (2" row).

33]. These methods allow users to explicitly interact with boundary pixels and
have a fine-grained control which leads to high-quality segmentation results.
The main limitation faced by existing boundary-based segmentation methods,
however, is that they often demand much more user input. One major reason
is that those methods rely solely on low-level image features such as gradients
or edge maps which are often noisy and lack high-level semantic information.
Therefore, a significant amount of user input is needed to keep the boundary
prediction from getting distracted by irrelevant image features.

In this paper, we introduce a new approach that enables a user to obtain
accurate object boundaries with relatively few interactions. Our work is moti-
vated by two key insights. First, a good image feature map for boundary-based
segmentation should not only encode high-level semantic image information but
also adapt to the user intention. Without high-level semantic information, the
boundary extraction process would be affected by irrelevant high-signal back-
ground regions as shown in Fig. 1. Second, we note that a unique property of
interactive segmentation is that it is inherently ambiguous without knowledge
of the user intentions. The boundary of interest varies across different users and
different specific tasks. Using more advanced semantic deep feature maps, which
can partially address the problem, may risk missing less salient boundary parts
that users want (Fig. 2). In other words, a good boundary prediction model
should be made adaptively throughout segmentation process.

Our key idea is that instead of using a single feature map pre-computed
independently from user interactions, the boundary map should be predicted
adaptively as the user interacts. We introduce an interaction-adaptive boundary
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Fig. 2: Adaptive boundary map vs. pre-computed feature maps. Low-level image
features (e.g. image gradient maps or edge maps) often lack high-level seman-
tic information, which distracts the boundary extraction with irrelevant image
details. Using more advanced semantic deep feature maps ([38]), while partially
addressing the problem, may risk missing parts of the desired boundary as the
user intention is unknown prior to interaction.

prediction model which predicts the object boundary while respecting both the
image semantics and the user intention. Therein, we develop a convolutional
encoder-decoder architecture for interaction-aware object boundary prediction.
Our network takes the image and the user-specified boundary points as input and
adaptively predicts the boundary map, which we call the interaction-adaptive
boundary map. The resulted boundary map can then be effectively leveraged to
segment the object using standard geodesic path solvers [11].

Our main contribution in this paper is the novel boundary-based segmen-
tation framework based on interactive boundary prediction. Our method adap-
tively predicts the boundary map according to both the input image and the user
provided control points. Our predicted boundary map can not only predict the
high-level boundaries in the image but also adapt the prediction to respect the
user intention. Evaluations on two interactive segmentation benchmarks show
that our method significantly improves the segmentation boundary quality com-
pared to state-of-the-art methods while requiring fewer user interactions.

2 Related Work

Many interactive object selection methods have been developed over the past
decades. Existing methods can be categorized into two main paradigms: region-
based and boundary-based algorithms [16,22,24]. Region-based methods let
users roughly indicate the foreground and background regions using bounding
boxes ([21, 30, 34, 37]), strokes ([2, 3, 5,13, 15,19, 22, 36]), or multi-label strokes [31].
The underlying algorithms infer the actual object segments based on this user
feedback. Recent work in region-based segmentation has been able to achieve im-
pressive object segmentation accuracy [36,37], thanks to advanced deep learning
frameworks. However, since no boundary constraints have been encoded, these
methods often have difficulties generating high-quality segment boundaries, even
with graph-cut based optimization procedures for post-processing.
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Our research focuses on boundary-based interactive segmentation. This frame-
works allow users to directly interact with object boundaries instead of image
regions. Typically, users place a number of control points along the object bound-
ary and the system optimizes the curves connecting those points in a piece-wise
manner [9,10, 26,28, 32]. It has been shown that the optimal curves can be for-
mulated as a minimal-cost path finding problem on grid-based graphs [11,12].
Boundary segments are extracted as geodesic paths (i.e. minimal paths) between
the user provided control points where the path cost is defined by underlying
feature maps extracted from the image [9, 10, 17, 26-28]. One fundamental limita-
tion is that existing methods solely rely on low-level image features such as image
gradient or edge maps, which prevents leveraging high-level image semantics. As
a result, users must control the curve carefully which demands significant user
feedback for difficult cases. In this paper, we introduce an alternative approach
which predicts the boundary map adaptively as users interacts. In our method,
the appropriate boundary-related feature map is generated from a boundary map
prediction model, leveraging the image and user interaction points as inputs.

Significant research has been conducted to better handle noisy low-level fea-
ture maps for boundary extraction [9, 10, 26, 27, 32]. The key principle is to lever-
age advanced energy models and minimal path finding methods that enable the
incorporation of high-level priors and regularization such as curvature penaliza-
tion [9, 10, 27], boundary simplicity [26], and high-order regularization [32]. Our
work in this paper follows an orthogonal direction and can potentially benefit
from the advances in this line of research. While those methods focus on devel-
oping new path solvers that work better with traditional image feature maps, we
focus on obtaining better feature maps from which high-quality object bound-
aries can be computed using standard path solvers.

Our research is in part inspired by recent successes of deep neural networks in
semantic edge detection [23,35,38]. It has been shown that high-level semantic
edge and object contours can be predicted using convolutional neural networks
trained end-to-end on segmentation data. While semantic edge maps can ad-
dress the aforementioned lack of semantics in low-level feature maps, our work
demonstrates that it is possible and more beneficial to go beyond pre-computed
semantic edge maps. This paper is different from semantic edge detection in that
we aim to predict the interaction-adaptive boundary with respect to not only
the image information but also the user intention.

Our method determines the object boundary segments by connecting pairs
of control points placed along the object boundary. In that regard, our system
shares some similarities with the PolygonRNN framework proposed by Castrejon
et al. [8]. There are two important differences between our method and Poly-
gonRNN. First, our method takes arbitrary set of control points provided by the
users while PolygonRNN predicts a set of optimal control points from an initial
bounding box. More importantly, PolygonRNN mainly focuses on predicting the
control points. They form the final segmentation simply by connecting those
points with straight lines, which does not lead to highly accurate boundaries.
Our method, on the other hand, focuses on predicting a boundary map from the
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Fig. 3: Boundary extraction with interactive boundary map prediction. Given an
image and a set of user provided control points, the boundary prediction network
is used to predict a boundary map that reflects both high-level semantics in
the image and user intention encoded in the control points to enable effective
boundary extraction.

user provided control points. The predicted boundary map can then be used to
extract high-quality object boundaries with a minimal path solver.

3 Interactive Boundary Prediction for Object Selection

We follow the user interaction paradigm proposed by recent works in boundary-
based segmentation [9,10,26] to support boundary segmentation with sparse
user inputs: given an image and a set of user provided control points along the
desired object boundary, the boundary segments connecting each pair of con-
secutive points are computed as minimal-cost paths in which the path cost is
accumulated based on an underlying image feature map. Different from existing
works in which the feature maps are low-level and pre-computed before any user
interaction, our method adapts the feature map to user interaction: the appro-
priate feature map (boundary map) is predicted on-the-fly during the user inter-
action process using our boundary prediction network. The resulting boundary
prediction map is used as the input feature map for a minimal path solver [12]
to extract the object boundary. Fig. 3 illustrates our overall framework.

3.1 Interaction-Adaptive Boundary Prediction Network

The core of our framework is the interaction-adaptive boundary map prediction
network. Given an image and an ordered set of user provided control points as
input, our network outputs a predicted boundary map.

Our interactive boundary prediction network follows a convolutional encoder-
decoder architecture. The encoder consists of five convolutional blocks, each con-
tains a convolution-ReLU layer and a 2 x 2 Max-Pooling layer. All convolutional
blocks use 3 x 3 kernels. The decoder consists of five up-convolutional blocks,
with each up-convolutional layer followed by a ReLU activation. We use 3 x 3
kernels for the first two up-convolutional blocks, 5 x 5 kernels for the next two
blocks, and 7 x 7 kernels for the last blocks. To avoid blurry boundary prediction
results, we include three skip-connections from the output of the encoder’s first
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Fig. 4: Interactive boundary prediction network. The user-provided input points
are converted to interaction maps S to use along with the image I as input
channels for an encoder-decoder network. The predicted boundary map Mp,cq
and segment map Spreq are used along with the corresponding ground-truth
maps Mg, Sg¢ to define the loss function during training.

three convolutional blocks to the decoder’s last three deconvolutional blocks.
The network outputs are passed through a sigmoid activation function to trans-
form their values to the range [0, 1]. Fig. 4 illustrates our network model. It takes
the concatenation of the RGB input image I and interaction maps as input. Its
main output is the desired predicted boundary map. Additionally, the network
also outputs a rough segmentation mask used for computing the loss function
during training as described below.

Input Representation: To serve as the prediction network’s input channels,
we represent the user control points as 2-D maps which we call interaction maps.
Formally, let C = {¢;|i = 1..N} be spatial coordinates of the N user control
points along the boundary. We compute a two-dimensional spatial map SZ. for

each point ¢; as S7 (p) = exp (%{3;) where d(p, ¢;) represents the Euclidean

distance between pixel p and a control point ¢;. L denotes the length of the
smaller side of the image. Combining the interaction maps S¢, from all individual
control points ¢;’s with the pixel-wise max operator, the overall interaction map
S for the control point set C' is obtained.

The parameter o controls the spatial extent of the control point in the interac-
tion map. We observe that different values of o offer different advantages. While a
small o value provides exact information about the location of selection, a larger
o value tends to encourage the network to learn features at larger scopes. In
our implementation, we create three interaction maps with o € {0.02,0.04,0.08}
and concatenate them depth-wise to form the input for the network.

3.2 Loss Functions

During training, each data sample consists of an input image I and a set of
control points C' = {¢;} sampled along the boundary of one object. Let 6 denote
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the network parameters to be optimized during training. The per-sample loss
function is defined as

L(17 {Cz}y 0) = Lglobal(Ia {Cl}, 9) + )\lLlocal(Iv {Cz}y 9) + )\sLseg(Ia {cz}a 9) (1)

where Liocats Lgiobat, and Lgegment are the three dedicated loss functions designed
specifically to encourage the network to leverage the global image semantic and
the local boundary patterns into the boundary prediction process. \; and A4 are
the weights to balance the contribution of the loss terms. In our experiment, \;
and \g are chosen to be 0.25 and 1.0 respectively using cross validation.
Global Boundary Loss: This loss encourages the network to learn useful fea-
tures to detect the pixels belonging to the appropriate boundary. We treat the
boundary detection problem as pixel-wise binary classification. The boundary
pixel detection loss is defined using the binary cross entropy loss [4, 14]

_Mqt ) IOg(Mpred)T — (1 — Mqt) ) log(l - Mpred)T (2>
‘Mgt|

Lgiobar(1,{ci};0) =

where My,eq = Fu(I,{c;};0) denotes the predicted boundary map straightened
into a row vector. |My,| denotes the total number of pixels in the ground-truth
boundary mask M, (which has value 1 at pixels on the desired object boundary,
and 0 otherwise). Minimizing this loss function encourages the network to be able
to differentiate boundary and non-boundary pixels.
Local Selection-Sensitive Loss: We observe that a network trained with only
L g10par may perform poorly at difficult local boundary regions such as those with
weak edges or complex patterns. Therefore, we design the local loss term Ljocq;
which penalizes low-quality boundary prediction near the user selection points.
Let G; denote a spatial mask surrounding the control point ¢;. Let M; =
Fg(I,C;;0) be the predicted boundary map generated with only one control
point ¢;. The local loss Ljycq; is defined as a weighted cross entropy loss

—M;®Gy)T

1 —M, @Gi-lOgMiQGiT— 1— M, @G’L lOgl
Ligear(I, {ci};0) = i P ( ) |(M . gt © Gi) - log(
g

c;,eC
3)
where ® denotes the element-wise multiplication operation. This loss function is
designed to explicitly encourage the network to leverage local information under
the user selected area to make good localized predictions. To serve as the local
mask, we use the interaction map component with o = 0.08 at the corresponding
location. Instead of aggregating individual interaction maps, we form a batch of
inputs, each with the interaction map corresponding to one input control point.
The network then produces a batch of corresponding predicted maps which are
used to compute the loss value.
Segmentation-Aware Loss: While the boundary losses defined above encour-
age learning boundary-related features, it tends to lack the knowledge of what
distinguishes foreground and background regions. Having some knowledge about
whether neighboring pixels are likely foreground or background can provide use-
ful information to complement the boundary detection process. We incorporate
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a segmentation prediction loss to encourage the network to encode knowledge of
foreground and background. We augment our network with an additional deci-
sion layer to predict the segmentation map in addition to the boundary map.

Let Spreqd = Fs(I,{c;};0) denote the segmentation map predicted by the
network. The loss function is defined in the form of binary cross entropy loss on
the ground-truth binary segmentation map S, whose pixels have value 1 inside
the object region, and 0 otherwise.

—Sgt - log(Spmd)T — (1= S8g)-log(1 — Spred)—r
|Sgt‘

Lsegment(I7 {Ci}; 0) = (4)

We note that all three loss terms are defined as differentiable functions over the
network’s output. The network parameters # can hence be updated via back-
propagation during training with standard gradient based methods [14].

3.3 Implementation Details

Our boundary prediction model is implemented in TensorFlow [1]. We train our
network using the ADAM optimizer [20] with initial learning rate n = 107°. The
network is trained for one million iterations, which takes roughly one day on an
NVDIA GTX 1080 Ti GPU.

Network training with synthetic user inputs. To train our adaptive bound-
ary prediction model, we collect samples from an image segmentation dataset [38]
which consists of 2908 images from the PASCAL VOC dataset, post-processed
for high-quality boundaries. Each training image is associated with multiple ob-
ject masks. To create each data sample, we randomly select a subset of them
to create the ground-truth boundary mask. We then randomly select k& points
along the ground-truth boundary to simulate user provided control points. Our
training set includes data samples with k randomly selected in the range of 2
and 100 to simulate the effect of varying difficulty. We also use cropping, scaling,
and blending for data augmentation.

Training with multi-scale prediction. To encourage the network to learn
useful features to predict boundary at different scales, we incorporate multi-scale
prediction into our method. Specifically, after encoding the input, each of the last
three deconvolutional blocks of the decoder is trained to predict the boundary
represented at the corresponding scale. The lower layers are encouraged to learn
useful information to capture the large-scale boundary structure, while higher
layers are trained to reconstruct the more fine-grained details. To encourage the
network to take the user selection points into account, we also concatenate each
decoder layer with the user selection map S described in Section 3.1.
Running time. Our system consists of two steps. The boundary map predic-
tion step, running a single feed-forward pass, takes about 70 milliseconds. The
shortest-path-finding step takes about 0.17 seconds to connect a pair of control
points of length 300 pixels along the boundary.
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Fig.5: Boundary quality at different boundary segment lengths. As expected,
for all methods, the F-score quality decreases as [ increases. Our adaptively
predicted map consistently obtains higher F-score than non-adaptive feature
maps. More importantly, our method performs significantly better with long
boundary segments.

4 Experiments

We evaluate our method on two public interactive image segmentation bench-
marks GrabCut [30] and BSDS [24] which consist of 50 and 96 images, respec-
tively. Images in both datasets are associated with human annotated high-quality
ground-truth object masks. For evaluation, we make use of two segmentation
metrics proposed in [29]:

Intersection over Union (IU): This is a region-based metric which measures
the intersection over the union between a predicted segmentation mask Spred
and the corresponding ground-truth mask Sg;.

Boundary-Based F-score: This metric is designed to specifically evaluate the
boundary quality of the segmentation result [29]. Given the ground-truth bound-
ary map By; and the predicted boundary map Bj,.q connecting the same two
control points, the F-score quality of B4 is measured as:

2 X P(Bprea; B t) X R(B red; Bgt)
F(Byeq: Boy) = pred; Dg pred; Dg 5
( pred; gt) P(Bpred;Bgt)+R(Bpred§Bgt) ( )

The P and R denote the precision and recall values, respectively computed as:

_ |Bprea © dil(Byg, w)|

‘B t © dll(B 7'edaw)|
P(Bpred;Bgt) = TE _ 1Py D
pre

;R(Bpred; Bgt) - |B t|
g

(6)
where ® represents the pixel-wise multiplication between maps. dil(B,w) de-
notes the dilation operator expanding the map B by w pixels. In our evaluation,
we use w = 2 to emphasize accurate boundary prediction.

4.1 Effectiveness of Adaptive Boundary Prediction

This paper proposes the idea of adaptively generating the boundary map along
with the user interaction instead of using pre-computed low-level feature maps.
Therefore, we test the effectiveness of our adaptively predicted boundary map
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CEDN ([38] HED [35]|RCF [23]|O-GMap|O-CMap| Ours

F-score| 0.7649 0.7718 0.8027 0.5770 0.6628 [0.9134
GrabCut

118 0.8866 0.8976 0.9084 0.8285 0.8458 [0.9158

BSDS F-score| 0.6825 0.7199 0.7315 0.5210 0.6060 [0.7514

118 0.7056 0.7241 0.7310 0.6439 0.7230 |0.7411

Table 1: Average segmentation quality from different feature maps.

compared to non-adaptive feature maps in the context of path-based bound-
ary extraction. To evaluate that quantitatively, we randomly sample the control
points along the ground-truth boundary of each test image such that each pair
of consecutive points are [ pixels apart. We create multiple control point sets for
each test image using different values of I (I € {5, 10, 25, 50, 100, 150, 200, 250, 300}).
We then evaluate each feature map by applying the same geodesic path solver [12]
to extract the boundary-based segmentation results from the feature map and
measure the quality of the result. We compare our predicted boundary map with
two classes of non-adaptive feature maps:

Low-level Image Features. Low-level feature maps based on image gradient
are widely used in existing boundary-based segmentation works [11, 18,26, 28].
In this experiment, we consider two types of low-level feature maps: continuous
image gradient maps and binary Canny edge maps [7]. We generate multiple
of these maps from each test image using different edge sensitivity parameters
(0 € 0.4,0.6,0.8,1.0). We evaluate results from all the gradient maps and edge
maps and report the oracle best results among them which we named as O-
GMap (for gradient maps) and O-CMap (for Canny edge maps).

Semantic Contour Maps. We also investigate replacing the low-level feature
maps with semantic maps. In particular, we consider the semantic edge map
produced by three state-of-the-art semantic edge detection methods [23, 35, 38],
denoted as CEDN, HED, and RCF in our experiments.

Table 1 compares the overall segmentation result quality of our feature maps
as well as the non-adaptive feature maps. The reported IU and F-score values
are averaged over all testing data samples. This result indicates that in general
the boundary extracted from our adaptive boundary map better matches the
ground-truth boundary compared to those extracted from non-adaptive feature
maps, especially in terms of the boundary-based quality metric F-score.

We further inspect the average F-score separately for different boundary seg-
ment lengths [. Intuitively, the larger the value of [ the further the controls
points are apart, making it more challenging to extract an accurate boundary.
Fig. 5 shows how the F-scores quality varies for boundary segments with differ-
ent lengths . As expected, for all methods, the F-score quality decreases as [
increases. Despite that, we can observe the quality of our adaptively predicted
map is consistently higher than that of non-adaptive feature map. More impor-
tantly, our method performs significantly better with long boundary segments,
which demonstrates the potential of our method to extract the full object bound-
ary with far fewer user clicks.
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Fig. 6: Interactive segmentation quality. In terms of region-based metric IU, our
method performs comparably with the state-of-the-art region-based method DS.
Notably, our method significantly outperforms DS in terms of boundary F-score.

4.2 Interactive Segmentation Quality

The previous experiment evaluates the segmentation results generated when the
set of control points are provided all at once. In this section, we evaluate our
method in a more realistic interactive setting in which control points are provided
sequentially during the segmentation process.

Evaluation with Synthetic User Inputs. Inspired by previous works on
interactive segmentation [15,36], we quantitatively evaluate the segmentation
performance by simulating the way a real user sequentially adds control points
to improve the segmentation result. In particular, each time a new control point
is added, we update the interaction map (Section 3.1) and use our boundary
prediction network to re-generate the boundary map which in turn is used to
update the segmentation result. We mimic the way a real user often behaves
when using our system: a boundary segment (between two existing consecutive
control points) with lowest F-score values is selected. From the corresponding
ground-truth boundary segment, the simulator selects the point farthest from the
currently predicted segment to serve as the new control point. The process starts
with two randomly selected control points and continues until the maximum
number of iterations (chosen to be 25 in our experiment) is reached.

We compare our method with three state-of-the-art interactive segmentation
algorithms, including two region-based methods Deep Object Selection (DS) [36],
Deep GrabCut (DG) [37] and one advanced boundary-based method Finsler-
based Path Solver (FP) [9]. Note that FP uses the same user interaction mode
as ours. Therefore, we evaluate those methods using the same simulation process
as ours. For DS, we follow the simulation procedure described in [36] using the
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Fig. 7: Visual comparison of segmentation results. We compare the segmentation
results of our method to three state-of-the-art interaction segmentation methods.

Fig.8: Adaptivity analysis. By learning to predict the object boundary using
both image content and user input, the boundary map produced by our network
can evolve adaptively to reflect user intention as more input points are provided.

author provided implementation. For DG, we use the following simulation strat-
egy: at the k' simulation step, & bounding boxes surrounding the ground-truth
mask are randomly sampled. We always additionally include the tightest bound-
ing box. From those bounding boxes, we use DG to generate k segmentation
results and the highest-score one is selected as the result for that iteration.

Fig. 6 shows the average F-score and IU of each method for differing num-
bers of simulation steps on the GrabCut and the BSDS datasets. In terms of
the region-based metric IU, our method performs as well as the state-of-the-art
region-based method DS. Notably, our method significantly outperforms DS in
terms of boundary F-score, which confirms the advantage of our method as a
boundary-based method. This result demonstrates that our method can achieve
superior boundary prediction even with fewer user interactions. We also perform
an ablation study, evaluating the quality of the results generated with different
variants of our boundary prediction network trained with different combinations
of the loss functions. Removing each loss term during the network training tends
to decrease the boundary-based quality of the resulting predicted map.

Fig. 7 shows a visual comparison of our segmentation results and other meth-
ods after 15 iterations. These examples consist of objects with highly textured
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and low-contrast regions which are challenging for region-based segmentation
as they rely on boundary optimization process such as graph-cut [36] or dense-
CRF [37]. Our model, in contrast, learns to predict the boundary directly from
both the input image and the user inputs to better handle these cases.

To further understand the advantage of our adaptively predicted map, we
visually inspect the boundary maps predicted by our network as input points
are added (Fig. 8). We observe that initially when the number of input points are
too few to depict the boundary, the predicted boundary map tends to focus its
confidence value at the local boundary regions surrounding the selected points
and may generate some fuzzy regions. As more input points are provided, our
model leverages the information from the additional points to update its predic-
tion which can accurately highlight the desired boundary regions and converge
to the correct boundary with a sufficient number of control points.

4.3 Evaluation with Human Users

We examine our method when used by human users with a preliminary user
study. In this study, we compare our method with Intelligent Scissors (IS) [28]
which is one of the most popular object selection tool in practice [25,33]. We
utilize a publicly available implementation of IS?. In addition, we also experiment
with a commercial version of IS known as Adobe Photoshop Magnetic Lasso
(ML) which has been well optimized for efficiency and user interaction. Finally,
we also include the state-of-the-art region-based system Deep Selection (DS) [36]
in this study.

We recruit 12 participants for the user study. Given an input image and
the expected segmentation result, each participant is asked to sequentially use
each of the four tools to segment the object in the image to reproduce the
expected result. Participants are instructed to use each tool as best as they can
to obtain the best results possible. Prior to the study, each participant is provided
a comprehensive training session to help them familiarize with the tasks and the
segmentation tools. To represent challenging examples encountered in real-world
tasks, we select eight real-world examples from the online image editing forum
Reddit Photoshop Requests* by browsing with the keywords “isolate”, “crop”,
and “silhouette” and picked the images that have a valid result accepted by the
requester. Each image is randomly assigned to the participants. To reduce the
order effect, we counter-balance the order of the tools used among participants.

Fig. 9 shows the amount of interaction (represented as number of mouse
clicks) that each participant used with each methods and the corresponding
segmentation quality. We observe that in most cases, the results obtained from
our method are visually better or comparable with competing methods while
needing much fewer user interactions.

Robustness against imperfect user inputs. To examine our method’s ro-
bustness with respect to noisy user inputs, we re-run the experiment in Section

3 github.com/AzureViolin
4 www.reddit.com /r/PhotoshopRequest
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Fig.9: Evaluation with real user inputs. In general, our method enables users to
obtain segmentation results with better or comparable quality to state-of-the-art
methods while using fewer interactions.
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Fig. 10: Our method is robust against noisy interaction inputs

4.2 with randomly perturbed simulated input points. Each simulated control
point ¢; = (z;,y;) is now replaced by its noisy version ¢, = (x; + 0z, y; + &y).
0, and 0, are sampled from the real noise distribution gathered from our user
study data (Section 4.3). For each user input point obtained in the user study,
we identify the closest boundary point from it and measure the corresponding
0, and d,,. We collect the user input noise over all user study sessions to obtain
the empirical noise distribution and use it to sample d,,d,. Fig. 10 shows that
our method is robust against the noise added to the input control points.

5 Conclusion

In this paper, we introduce a novel boundary-based segmentation method based
on interaction-aware boundary prediction. We develop an adaptive boundary
prediction model predicting a boundary map that is not only semantically mean-
ingful but also relevant to the user intention. The predicted boundary can be used
with an off-the-shelf minimal path finding algorithm to extract high-quality seg-
mentation boundaries. Evaluations on two interactive segmentation benchmarks
show that our method significantly improves the segmentation boundary quality
compared to state-of-the-art methods while requiring fewer user interactions. In
future work, we plan to further extend our algorithm and jointly optimize both
the boundary map prediction and the path finding in a unified framework.
Acknowledgments This work was partially done when the first author was
an intern at Adobe Research. Fig. 2 uses images from Flickr user Liz West and
Laura Wolf, Fig. 3 uses an image from Flickr user Mathias Appel, and Fig. 8
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a Creative Commons license.
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