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Abstract. We introduce a method for improving convolutional neural
networks (CNNs) for scene classification. We present a hierarchy of spe-
cialist networks, which disentangles the intra-class variation and inter-
class similarity in a coarse to fine manner. Our key insight is that each
subset within a class is often associated with different types of inter-class
similarity. This suggests that existing network of experts approaches that
organize classes into coarse categories are suboptimal. In contrast, we
group images based on high-level appearance features rather than their
class membership and dedicate a specialist model per group. In addi-
tion, we propose an alternating architecture with a global ordered- and
a global orderless-representation to account for both the coarse layout of
the scene and the transient objects. We demonstrate that it leads to bet-
ter performance than using a single type of representation as well as the
fused features. We also introduce a mini-batch soft k-means that allows
end-to-end fine-tuning, as well as a novel routing function for assigning
images to specialists. Experimental results show that the proposed ap-
proach achieves a significant improvement over baselines including the
existing tree-structured CNNs with class-based grouping.
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1 Introduction

Accurately identifying the background in an image (e.g. beach, mountains, candy
store) is an important task in computer vision because it provides us with strong
contextual information as to what is happening in the scene. The major chal-
lenge that needs to be addressed is the severe intra-class variation and inter-class
similarity. Not only there are many visually diverse instances within one scene
category (e.g. Notre-Dame de Paris vs. Saint Basil’s Cathedral), but there is
also a significant visual overlap between different scene categories (e.g. airports
vs. modern train stations). Several approaches have been proposed to address
this problem by designing or learning better visual features [8,9,18,45,50,59].
Newer end-to-end deep neural networks were able to achieve state-of-the-art
classification accuracy [1,63]. However, it becomes increasingly hard to find a
distinctive representation when the classes become visually nearly indistinguish-
able as the number of classes increases [40]. Downweighting the representations
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Fig. 1. Examples of intra-class varia-
tion and inter-class similarity. While
base cabinets and bars characterize the
kitchen class, they cause overlap with
other classes with similar furnishings.
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Fig. 2. There are subsets of images in each
class that are often confused with those of
other classes. We discover confusing clusters

in the feature space to disentangle intra-class
variation and inter-class similarity.

for commonly shared visual elements can help reduce the inter-class similarity.
However, these elements are sometimes the key to distinguish a class from others,
as illustrated in Fig. 1.

Thus, a sensible way to handle this issue is to apply a divide and conquer [48]
strategy to dedicate different CNNs to separable subproblems. Existing methods
organize classes into coarse categories, either based on the semantic hierarchy
[12,15,22,58] or the confusion matrix of a trained classifier [53,57]. However, we
observe that there are multiple modes of intra-class appearance variation, and
that each of these modes typically causes overlap with different subsets of cat-
egories. As depicted in Fig. 2, some images of a kitchen with cabinets can be
confused with a bathroom or a bedroom with similar furnishings, while other
kitchen images showing the dining area are easily mistaken as a bar or a restau-
rant. In this case, grouping the whole kitchen class with the whole bathroom or
restaurant class into a coarse category is suboptimal. Instead, it would be more
effective to group confusable images below the category level, such as the images
of different classes with similar furnishings as shown in Fig. 2.

Hence, we aim to identify such confusing clusters of images in a coarse to fine
manner based on high-level appearance. The key idea is to disentangle intra-class
variation and inter-class similarity by limiting the intra-class variation within
each cluster. With reduced intra-class variation, a specialist model can focus
on finding the subtle differences between the categories within the cluster. To
this end, we introduce a Hierarchy of Alternating Specialists model, which auto-
matically builds a hierarchical network of specialists based on the unsupervised
discovery of confusing clusters. For a given specialist CNN, we find its corre-
sponding confusing cluster by performing clustering in the feature space of its
parent model that handles a more general task. This groups images that are
visually similar and likely to be confused by the parent model. For assigning
images to a model in the hierarchy, we propose a simple routing function which
invokes only a small fraction of the models in the whole tree for an input image.
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On the other hand, we notice that the spatial layout and the objects in the
scene are complementary features for scene categorization (Fig. 4). This seems
natural because the scene class is often determined by the way humans use
objects in a certain spatial context. For example, the different rooms in a house
are typically similar in structure with walls, doors, and windows. However, the
objects, such as sofas, books, and dining ware, determine their function as being
a living room, office, or dinning room. Another notable fact is that the objects
do not necessarily stay in the same configuration. To account for this fact, we
use two different types of representations in our model: One that is robust to
transient local visual elements, and the other that preserves spatial layout. In
particular, we propose an alternating architecture, where the architecture of a
specialist alternates between the two representations based on its level in the
hierarchy. We show that it achieves better performance than the fused features
as well as the hierarchical models with a single type of representation.

In summary, our innovations are as follows: (1) We present a hierarchical
generalist-specialist model that automatically builds itself based on the unsu-
pervised discovery of confusing clusters in a coarse to fine manner. The confus-
ing clusters allow specialists to focus on subtle differences between images that
are visually similar and confusable to their parents. We experimentally validate
that our method significantly outperforms baselines including the tree-structured
CNNs based on coarse categories. (2) We propose a novel alternating architec-
ture that effectively takes advantage of two complementary representations that
capture spatial layouts and transient objects. As minor innovations, we introduce
a novel routing function as well as mini-batch soft k-means for end-to-end fine
tuning. Beyond the detailed innovations, our proposed algorithm is generalizable
to other categorization tasks, and is applicable to any CNN architecture.

2 Related Work

Our method takes the hierarchical mixture of experts approach [7,23], where
each expert in the tree structure learns to handle splits of the input space. In
light of recent advances in deep neural networks, many researchers have revisited
the concept for various recognition tasks [4,21,46,53]. In particular, our method
adopts the generalist and specialist model from the work of Hinton et al. [21],
which is similar to the mixture of experts, in the sense that each specialist focuses
on a confusable subset of the classes, but it has a generalist that takes care of the
classes that are not handled by specialists. It also does not require the training of
a gating function, allowing models to be trained in parallel. Defining the areas
of expertise can be done using a pre-defined semantic hierarchy [11,15], but
in this work, we focus on unsupervised approaches [2,37,53,57]. Yan et al. [57]
and Murthy et al. [37] use the confusion matrix of a trained classifier to group
classes into coarse categories. Ahmed et al. [2] randomly initialize the grouping of
classes, then iteratively optimize the grouping as well as the model parameters
jointly. In the context of transfer learning, Srivastava and Salakhutdinov [46]
take a Bayesian approach to organize the classes into a tree hierarchy.
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However, all these approaches partition the input space by grouping cate-
gories, while our method partitions the feature space that captures high-level
appearance information regardless of class membership, based on the observa-
tion that there are visually drastically different sub-classes within each class.
This also frees our method from the risk of misclassification in specialties due to
severe inter-class similarity and intra-class variation in appearance, from which,
the methods using class-based grouping can not recover [2,37,53,57]. Moreover,
our method only invokes a limited number of models during testing, which leads
to significant computational efficiency gains over existing methods.

In contrast to organizing multiple CNN models, there have been efforts to
separate visual features of a single CNN in a tree structure [3,26,31,36,42]. This is
especially useful for parallel and distributed learning as demonstrated in Kim et
al. [26], where disjoint sets of features, as well as disjoint sets of classes are
automatically discovered. In the same spirit of parallelization, but on a much
larger scale, Gross et al. [16] deal with a mixture of experts model that does not
fit in the memory. Similar to their work, our learned submodels are local in the
feature space, and the image-to-model assignment is determined by the distance
of the image to the corresponding submodel cluster center.

Numerous work has been done on scene categorization as being one of the
fundamental problems in computer vision [17,25,30,38,41,51,55,56,62]. Our work
is related to recent attempts to leverage object information within the scene
[10,13,14,20,52,63]. However, we do not explicitly detect objects using pre-trained
networks or perform rigorous clustering offline to find such visual elements [24,54].
Instead, we let the network capture such information during the end-to-end train-
ing process through a network architecture that accounts for objects that can
freely move within the scene. Global orderless pooling of convolutional features
has a high degree of invariance for encoding local visual elements such as ob-
jects. In this way, high-level convolutional filters perform like an object detector
[6,60]. Furthermore, we also leverage a global ordered pooling representation
which preserves coarse spatial information [35].

3 Method

We first describe our proposed hierarchy of specialists with alternating architec-
ture in Sec. 3.1. We then illustrate how to discover a specialist’s area of expertise
in an unsupervised manner in Sec. 3.2. Lastly, we describe the learning objectives
as well as the overall training procedure in Sec. 3.3.

3.1 Hierarchy of Alternating Specialists

We propose a hierarchical version of the generalist-specialist models [21], where
the child specialist focuses on the task that is more specific than its parents.
To achieve this, we begin with a generalist model and then incrementally add
specialist models in the next level of the hierarchy, after reaching convergence
at the current level. We initialize a new specialist with its parent, or the nearest
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Fig. 3. Hierarchy of alternating special-
ists. The white and the blue boxes denote
network architectures with different global
pooling strategy. The assignment of im-
ages to models is determined by our rout-
ing function, depicted as switches.
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Fig. 4. (top) Similar layouts make these
scenes confusing, but different objects
within them can help determine the cor-
rect scene class. (bottom) When scenes
are similar in terms of content, their lay-
outs can help distinguish between them.

ancestor that share the network architecture, to inherit its parent’s knowledge as
they encode important commonalities of the classes. Note that a specialist model
outputs predictions for the same set of categories as the generalist model does.
A specialist refines the inherited model towards the finer details to distinguish
the classes for images that fall into its specialty. The overall architecture is
depicted in Fig. 3. The algorithm stops extending the hierarchy when there
is no further improvement, or if the network reaches a pre-specified maximum
depth. In this paper, we use a binary tree structure where each parent model
has two child models. Every model within this tree shares the low level layers
for computational efficiency.

We design this hierarchy of specialists to have an alternating architecture
such that specialists at each level have a different model architecture than their
parents or children. In particular, we use the global ordered pooling architecture
for capturing the rough geometry of the scene, and the global orderless pooling
architecture for capturing transient visual elements such as objects. The key
idea is that the scene layout and the objects in the scene are complementary for
scene classification. Objects can often disambiguate the two images belonging
to different categories with similar layouts, while the scene layouts can help
distinguish two images, which share the same objects (Fig. 4).

The two architectures differ from each other in how they pool the features in
the last convolutional layer before the fully connected layers for the class predic-
tion. First is the global ordered pooling architecture, where the orderless pooling
operation (i.e., max- or average-pooling) is performed only within a local spatial
window, as in AlexNet [29] and VGG [44]. Thus, the representation preserves the
coarse spatial information. The second is the global orderless pooling architec-
ture, in which convolutional features are pooled through global average-pooling,
global max-pooling, or VLAD [5], as in NIN [32] and ResNet [19] architecture.
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This has a high degree of invariance for encoding local visual elements such as
objects, analogous to the widely adopted bag-of-words representation.

Our model uses the original pooling strategy of the base architecture for the
generalist at the root node, and alternates between the two architectures for
all other elements of our tree structure. To convert one architecture from the
other, we either substitute global average pooling with a fully-connected layer
(global orderless→ global ordered), or replace a fully connected layer with global
average pooling (global orderless ← global ordered).
Routing: In order to decide which model in the hierarchy should tackle the
input image, we use a simple routing function inspired by the SIFT ratio test
[34]. The idea is to let the parent handle the image unless the image has a good
membership to any of its children’s area of expertise. We define the routing
function to produce a k-dimensional binary vector γ, where the k is the number
of children at the current node and

∑

i
γi ≤ 1. γi = 1 indicates the routing

to the i-th child is valid. In the feature space of the current node fp, given its
childs’ corresponding confusing cluster (Sec. 3.2) centroids µk’s, we compute
the distance between the input image I and its nearest centroid µi, where i =
argmin

k
||fp(I)− µk||. We also compute the second nearest centroid µj . We then

take the ratio of the two distances. If the ratio is less than a threshold τ , the
image is assigned to the child node i. Otherwise, the image is assigned to the
current node (Eqn. (1)). Then the same routing procedure is performed at the
child node i. The decision boundary of the routing function consists of two
Apollonius circles where the foci’s are the centroids µi and µj [4].

γi
train(I) =

{

1,
||fp(I)−µi||
||fp(I)−µj ||

< τ

0, otherwise
(1)

During testing, we put an additional constraint based on the relative confidence
of the prediction between a parent and its child. Intuitively, for those images that
are within the specialty of the child (γi

train(x) = 1), we trust the prediction of
the child as our answer, when the confidence of the child model is greater than
that of its parent model on the given image. Otherwise, we accept the parent
model’s prediction and regard the prediction of the child model as unreliable.

γi
test(I) =

{

1, γi
train(I) ∧ (confi(I) > confp(I)))

0, otherwise
, (2)

where conft(I) = max
c

P (c|I, θt). Since the distance to the clusters is computed

in the feature space of the parent models at each level, the total number of
models that needs to be invoked is nl+1 where nl is the hierarchical level of the
selected model (nl = 0 for the generalist). The procedure can also be computed
in parallel, at the expense of the number of invoked models (Sec. 4.7).

3.2 Discovering the areas of confusion

We want to partition the input data based on their high-level appearance fea-
tures, and not by their categorization, thus allowing samples belonging to the
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same class to fall into different clusters. Our key insight is that each subset
within a class is often associated with different types of inter-class similarity.
We perform clustering in the feature space of a parent model to discover con-
fusing clusters, the groups of images that are both visually similar and likely to
be confused by the parent. This can be interpreted as disentangling intra-class
variation and inter-class similarity, as the resulting cluster has limited intra-class
variation, and a child model can focus on finding the subtle differences between
each categories within the cluster. Also, due to our alternating architecture, we
obtain confusing clusters that are both confusing in terms of scene layout and
the transient scene objects as we go deeper in the hierarchy.
Feature for clustering: The features from the penultimate layer of a parent
model encodes high-level appearance as perceived by the parent. On the other
hand, the features from the last fully-connected layer directly encode the class
scores by the parent model. The distance of images in these two embedding
spaces indicates how likely they are to be distinguished by the parent. In the
dataset we tested, the combination of these embeddings produced a marginally
better results compared to using each of them separately. In the experiments,
we report the result using the combined features, unless otherwise specified.
Incremental hard clustering: As described in Sec. 3.1, we build our hierarchi-
cal model in an incremental manner, where the models in the next hierarchical
level are added when their parent models have converged. As such, we discover
confusing clusters by performing hard k-means clustering on the features of a
converged parent model. Once initialized with these clusters, we can further
fine-tune them end-to-end using the soft k-means layer described below.
Soft k-means layer for fine-tuning: We propose to use mini-batch-based
soft k-means that allows end-to-end fine-tuning. For each model θ, we update
the centroids µk through back-propagation to optimize the following objective
function:

Lclust(θ, µ; Ii) =

K
∑

k=1

N
∑

i=1

wik‖fθ(Ii)− µk‖
2
, (3)

where

wik =
e−m‖fθ(Ii)−µk‖

2

∑K
k=1

e−m‖fθ(Ii)−µk‖
2
, (4)

and fθ(Ii) denotes an image representation in the mini-batch. The parameter
m decides the softness of the membership wik of xi belonging to cluster k. We
set m to 1/(8σ2) where σ is the average of the standard deviation to the cluster
center, which is computed during the hard k-means clustering.

3.3 Training

Classification Loss: As we allow the samples belonging to the same class to
be in different clusters, it may introduce class imbalance in the training set of
the specialists. Thus, we weigh the cross-entropy loss with the inverted docu-
ment frequency similar to [33]. This better accounts for under-represented classes



8 H. Kim and J. Frahm

within the cluster. We computed the inverted document frequency as a running
average to allow changes caused by clustering.

Lclass(θ;x) = −
∑

c

(

log
N

nc

)

log(P [c|x, θ]) (5)

Training Objective: Our final training objective consists of clustering loss and
classification loss as follows:

Ltotal(θ;x) =
∑

d∈D

Lclass(θd;x) +
∑

d∈D,d/∈L

Lclust(θd;x). (6)

D and L denote the sets of all nodes and leaf nodes in the hierarchy, respectively.
Implementation Details: The parameters of the shared low-level layers and
the layers of the parents are kept frozen until the fine-tuning stage of the overall
network. As the architecture of the specialist model alternates between the levels
in the hierarchy, a specialist is initialized with its grandparent model whom it
shares the architecture with. We initialized our base models with the models
pre-trained on ImageNet, then fine-tuned them on the target dataset, with an
exception in the experiment on CIFAR-100, where the base model is trained
from the scratch until its accuracy reached the performance for the same model
reported in [3,57]. The number of confusing clustersK are set to 2. The threshold
τ for the routing function is empirically selected as 0.96. We used stochastic
gradient descent for the optimization. The deployed learning rate was 0.001,
and was reduced by a factor of 10 when the loss plateaus. To combat overfitting,
data augmentation techniques such as random cropping, scaling, aspect ratio
setting [47], and color jittering [49] were applied. We used an image resolution
of 224× 224. Our models are implemented using PyTorch [39].

4 Experiments

We perform quantitative comparison to evaluate our approach and its compo-
nents (Sec. 4.2-4.3). For a direct comparison with other tree-structured networks,
we show the results of our method on a general image classification task (Sec.
4.4). We then show how regions of interest are changed in the specialists as com-
pared to that of the generalist (Sec. 4.5). We also visualize the learned hierarchy,
which qualitatively validates our premises on feature-based grouping (Sec. 4.6).

4.1 Datasets and evaluation methodology

Dataset: We performed experiments on the widely used SUN database [55].
The original number of scene categories in this dataset is 397. However, the
majority of categories contain just around 100 example images. To alleviate the
potential overfitting problem, we create a subset of SUN-397 [55], the (1) SUN-
190 dataset, which consist of classes that contains at least 200 examples, resulting
in 48K images in total. Following Agrawal et al. [1], we randomly divide the data
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for training, test, and validation with the proportion of 60%, 30%, and 10%. We
used this dataset for comprehensive study, as its size allows us to evaluate a
variety of design choices. We also performed experiments on another publicly
available dataset, the (2) Places-205 dataset [63], which contains 2.5M images.
For the Places-205 dataset, we treated the validation set as our test set. Finally,
for the comparison with the existing tree-structured networks, we also report
our results on the (3) CIFAR-100 dataset [28], a standard image classification
benchmark which contains 60K images in total.
Evaluation Metric: Following the standard protocol [1,63], we report one-
vs.-all classification accuracy averaged over all classes. We report both top-1
accuracy and top-5 accuracy for SUN-190 and Places-205 [63], and top-1 for the
CIFAR-100 dataset [28]. In all our experiments, test images for evaluation were
resized to a resolution of 224 × 224 and we perform single-view testing, i.e., no
averaging of multiple crops [1,29,63] were performed.
Base model: On the SUN-190 and Places-205 [63] datasets, we used AlexNet*
[27] as our base model, which is a slimmer version of the original AlexNet [29]. We
let the specialists share the parameters with the lower layers of the generalist up
to conv4. For the global ordered representation, we use the AlexNet* architecture
as is. For the global orderless representation, we keep the layers of AlexNet* up to
conv5 and add a conv6 layer with 768 3×3 filters, with a global average pooling
layer between conv6 and fc7. On CIFAR-100 [28] dataset, NIN-C100 [32] is used
as our base model. It is used as is for the global orderless representation. For
the global ordered representation, the global average pooling layer was replaced
with two fully-connected layers, each with 1024 and 100 dimensional output.

4.2 Scene classification results

In order to evaluate our premise that specialists trained on confusing clusters
are better than those trained on coarse categories, we compare with a network
of experts based on coarse categories. In particular, we compare a two-level
hierarchical model similar to HD-CNN [57], but with AlexNet* [27] (HD-CNN*)
as a baseline for a fair comparison with our method. For this baseline method,
spectral clustering was performed on the covariance matrix of class predictions
of the generalist model for discovering the groups of confusing categories as in
[21]. The final prediction is made using the weighted average of predictions as in
[57]. We experimented with a different number of clusters of 2, 4, and 8 for this
model. Furthermore, we compare our approach with a simple ensemble model,
where the models are trained with different initializations and the predictions
are averaged. We also report the performance of the fine-tuned single AlexNet*
[27] model, which is also our generalist model at the root of the hierarchy.

In Table 1, we compare our performance with the aforementioned baselines
on the SUN-190 dataset. All of our models outperform the baselines, where our
best model with a 3-level hierarchy achieved a classification accuracy of 66.41%
for the Top-1 prediction, exceeding the accuracy of the coarse-category-based
model (HD-CNN*) by 2.76%. The performance of our proposed model consis-
tently improves as we increase the number of levels in the hierarchy. In contrast,
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Table 1. Scene classification accuracy on the Sun-190 dataset. All compared models
are based on AlexNet* [27]. The statistics are based on single-view testing. (Lev: the
hierarchical levels, K: the number of clusters, N: the number of ensembles)

Method Top-1 Top-5 Method Top-1 Top-5

Proposed Lev 1 66.13 89.66 AlexNet*[27](Ordered) Lev 0 63.46 89.18
Lev 2 66.37 89.85 AlexNet*-Orderless Lev 0 61.79 88.14
Lev 3 66.41 89.96 Fusion Lev 0 64.45 89.36

K = 2 63.11 88.81 Model 1: Lev 1 64.02 89.27
HD-CNN* [57] K = 4 63.62 87.64 global ordered Lev 2 64.33 89.44

K = 8 63.65 84.08 pooling only Lev 3 64.43 89.48

N = 2 64.19 89.47 Model 2: Lev 1 62.71 88.54
Simple Ensembles N = 4 64.66 89.72 global orderless Lev 2 63.14 88.76

N = 8 64.99 89.96 pooling only Lev 3 63.08 88.69

HD-CNN* only has marginal improvements in the Top-1 accuracy, while the
Top-5 accuracy drops as the number of clusters increases. This demonstrates
the effectiveness of our model in discovering the correct hierarchical organiza-
tion of image data while overcoming the intra-class variation issues inherent
in conventional tree-structured models. We also observe that while our model
achieves well-balanced clusters, the spectral clustering resulted in high bias in
the number of classes per coarse category. The simple ensembles is also inferior
to our approach which outputs the prediction of a single specialist model.

We also show the scene classification performance on the Places-205 [63]
dataset on Table 2. Our approach provides an improvement of 2.87% over the
base model at Top-1 accuracy. Similarly as in SUN-190, we observe that the
accuracy of the proposed model increases as we increment the number of levels
in the hierarchy.

4.3 Benefits of Alternating Architecture

The performance of architectures with global ordered pooling (AlexNet* [27])
and global orderless pooling (AlexNet*-Orderless) are shown in Table 1 and
Table 2, for the SUN-190 and Places-205 datasets, respectively. Both models
achieve similar accuracy, while global ordered pooling shows slightly better per-
formance. Meanwhile, the IoU of the correct prediction was 78.1% (with the
overall prediction overlap ratio being and 73.2%). This quantitatively validates
our assumption that the two representations are complementary. We also evalu-
ated the performance of fused features, one with early fusion that concatenates
two representations before the last fully connected layer, and the other with late
fusion where the predictions of the two architectures are averaged. The early
fusion did not yield competitive classification accuracy. On the other hand, the
late fusion (Fusion in Table 1 and 2) achieves better performance than using each
representation separately, however, does not reach the classification accuracy of
our proposed alternating architecture.
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Table 2. Scene classification accuracy on the
Places-205 [63] dataset using single-view test-
ing. All models are based on AlexNet* [27].

Method Top-1 Top-5

AlexNet*[27](Ordered) Lev 0 48.67 79.24

Proposed: Lev 1 50.21 79.82
alternating Lev 2 51.42 80.67
architecture Lev 3 51.54 80.76

Model 1: Lev 1 49.99 80.09
global ordered Lev 2 50.21 80.30
pooling only Lev 3 50.28 80.26

AlexNet*-Orderless Lev 0 48.19 78.23

Model 2: Lev 1 48.99 79.01
global orderless Lev 2 49.31 79.48
pooling only Lev 3 49.25 79.49

Fusion Lev 0 49.19 79.54

Table 3. Image classification accuracy
on CIFAR-100 with single-view testing.
All models are based on NIN-C100 [32].

Method Top-1

NIN-C100[32](Orderless) Lev 0 64.73

Proposed: Lev 1 67.32
alternating Lev 2 67.61
architecture Lev 3 67.70

Model A: Lev 1 66.92
global orderless Lev 2 66.70
pooling only Lev 3 66.62

NIN-C100-Ordered Lev 0 64.67

Model B: Lev 1 65.64
global ordered Lev 2 65.74
pooling only Lev 3 65.48

Fusion Lev 0 66.83

Table 4. Comparison with other tree-structured models on CIFAR-100 [28]. All models
are based on NIN-C100 [32]. The accuracies are based on single-view testing.

Method hierarchy #model #model #models Accuracy (%)
levels choices selected invoked

NIN-C100 [32] 0 1 1 1 64.73

Proposed 1 3 1 1–2 67.32
2 7 1 1–3 67.61
3 15 1 1–4 67.70

HD-CNN (best) [57] 1 9 9 10 65.64

NofE [2] 1 10 1 2 65.91

BranchConnect [3] 1 10 1 10 66.10
5 10 66.45

Furthermore, in Table 1 and 2, we compare with other versions of our method—
hierarchy of specialists without the alternating architecture, that is, using only a
single type of representation. In particular, we report the results of Model 1 that
uses global ordered pooling architecture, and Model 2 with global orderless pool-
ing architecture. Both models were trained with the same training protocol as
our proposed model. While the performance of our proposed model with its alter-
nating architecture improves with an increasing depth of the hierarchy, models
with a non-alternating architecture have marginal or no observable performance
gain. We suspect that this is due to the fact that our alternating architecture is
better at yielding confusing clusters, in terms of both coarse spatial layout and
the objects in the scene, by using two different types of feature sets.

To show the observation holds for other networks, we repeated the same
experiments using the NIN-C100 [32] architecture on CIFAR-100 [28] in Table
3. Unlike AlexNet* [27], which has a global ordered pooling architecture, NIN-
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Fig. 5. (left) Input images and ground-truth category. The top-5 predictions and the
visualization of class activation maps (CAM) of the top predicted class for the generalist
(center) and the selected specialist (right). (See supplementary for more results.)

C100 [32] has a global-orderless-pooling architecture by default. We observe that
our alternating architecture clearly outperforms other strategies. The Model A
and B denote the hierarchy of specialists with a single type of representation,
using global orderless- and global ordered- pooling, respectively.

4.4 Comparison with existing tree-structured CNNs on CIFAR-100

For a direct comparison with other tree-structured networks, we show the results
of our architecture on the image classification task of the CIFAR-100 [28] dataset
in Table 4. We compare with HD-CNN [57], NofE [2], and BranchConnect [3].
All these methods train their experts on coarse categories (class-based group-
ing) while our method alone uses confusing clusters. Furthermore, they require
additional networks or layers to be used for gating. We show the recalls reported
in their original paper, except for NofE [2] in which we used the recalls reported
in [3] in order to match the performance of the base model for a fair compari-
son. All models are based on the NIN-C100 [32] architecture. We also illustrate
the number of models to choose from, the number of selected models, and the
total number of invoked models on the same table. Our approach outperforms
all other methods despite the fact that it outputs the prediction of a single spe-
cialist network, rather than averaging predictions of multiple networks. It also
invokes the least number of models. In particular, our method outperforms the
best baseline BranchConnect [3] with significantly fewer models invoked.

4.5 Comparison of Regions of Interest (ROI)

The benefit of our proposed architecture lies in the specialists’ ability to dis-
criminate between classes based on subtle details for images that falls into their
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specialty. As specialists are trained on the subset of data which reflects their spe-
cialty, it evolves to focus on such details to better accommodate the classification
task at hand. To illustrate these changes in activation patterns, we investigated
how the regions of interest (ROI) of the specialist models differ from those of the
generalist models. We visualize the corresponding class activation maps (CAM)
[43,61] for the specialists and the generalists. Since CAMs show the regions that
contributed to the prediction of the class in question, we are able to tell which
regions in the image contributed to the correct (or the incorrect) prediction.

Fig. 5 shows the CAMs of the top predicted class for both the generalist and
the specialists. We only show examples where the specialists with the depicted
results are invoked by our routing function. We observe that the specialists
are good at focusing on fine-grain details as compared to the generalist. For
example, in Fig. 5 (a), the generalist reasonably predicted the scene category as
construction site, based on the construction materials on the right side of the
image. However, the specialist was able to focus more on the boxes, predicting
the correct scene class of warehouse indoor. In Fig. 5 (b), generalist predicted
yard for the scene class, based on the grass field in the center of the image.
However, the specialist payed more attention to plants and frames on the sides
to predict the correct class of greenhouse indoors.

4.6 Visualization of Learned Hierarchy of Specialties

We visualize the learned hierarchy of images in Fig. 6. For each centroid of the
discovered confusing clusters that the specialists were trained on, we depict the
top 10 nearest neighbor images in the feature space for SUN-190. We observe
that each cluster consists of visually coherent and easily confusable images from
different scene classes. At the same time, different instances of the same class
appear in multiple clusters that are visually distinct. For example, a subset of
the kitchen images, which are visually similar to bathrooms with base cabinets,
appear in the cluster of the Specialist 001, while the subset of the same category
that look similar to restaurants and bars are found in the cluster of the Specialist
10. This visualization strongly supports our underlying idea of confusing clusters.

4.7 Computational Time

Our model can be run in parallel or sequentially. Running sequentially minimizes
the number of invoked models, thus saving memory at the expense of time. The
opposite is true when running in parallel. Let tA = tl + tu be the execution
time for the base model, where tu and tl denote the time spent on the upper
layers and the shared lower layers. Let tr be the time spent for routing and L the
hierarchical levels. When run sequentially, the best case is tA+tr when routed to
the generalist, while the worst is tl+L · (tu+ tr) when routed to a leaf specialist.
On an NVIDIA GTX1080Ti with batch size 512 using AlexNet*, it takes 105,
121, and 138ms for our models with L = 1, 2, 3, respectively. AlexNet* takes
87ms. When fully parallelized, each model is run in parallel, then a model is
selected, which takes tA + tr. It takes 89ms for all our models (L = 1, 2, 3).
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Specialist 00

Specialist 000

Specialist 001

Specialist 01

Specialist 010

Specialist 011

Specialist 0

Specialist 10
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Specialist 101

Specialist 11

Specialist 110

Specialist 111

Specialist 1

Generalist

Fig. 6. Visualization of the learned hierarchy on the SUN-190 dataset. A three level
hierarchy is shown, with the 10 top images associated with each specialist.

5 Conclusion

We introduced a novel hierarchy of alternating specialists for tackling inter-class
similarity and intra-class variation in scene categories. The global feature pooling
strategy of the specialist model alternates at each level to account for both coarse
scene layout and transient objects, which are both essential for accurate scene
classification. For defining the area of expertise for each child model, we discover
confusing image clusters by performing clustering based on the learned features
of the parent model, thereby obtaining image clusters that are visually coherent
and confusing at the same time. Our method invokes only a small fraction of the
models in the whole tree for an input image. We experimentally show that our
method achieves significant improvement over baselines including existing tree-
structured models that use class-based grouping. Our algorithm is applicable to
a variety of CNN models and visual category recognition tasks.
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