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Abstract. This paper presents a novel algorithm to estimate the rela-
tive pose, i.e. the 3D rotation and translation of two cameras, from two
affine correspondences (ACs) considering any central camera model. The
solver is built on new epipolar constraints describing the relationship of
an AC and any central views. We also show that the pinhole case is a
specialization of the proposed approach. Benefiting from the low num-
ber of required correspondences, robust estimators like LO-RANSAC
need fewer samples, and thus terminate earlier than using the five-point
method. Tests on publicly available datasets containing pinhole, fisheye
and catadioptric camera images confirmed that the method often leads
to results superior to the state-of-the-art in terms of geometric accuracy.
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1 Introduction

Methods solving geometric computer vision problems using ACs typically use
three times fewer correspondences [2] compared to point–based counterparts.
This is also the case for this work, since with the proposed epipolar constraints,
a total of three linear equations are yielded per correspondence.

A Local Affine Frame (LAF) is a pair (x, M) of a point x ∈ R
2 and a 2D

affine transformation M ∈ R
2×2 which describes the local shape and orientation

of the region. Scale invariant features are often sufficient for establishing correct
Point Correspondences (PCs), which can then be used for solving computer
vision problems. However, there are cases when affine invariant feature/region
detectors are preferable [26]. LAFs can be obtained using affine invariant feature
extractors [12–14, 16, 28]. From a pair of corresponding LAFs, (x1, M1) and
(x2, M2), an AC (x1, x2, A) can be constructed, where (x1, x2) is a PC and
A = M2M

−1
1 is the affinity. In the planar case for perspective views (i.e. the

pinhole camera model is valid), A is the gradient of the underlying homography.
Mainstream methods using PCs to solve computer vision problems com-

pletely disregard the information in M. Hartley proposed the normalized eight–
point algorithm [8] for determining the epipolar geometry between pinhole views.
Nistér [17] developed a minimal, five–point solver for the relative pose problem.
Minimal methods, i.e. minimal in the number of samples used for estimation,
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Fig. 1. Illustration of cameras represented by projection functions pi and poses Ri, Ti,
i = 1, 2. Parametric surface S(u, v) has gradients Ji and the affinity A.

are useful when dealing with combinatorially intensive problems, often used with
robust methods [7, 10, 25] enabling the removal of numerous outliers.

Methods using ACs to estimate geometry, using the extra information in A,
are a new kind of “minimal” solvers typically trisecting the number of minimum
samples compared to PC–based counterparts. However, to solve computer vision
problems these methods consider only the strictly pinhole case [2, 9, 18, 20, 21]
ignoring real–world cameras with a distortion or wide Field–of–View (FoV).
These works rely on the fact that A and H are related and deduce their results
using components of H and known properties of the epipolar geometry. Based
on this relation, Köser and Koch [9] describes a method for camera resection
using a single AC. For the epipolar geometry estimation, Riggi et al . [22] and
Perdoch et al . [18] used ACs to generate additional PCs for a PC–based solver.
Bentolila et al . [2] demonstrated that three ACs are sufficient for fundamental
matrix estimation. Raposo and Barreto [21] presented a method for relative pose
estimation using two ACs, for pinhole views. They demonstrated its applicability
in rather controlled conditions. Baráth et al . [1] proposed a method to estimates
the focal length with the fundamental matrix for pinhole views using two ACs.

In contrast to the above mentioned works, few use ACs for geometric model
estimation between non-pinhole views [5, 15, 19]. Molnár and Eichhardt [15] gen-
eralized epipolar geometry using ACs. They proposed non-linear equations that
constrain the geometry without using the essential matrix. Since the essential
matrix is central to the relative pose estimation problem, the current work pro-
poses novel linear constraints on its elements, directly applicable to arbitrary
central cameras (including wide–FoV or omnidirectional). A new method for the
estimation of the relative pose is also presented.

Contribution. We present, to the best of our knowledge, the first algorithm
to solve the relative pose problem considering general camera models and using
two ACs. New epipolar geometric constraints are introduced for an AC between
general central cameras. The pinhole case [21] is a special case of the proposed
one. Our approach needs no prior image un-distortion to operate. Using only
two ACs for model estimation enables the faster operation of RANSAC and LO-
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RANSAC as they take fewer samples compared to the five-point method. The
method is validated on publicly available datasets consisting of pinhole, fisheye
and catadioptric (360◦ FoV) camera images. The results presented are often
superior to the state-of-the-art in terms of accuracy.

2 Mapping Between General Projective Views

Notations. 2D points are denoted as x. Vectors are written in bold lower–case
letters and matrices in bold capitals. Jacobians are denoted by the ∇ operator,
i.e. ∇f (x) =

[
∂1f . . . ∂nf

]
(x) ∈ R

m×n, where f is differentiable at x ∈ R
n.

Hereafter “chain rule” stands for the chain rule for differentiation.

Local Approximation of Projection. Consider a continuously differentiable
parametric surface S (z) ∈ R

3, z ∈ R
2 and some function pi : R

3 → R
2 (basically,

the camera model) projecting the 3D points of S onto the image plane:

xi
.
= pi (Ri S (z0) +Ti) (1)

for a point z0 of the parameter space of S, where Ri and Ti are the global
rotation and translation (the pose) of view i, respectively. Applying the chain
rule, the Jacobian of Eq. (1) is

Ji
.
= ∇z [xi] = ∇pi (Ri S(z0) +Ti) Ri ∇S(z0). (2)

Ji can be interpreted as a local relative affine transformation between infinitesi-
mal environments of the surface S at the point z1 and its projection at the point
xi. See Fig. 1 for an additional explanation.

The “Affinity”. Let f : R2 → R
2 be a mapping between the views as follows:

f (x1) = x2. (3)

Assume that for all z ∈ dom (S)

f (p1 (R1 S (z) +T1)) = p2 (R2 S (z) +T2) , (4)

with respective pi, i ∈ {1, 2} and poses as denoted before, thus f being com-
patible with the epipolar geometry of the two views. The Taylor expansion of
Eq. (4) around x1 is f (y) ≈ x2 + A (y − x1), where A is the Jacobian of f ,
an affinity, i.e. a mapping between the infinitesimal environments of x1 and x2.
The affinity can be expressed using Ji, i = 1, 2 and the chain rule:

A = J2J
−1
1 . (5)

In practice, Ji are related to LAFs (xi, Mi). The components of the affinity
Mi of a pair of corresponding LAFs are related to Jacobians Ji at xi by a mutual
transformation B: Mi = JiB. Thus A can be expressed using corresponding
LAFs: M2M

−1
1 = (J2B) (J1B)

−1
= J2BB−1J−1

1 = J2J
−1
1 = A.
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3 Epipolar Constraints Based on an AC

Now consider qi : R
2 → R

3, pi ◦qi = IdR2 , image-to-camera projection functions.
The well–known epipolar constraint can be formulated using the PC (x1, x2) as

q2 (x2)
T
E q1 (x1) = 0, (6)

where E = R [t]× is the essential matrix. Using the bijection f and substituting
f (x1) for x2, the following equation for x1 is obtained:

q2 (f (x1))
T
E q1 (x1) = 0. (7)

New Epipolar Constraints. Applying the gradient operator ∇x1
to both

sides and using the chain product rule results in the following two new epipolar
constraints that now use the AC (x1, x2, A):

AT (∇q2 (x2))
T
E q1 (x1) + (∇q1 (x1))

T
ETq2 (x2) = 0, (8)

since ∇x1
[q2 (f (x1))] = ∇q2 (x2)A.

Since x1 has two components, the gradient provides two extra equations (one
for each partial derivative) in addition to the epipolar constraint (6). This means
that three constraints are given for each correspondence reducing from 8 to 3
the number of samples required to estimate the elements of E.

4 Relative Pose Using Two ACs

The epipolar constraint (6) can also be written as

ṽẼ = 0, (9)

where

ṽ =
[
wxv

T, wyv
T, wzv

T
]
,

Ẽ =
[
e11, e12, e13, e21, e22, e23, e31, e32, e33

]T
.

The line vector ṽ is constructed from the components of v = q1 (x1) and w =

q2 (x2) =
[
wx, wy, wz

]T
. Ẽ is a vector containing the elements of E:

E =



e11 e12 e13
e21 e22 e23
e31 e32 e33


 .

The two rows of Eq. (8) can be formulated in a similar manner as follows:

Q̃Ẽ = 0, (10)
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where

Q̃ =
[
wxV, wyV, wzV

]
+AT

[
W1v

T, W2v
T, W3v

T
]
,

V = (∇q1 (x1))
T
,

W = (∇q2 (x2))
T
=

[
W1 W2 W3

]
.

Now let us construct a matrix B̃ ∈ R
3×9 whose first row is ṽT, while the

second and the third rows are the two rows of Q̃, respectively. The compound
system that describes the relation of the essential matrix to an AC is as follows:

B̃Ẽ = 0. (11)

The matrices B̃(j), j = 1, 2, 3, can be constructed using three different ACs.
The null–space of the compound system of these matrices is Ẽ, which provides
the elements of the essential matrix E up to a scale.

With more correspondences, an over–determined system can also be con-
structed. Its solution is the singular vector with the smallest singular value.

4.1 “2AC” Solver – Essential Matrix From Two Correspondences

The essential matrix E has 5 degrees of freedom since one of its singular values
is zero with its two non–zero ones being equal, which leads to the following cubic
constraints [6, 17] on E:

2EETE− tr
(
EET

)
E = 0. (12)

Also, since one of the singular values of E is zero

det (E) = 0. (13)

The five–point solvers for essential matrix estimation [11, 17] use the null–
space of a 5×9 matrix or the four singular vectors of an over–determined system,
corresponding to the least four singular values, take their linear combination with
coefficients x, y, z, 1 and substitute it into equations (12) and (13) which give a
polynomial system. The solutions of the polynomial system can then be back–
substituted into the linear combination. The essential matrix can be decomposed
into rotation and translation, after handling ambiguities [8, 11, 17].

Similarly to the five–point algorithm, one can construct a solution using
only two ACs, hence the name of the solver is “2AC”. The proposed solver
approximates the four–dimensional nullspace using SVD. That is, (11) yields
3 equations per correspondence, the resulting 6 × 9 coefficient matrix would
have a 3-dimensional nullspace. Instead, the four right singular vectors are used,
corresponding to the least four singular values of the SVD decomposition.
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4.2 Special Case: Pinhole Cameras

State of the art methods using LAFs to estimate epipolar geometry [2, 3, 21] rely
on perspective views (i.e. pinhole camera). Our approach handles any central
projection cameras (e.g . wide–FoV or panoramic ones) in a stereo configuration,
allowing for a wider range of applications.

The pinhole camera case is a special case of the proposed one. From the
relation of the homography and the affinity, Raposo and Barreto [21] derived
a matrix equation yielding three equations for the epipolar constraint using an
AC. Note that in this paper no existence of a homography was assumed between
the views, f can be any, more general, or higher–order mapping. This work and
their formulation shows that: (i) the first row in their work is the well–known
epipolar constraint for a point correspondence, Eq. (9); (ii) and the second and
third rows are equivalent to Eq. (10).

Let v =
[
x1 x2 1

]T
and w =

[
y1 y2 1

]T
, thus, ∇qi(xi) is also modified:

∇qi(xi) =

[
1 0 0
0 1 0

]
. (14)

Substituting v, w and ∇qi(xi) into equations (9) and (10) yields (15) and (16),
respectively. Together, they form the 22nd equation of [21].

[
x1y1 x1y2 x1 x2y1 x2y2 x2 y1 y2 1

]
Ẽ = 0, (15)

[
a1x1+y1 a3x1+y2 1 a1x2 a3x2 0 a1 a3 0
a2x1 a4x1 0 a2x2+y1 a4x2+y2 1 a2 a4 0

]
Ẽ = 0. (16)

5 Handling Noise in ACs

A PC can be considered a “0th–order”, an AC a “1st–order” information, which
is more sensitive to noise. This section discusses how to cope with noisy ACs.

Extracting LAFs. The VLFeat library [27] is capable of extracting covariant
features using different scale–space based detectors and the affine shape adap-
tation algorithm [12, 14]. It is also capable of extracting dominant gradient di-
rections from shape–adapted local frame of pixels. The number of iterations and
the patch size used in these steps are sufficient for obtaining a robust descriptor,
but the affine part of the resulting LAF is rather susceptible to noise. By tun-
ing these parameters, one can enhance the applicability of LAFs for AC–based
algorithms. Note that in the tests the default settings of VLFeat were used.

Photometric Refinement. After establishing correspondences, the affine part
(A) of ACs can be further refined [21] minimizing the photometric discrepancy
between the LAFs. The drawback of this approach is an extra time demand over
feature extraction, although it can be massively parallelized. Note that in the
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tests, photometric refinement was primarily applied in the semi–synthetic and,
partially, in the real–world evaluation. The rest of the real–world tests show that
using Locally Optimized RANSAC (Sec. 5.1) has additional benefits, e.g . it is
significantly less time–consuming, but still provides high accuracy.

5.1 Locally Optimized RANSAC

Sampling noisy ACs without photometric refinement, compared to PCs, might
yield fewer robust hypotheses during traditional RANSAC iterations. However,
there are two benefits of using ACs: (a) these hypotheses are still close to the true
model; (b) combinatorially, sampling two elements is much better compared to
samples of five elements:

(
N

2

)
≪

(
N

5

)
. These benefits have the potential to boost

LO-RANSAC [4, 10] approach, enabling rapid runtime, with significantly fewer
RANSAC-iterations and local optimization steps [10].

Hybrid LO-RANSAC. In this paper, a modified version of LO+ [10] was
applied as follows: First, (i) sample minimal two-sets of correspondences and use
the proposed solver “2AC” for generating hypotheses; then (ii) apply the local
optimization step to refine the support set of the most recently selected maximal
hypothesis. See real–world tests (Sec. 6.4) for details of the performance of this
LO-RANSAC approach.

6 Experimental results

Since the essential matrix estimation for the pinhole case [21] is a special case
of the proposed one, the evaluation will mainly focus on more general, central–
projection models, such as (i) cameras with fisheye lens; (ii) catadioptric cameras;
(iii) and other cameras with radial and tangential distortion.

Robustified versions of the five–point algorithm “5PT” [17] and variants of
the proposed approach are compared using two and five correspondences de-
noted as “2AC” and “5AC”. To obtain their robustified versions, MSAC [25]
was applied. The minimum and maximum number of iterations were set to 10
and 2048, respectively, and failure probability of the estimator was set to 10−5.

The angular error metric sin−1
(

q2(x2)
T
Eq1(x1)

‖Eq1(x1)‖

)
was used with the MSAC whose

threshold was normally set to 0.15➦ unless otherwise stated.

6.1 Synthetic Tests

In the synthetic tests 2AC and 5PT are compared. The synthetic scene consisted

of 5 oriented points uniformly sampled from the range
[
−1, 1

]3
, with surface

normals sampled on the unit sphere, viewed by two pinhole cameras having
radial distortion. The distance of the camera centers from the origin varied from
2 to 3 units, the distance between the cameras from 0.1 to 1.0 units. The optical

axes intersected in a point uniformly sampled from
[
−1, 1

]3
.
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rotation error in degrees normalized translation error

Fig. 2. Plots of sensitivity to noise in points (axis x ) and affine (axis y) components.

To obtain PCs, oriented points were projected to the camera images. The
affine parameters of ACs were calculated using the surface normals based on
Eq. (2). Two uncorrelated sources of Gaussian noise, σp and σa, were added
to the points in R

2 and the affine parameters in R
2×2, respectively. For each

level of noise σp and σa, the test was repeated 100 times building the synthetic
scene, using 2AC and 5PT, and averaging rotation and translation errors. The
results are shown on Fig. 2. For low levels of σa, 2AC always outperforms 5PT.
However, stronger noise in affine parameters deteriorates the results of 2AC.
5PT is of course not affected by σa. Note that noise added to 2D positions is
a realistic model of real–world conditions, while noise added to the affinity is a
less realistic one.

6.2 Stability Tests

In this section the numerical stability of the proposed solver is compared to
existing work and their behavior on different levels of synthetic noise is also
investigated. It is important to note that these stability tests are all performed
using a pinhole camera with no distortion since the solver of [21] is only designed
for the pinhole camera model. The setup for these tests are similar to the one
described in the previous section. The stability test shows the distribution of the
matrix error min (‖E−Egt‖ , ‖E+Egt‖) from 30000 samples. All results can be
seen in Fig. 3.

With no noise added, the pinhole camera based solver [21] shows a slightly
better stability than the 5-point solver of Nistér [17] and 2AC. The proposed
solver here performs worse since 2AC uses an approximate nullspace acquired
using SVD. All six linear equations are used that can be formed from two Affine
Correspondences, to estimate a four–dimensional nullspace instead of their true,
three–dimensional nullspace.

As the level of synthetic noise added to point coordinates increases, the 5-
point solver becomes the worst among the three. 2AC and the pinhole-based
method [21] show similar stability to the previous test. However, the solvers begin
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(a) Noise-free case.
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(b) Noise added to point coordinates.
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(c) Noise added to all components.

2AC

Raposo [21]

5PT

Fig. 3. Histograms of stability tests with (left) no noise; (center) noise in 2D coordi-
nates; and (right) noise in 2D coordinates and affinities. Horizontal axes are log. scales
of error exponents and vertical axes are their frequency.

to produce larger errors to the right of the “100” on the horizontal logarithmic
scale of the diagrams. These estimations failed. The largest number of failed
cases are produced by the method in [21].

Adding synthetic noise to both point coordinates and affinity components
results in the third diagram of Fig. 3. In this case solvers based on AC–s perform
worse compared to the 5-point solver. The second best is 2AC and [21] is third.

6.3 Semi–Synthetic Tests

The semi–synthetic tests were based on the Multi–FoV dataset [29], with ray–
traced views of scenes through perspective, fisheye and catadioptric [23] cameras.
The dataset provides two scenes with the cameras traversing them, obtaining
ground–truth poses, color images and depth maps. For the tests, the ground
truth 3D points were sampled from the depth maps of the scene “vfr”.

Similarly to the synthetic tests, PCs are established using the known spa-
tial points. The affine transformation part (A) of each AC was initially set
to the identity matrix, then refined using gradient–descent based photomet-
ric refinement on local areas of the color images, similarly as in the work of
Raposo and Barreto [21]. The refinement used the symmetric cost function
of summed squared differences between local patches of the color images. The
patches were 20×20 pixel size windows centered on the points of a PC. The ma-
trix A was refined maximizing photometric similarity. Outliers were uniformly
sampled from the image space prior to photometric refinement.

In these tests, the robustified versions of 5PT and 2AC were compared. Us-
ing both methods, essential matrices and the corresponding sets of inliers were
estimated. Essential matrices were then decomposed to relative rotation and
translation, to be further refined using bundle adjustment (BA) on the inlier
set. For different numbers of input inliers and outliers and levels of 2D noise,
the performance of the methods were evaluated based on (i) mean and root
mean square (RMS) errors of relative rotation and translation; (ii) runtime and
number of iterations; and (iii) precision and recall.
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Fig. 4. Rotation errors versus number of inliers and percentage of outliers for 2AC
(2nd row) and 5PT (3rd row). Frames (1st row) from the “vfr” scene [29]. Left to right:
perspective, fisheye, Catadioptric views. Errors are measured after bundle adjustment.
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Fig. 4 shows rotation errors for the pinhole, fisheye and catadioptric cameras,
comparing the effect of different levels of inliers and outliers in the sample set.
The plots indicate that 5PT is the most sensitive to decreasing number of inliers
and increasing number of outliers.

The effect of noise on 2D coordinates was also analyzed while adding more
outliers. The fisheye model was used on a dataset of 100 matches. The results
are presented in Fig. 5. The plots show the average precision, recall, number of
iterations, and runtime. 2AC has the highest precision and the smallest runtime
and number of iterations, but its recall decreases with increasing noise more
rapidly compared to 5PT. However, higher precision is usually of greater impor-
tance since BA for higher precision, i.e. higher rates of inliers result in better
pose estimation.

2
A
C

5
P
T

precision recall iterations runtime

Fig. 5. Results for various levels of noise and outliers: 2AC (top) and 5PT (bottom).

6.4 Real–world Tests

There are two parts of this real–world evaluation: (A) extracted correspondences
are further enhanced using simple photometric refinement (see Sec. 5), and in
(B) the features are used without refinement, but locally optimized RANSAC
(see Sec. 5.1) is used to provide high–quality results.

(A) With Photometric Refinement. In this section the proposed approach
is compared to the five–point algorithm using image pairs from the Strecha Dense
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MVS dataset [24]. The input features were extracted using an affine–invariant
version of the Difference of Gaussians (DoG) extractor [27] and photometrically
refined as in the semi–synthetic tests. As before, the estimated relative pose was
refined by performing BA on the inlier set obtained by the robust estimator.
Each test was repeated 100 times with the input features and matches unaltered.
Table 1 shows the evaluation of the methods 2AC, 3AC, 5AC and 5PT on the
Strecha Dense MVS dataset [24]. The table contains four columns for each scene
and for each method: rotation RMSE in degrees, translation RMSE normalized
to the ground truth, timing in seconds and number of RANSAC iterations.
Regarding rotation and translation errors, 5AC performs best while 2AC and
3AC perform worse than 5PT. As for the runtime and number of RANSAC
iterations, the estimators using two or three affine correspondences are the best,
and for two scenes out of three, 5AC has lower runtime and number of iterations
compared to 5PT. The Dense MVS dataset [24] contains scenes with rather

Table 1. Evaluation of relative motion estimation on the Dense MVS dataset [24].
Top rows: three scenes of, brackets containing images pairs and numbers of correspon-
dences extracted. Columns: solvers, (ρ) rotation and (τ) translation errors, (t) timing
in seconds and (n) number of iterations for each scene and for each method. Errors are
measured after bundle adjustment. Best results are highlighted.

castle (0001–0002) fountain (0004–0006) herzjesus (0005–0006)
# 7153 7530 1992

ρ τ t n ρ τ t n ρ τ t n

2AC 0.073◦ 0.0038 0.0143 10 0.038◦ 0.0020 0.0166 10 0.029◦ 0.0045 0.0180 15

3AC 0.056◦ 0.0031 0.0145 10 0.035◦ 0.0019 0.0195 10 0.000◦ 0.0020 0.0169 17
5AC 0.043

◦
0.0025 0.0244 15 0.025

◦
0.0015 0.0194 10 0.051

◦
0.0009 0.0266 23

5PT 0.052◦ 0.0032 0.0256 15 0.027◦ 0.0016 0.0202 10 0.080◦ 0.0015 0.0213 21

diverse geometry and texture. The extracted affine correspondences can be less
reliable compared to the ones in the semi–synthetic tests. In the real–world
tests, 3AC outperforms 2AC. We believe that adding more correspondences to
the otherwise minimal solver of 2AC, e.g . using 5AC, will increase the reliability
of estimations resulting in a better inlier set facilitating the BA of relative pose.

(B) Using Locally Optimized RANSAC. These tests, in contrast to above,
were performed without using photometric refinement. RANSAC (“RSC”) and
a modified version of “LO+” [10] performed robust estimation, using the five-
point solver “5PT” and the proposed one “2AC”. See Sec. 5.1 for more details on
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the proposed locally optimized approach. These different pairings are denoted
as follows: 2AC-RSC, 2AC-LO+, 5PT-RSC, 5PT-LO+, undistort+[21]. Images
of the test database are shown in Fig. 7. The images were taken by a Point Gray
Blackfly camera with YV2.8x2.8SA-2 wide-FoV lens attached.

Feature extraction was performed on the raw images, without un-distortion.
No photometric refinement was performed on ACs, they were directly fed to
the robust methods with the solvers “2AC” and “5PT”. “undistort+[21]” de-
notes [21], applied to undistorted ACs (see Eq. (13) in supp. material).

Fig. 6 shows the evaluation results on the first two images of Fig. 7. It is
clear that 2AC-LO+ outperforms all other variants in terms of speed (3 to 8
times better runtime), number of iterations (orders of magnitude fewer) and local
optimization steps. The inlier sets returned by 2AC and 5PT using LO+ are nigh-
identical, but larger than the RANSAC-only variants. The overall performance
of [21] is the worst. The supplementary contains further comparative evaluation
using several real-world cases and feature extractors.
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Fig. 6. Real-world (“Sarok” dataset) evaluation of RANSAC “RSC” and LO-RANSAC
“LO+” robust estimation using the proposed two-point “2AC” and the five-point
“5PT” solvers. “undistort+[21]” denotes [21] using RANSAC applied to undistorted
ACs (see d−1 in supplementary material). Diagrams compare (top) runtime and number
of iterations; and (bottom) number of LO-steps and number of inliers.
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Fig. 7. Image of a scene “Sarok” used for real-world evaluation taken by a Point Gray
Blackfly camera with YV2.8x2.8SA-2 wide-FoV lens attached.

7 Conclusion

In the paper a new method (2AC) was presented for relative pose estimation
based on novel epipolar constraints using Affine Correspondences. The mini-
mum number of correspondences needed for pose estimation is reduced to two.
The method is applicable to arbitrary central–projection models including cam-
eras [23] with wide fields of view (e.g . over 180➦ or omnidirectional). The pinhole–
camera based approach [21] was shown to be a specialization of the proposed one.
Stability tests showed that if the “affinity” is noisy, the pinhole based method [21]
is outperformed. Additionally, 2AC needs no prior image un-distortion. Tests in-
dicate that the five–point algorithm [17] is inferior in runtime and in the number
of iterations when using MSAC [25] and LO+ [10]. The quality of estimated pose
is also worse after bundle adjustment. The proposed LO-RANSAC approach uses
raw ACs to provide state-of-the-art quality in less time.

Based on the new epipolar constraints, other AC-based solvers can be con-
structed, e.g . to estimate additional camera parameters. With more constraints
given per correspondence, fewer samples are needed for model estimation, thus
robust estimation combined with such a solver will terminate earlier. The sup-
plementary material contains additional evaluation and other material, e.g . Ja-
cobians of projection functions.
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