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Abstract. We introduce Spatial Group Convolution (SGC) for acceler-
ating the computation of 3D dense prediction tasks. SGC is orthogonal
to group convolution, which works on spatial dimensions rather than
feature channel dimension. It divides input voxels into different groups,
then conducts 3D sparse convolution on these separated groups. As only
valid voxels are considered when performing convolution, computation
can be significantly reduced with a slight loss of accuracy. The proposed
operations are validated on semantic scene completion task, which aims
to predict a complete 3D volume with semantic labels from a single depth
image. With SGC, we further present an efficient 3D sparse convolutional
network, which harnesses a multiscale architecture and a coarse-to-fine
prediction strategy. Evaluations are conducted on the SUNCG dataset,
achieving state-of-the-art performance and fast speed.

Keywords: Spatial Group Convolution, Sparse Convolutional Network,
Efficient Neural Network, Semantic Scene Completion

1 Introduction

3D shape processing has attracted increased attention recently, because large
scale 3D datasets and deep learning based methods open new opportunities for
understanding and synthesizing 3D data, such as segmentation and shape com-
pletion. These 3D dense prediction tasks are quite useful for many applications.
For example, robots need semantic information to understand the world, while
knowing complete scene geometry can help them to grasp objects [43] and avoid
obstacles. However, it is not a trivial task to adopt 3D Convolutional Neural
Network (CNN) by just adding one dimension to 2D CNN. Dense 3D CNN
methods [45,30] face the problem of cubic growth of computational and memory
requirements with the increase of voxel resolution.

But meanwhile, we observe that 3D data has some attractive characteristics,
which inspire us to build efficient 3D CNN blocks. Firstly, intrinsic sparsity in
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3D data. Most of the voxels in a dense 3D grid are empty. Non-trivial voxels
usually exist near the boundaries of objects. This property has been explored
in several recent works [37,44,9,11]. Secondly, redundancy in 3D voxels. Dense
3D voxels are usually redundant, discarding a large portion of voxels (e.g. 70%)
randomly does not prevent humans from reasoning the overall semantic informa-
tion, as shown in Fig. 1. Thirdly, different subsets of original dense voxels contain
complementary information. It is hard to recognize objects with small size and
complex geometry when giving only partial voxels. These properties motivate us
to design computation-efficient 3D CNNs for dense prediction tasks. We adopt
Sparse Convolutional Network (SCN) [11]4 to exploit the intrinsic sparsity of 3D
data, which encodes sparse 3D data with Hash Table and presents sparse convo-
lution design. These designs can avoid unnecessary memory or computation cost
on empty voxels. However, the computation is still intensive when the resolution
is high or input is not so sparse. For example, the complexity of the baseline
SCN used in this paper is about 80 GFLOPs while only outputting 1/64 sized
predictions. Our work takes advantage of SCN and steps further by encouraging
higher sparsity in feature maps. We propose SGC to exploit the redundancy
of 3D voxels, which partitions features into different groups and makes voxels
sparser. Then we conduct sparse convolution on each group. Because only valid
voxels are considered in sparse convolution rather than all voxels in a regular
grid, and only partial voxels exist in each group after partition, the computation
of networks with SGC can be significantly reduced compared to previous SCN.
Besides, in order to utilize the complementary information of different groups,
results of different groups after certain SGC operations are gathered for further
processing.

Network acceleration methods in 2D CNN such as weight pruning, quanti-
zation, and Group Convolution (GC) design [20,50] can also be used, but these
methods have not been well explored in 3D CNNs for now. Different from these
methods, SGC speeds up 3D CNNs from another perspective by en-

couraging sparsity in feature maps. Though recently there are works [6,13]
exploiting sparsity in feature maps, they are not suitable for dense prediction
tasks because some voxels need to be predicted are deactivated in the network.
Our method is orthogonal to Group Convolution, which is an operation
widely used in recent CNN architectures [24,46,3]. SGC is defined on spatial
dimensions while GC is defined on channel dimension. Besides, because voxels
in different groups are similar, weights are shared between different groups in
SGC, which is not the case in GC.

We validate our method on semantic scene completion as test case to show
its effectiveness on 3D dense prediction tasks. This task not only aims to predict
semantic labels, but also needs to output complete structure which is different
from the input. We introduce a novel SCN architecture that is applicable to s-
cenarios where output has a different structure with input. Dense deconvolution
layer and Abstract Module are designed to generate voxels which are absent
in input and remove trivial voxels respectively. Multiscale encoder-decoder ar-

4 or called Submaniflod Sparse Convolutional Network in [11].
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ceil floor wall win. chair table tvs furn.

Fig. 1. A 3D scene image from the SUNCG dataset. Left is the ground truth image.
Right is a sampled image with only 30% voxels reserved. Giving only partial voxels
does not prevent humans in reasoning the overall semantic information, but it imposes
a challenge to recognize small objects such as chair’s leg. (Best viewed in color)

chitecture and coarse-to-fine prediction strategy are used for final predictions.
We evaluate our network on the SUNCG dataset [40] and achieve state-of-the-
art results. Our SGC operation can reduce about 3/4 of the computation while
losing only 0.7% and 1.2% in terms of Intersection over Union (IoU) for scene
completion and semantic scene completion compared to networks without SGC.

Our main contributions are as follows:

– We propose SGC by exploiting sparsity in features for 3D dense prediction
tasks, which can significantly reduce computation with slight loss of accuracy.

– We present a novel end-to-end sparse convolutional network design to gen-
erate unknown structures for 3D semantic scene completion.

– We achieve state-of-the-art results on the SUNCG dataset, reaching an IoU
of 84.5% for scene completion and 70.5% for semantic segmentation.

2 Related works

2.1 3D Deep Learning

The success of deep learning in 2D computer vision areas has inspired researchers
to employ CNN in 3D tasks, such as object recognition [45,30,32], shape com-
pletion [45,40,4], and segmentation [40,1]. However, the cubic growth in data
size impedes building wider and deeper networks because of memory and com-
putation restrictions. Recently, several works attempt to solve this problem by
utilizing the intrinsic sparsity of 3D data. FPNN [28] used learned field probes to
sample 3D data at a small set of positions, then fed features into fully connect-
ed layers. Graham et al. [9,11] proposed Hash Table based sparse convolutional
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networks and solved the “submanifold dilation” problem by forcing to keep the
same sparsity level throughout the network. OctNet [37] and O-CNN [44] used
Octree-based 3D CNN for 3D shape analysis. SBNet [35] performed convolu-
tion on blockwise decomposition of the structured sparsity patterns. Apart from
these methods based on volumetric representation, PointNet [31] is a seminal
work building deep neural networks directly on point clouds. PointNet++ [33]
and Kd-Networks [23] further employed hierarchical architectures to capture lo-
cal structures of point clouds.

Our main difference with these architectures is the introduction of SGC,
which encourages higher sparsity in features and makes networks more efficient.

2.2 Computation-efficient Networks

Most previous computation-efficient networks focus on reducing model size to
accelerate inference, such as pruning weight connections [25,14] and quantizing
weights [8]. Another line of works uses GC to reduce the computation, such as
MobileNet [20] and ShuffleNets [50]. GC separates features to different groups
along channel dimension and performs convolution on each group parallelly.
Besides, Graham [9] used smaller filters on different lattices to decrease the
computation.

However, there are seldom works designing computation-efficient network-
s by exploiting higher sparsity in feature maps for 3D dense prediction tasks.
Vote3deep [6] encouraged sparsity in feature maps using L1 regularization. ILA-
SCNN [13] used adaptive rectified linear unit to control the sparsity of features.
But these methods are not suitable for dense prediction tasks, because some
desired voxels are deactivated in the network and cannot be recovered. Besides,
Li et al. [26] also exploited sparsity and reduced the computation of 2D segmen-
tation task with cascaded networks, and only hard pixels are handled by deeper
sub-models.

Different with these methods, we create groups along the spatial dimensions
and make voxels in each group sparser. Computation of convolution can be
largely reduced because only partial valid voxels are used in each computation.

2.3 3D Semantic Segmentation and Shape Completion

3D semantic segmentation [48,2,29,34] and Shape Completion [45,7,4,15] are
both active areas in computer vision. 3D segmentation gives semantic labels to
observed voxels, while shape completion completes missing voxels. SSCNet [40]
combined these two tasks together and showed that segmentation and completion
can benefit from each other. In order to generate high resolution 3D structure,
various methods had been explored, such as long short-term memorized [15],
coarse-to-fine strategy [5], 3D generative adversarial network [47], and inverse
discrete cosine transform [22]. Recently, segmentation and completion are both
benefited from these advanced 3D deep learning methods described in section 2.1.
Different methods have been presented in the 3D segmentation challenge [49],
such as SCN, Pd-Network, densely connected PointNet, and Point CNN [27].
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For 3D completion tasks, advanced Octree-based CNN methods [36,41,17] were
also used for generating high resolution 3D outputs. Our network architecture
shares some similarities with [36,41], while the main difference is that we focus
on efficient model design in this paper.

3 Method

In this section, we firstly give a brief introduction to previous SCN architecture
[11], and then introduce SGC for computation-efficient 3D dense prediction tasks.
Thirdly, a novel sparse convolutional network architecture which can predict
unknown structures will be presented for semantic scene completion. Finally,
details about training and networks will be given.

3.1 Sparse Convolutional Network

Previous dense 3D convolution is neither computational nor memory efficient
because of the usage of dense 3D grid for representation. Another problem is
that traditional “dense” convolution has the “dilation” problem [11] which will
destroy the sparsity of 3D feature maps. For example, after a 3×3×3 convolution,
surrounding 26 voxels will be filled in. SCN addressed these problems by only
storing non-empty voxels in 3D feature maps using Hash Table. Only non-

empty voxels are considered in sparse convolutional network. Besides,
it forces to keep sparsity at the same level throughout the network

when performing convolution, which means the activation pattern of next layer
is the same as the previous layer. These designs can largely decrease computation
and memory requirements, enabling the usage of deeper 3D CNNs.

However, there is still intensive computation in 3D sparse CNN as mentioned
above. Thus reducing the computation of 3D sparse CNN is necessary for real-
time applications. Another problem of previous SCN is that it cannot be directly
used for scene completion task. Because completion needs to output a complete
structure which is different from the input, while previous SCN can only out-
put predictions with the same structure as input. We introduce a novel sparse
convolutional network to predict unknown structures.

3.2 Spatial Group Convolution

This section introduce SGC which can significantly reduce the computation of 3D
dense prediction tasks. Our design makes use of those three properties of 3D data
described in section 1 (see Fig. 2). We partition voxels uniformly into different
groups, then conduct 3D sparse convolution on each group. Weights are shared
among different groups because these groups are similar. Features of different
groups are gathered later in order to utilize the complementary information of
different groups.

In the implementation of SGC, we partition features along the spatial dimen-
sions and then stack different groups along the batch dimension. For one sparse
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Fig. 2. Illustration of SGC. Feature maps are partitioned uniformly into differen-
t groups along the spatial dimensions (only two groups are shown here). 3D CNNs
are conducted on different groups and give the final dense prediction for all voxels.
Weights are shared between different groups.

feature map whose size is B×D×H×W×C (batchsize×depth×height×width×
channel), after the partition operation, it becomes (G×B)×D ×H ×W ×C,
where G is the group number. Note that because we use Hash Table based rep-
resentation, only non-empty voxels are stored. So this operation does not require
extra memory. In each convolution computation, only part of original non-empty
voxels in its receptive filed participate in the calculation, and the number of valid
voxels in each group is about 1/G of the original non-empty voxels after par-

tition. The final computation cost is thus about 1/G =
N×

1

G
×k3

N×k3 of original
convolution when ignoring the bias computation, where N is the total number
of valid voxels, and k is the filter size. SGC can readily replace plain 3D sparse
convolution in existing CNNs.

Obviously, partition strategy plays an important role in SGC. Here we present
two different partition strategies:

– Random partition method. Voxels of feature maps are partitioned into dif-
ferent groups randomly and uniformly.

– Partition with a fixed pattern. Random partition expects convolutional filters
to be invariant to all possible patterns of activation, which may be hard for
CNN to learn. We propose to partition input voxels with a fixed regular
pattern for all input voxels throughout training and testing. For example,
we can partition voxels by the following formulation:

i = mod(ax+ by + cz,G) (1)

where i is the group index, (x, y, z) is the position of the voxel, G is the total
group number, mod is the modulus operation, (a, b, c) controls the distribu-
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Filpped TSDF

Convolution (3,1,16)

Max Pooling (2,2)

Resnet Module(3,1,64)

Convolution (2,2,64) 

Sparse Deconvolution (2,2,64) 

Dense Deconvolution (2,2,64)

Abstract Module

Add

Abstract Module

Abstract

256 256 128

64

32

16

8

4

2

Fig. 3. Network architecture for semantic scene completion. Taking flipped TSDF as
input, the network predicts occupancy and object labels in 1/4 size. The resolution

of each layer is marked nearby. Parameters of each layer are shown in the order of
(filter size, stride, output channel). Dense deconvolution layers can generate new voxels.
The abstract module can abstract non-trivial voxels to high resolution according to the
prediction in low resolution. (Best viewed in color)

tion of different groups. This strategy can also partition voxels uniformly but
in a fixed pattern manner. Different (a, b, c) and G give different patterns.

3.3 Sparse Convolutional Networks for Semantic Scene Completion

This section will present a novel SCN architecture for semantic scene completion.
Previous SCN [10] keeps the sparsity unchanged to avoid “submanifold dilation”
problem. The output of previous SCN has the same known structure as input.
This design restricts its application in shape completion, RGB-D fusion and etc.,
which aim to predict unknown structures. In order to generate unknown voxels
for semantic scene completion task, we have to break this restriction.

Here we use multiscale encoder-decoder architecutre [38]. As shown in Fig.
3, encoder modules are constituted of sparse convolutions described in section
3.1. While in decoder modules, we implement a “dense” deconvolution layer to
generate new voxels. More specifically, after a “dense” up-sampling deconvolu-
tion layer, each voxel in low resolution will generate 2 × 2 × 2 voxels in high
resolution. The sparsity changes rather than keeping the same as the layers in
encoder modules. New voxels can be generated in this process.
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Applying this module repeatedly in each scale can generate all missing struc-
tures but it will soon destroy the sparsity of 3D feature maps just as the “sub-
manifold dilation” problem. So we introduce Abstract Module similar to [36,41],
which abstracts a coarse structure and removes unnecessary voxels in low reso-
lution. Details will be refined in high resolution. The Abstract Module contains
a 1× 1× 1 convolution layer and a softmax layer, these layers give a prediction
in this scale and provide guiding information for abstracting. Only voxels with
non-empty labels and their surrounding voxels are abstracted. Abstracting these
surrounding empty voxels within a distance of k could provide fine details. k = 1
works well in our practice. We apply the abstract module in resolution higher
than 32 because removing voxels in early stages may hurt the performance. Since
our setting exploits resolution 64 for output, one Abastract module is enough.

Voxel-wise softmax loss is used in the two scales which give a prediction:

Li =
1

∑

wj

∑

j

wjLsm(pj , yj), (2)

where i ∈ {0, 1} means resolution scale as shown in Fig. 3, Lsm is softmax loss,
yj is ground truth label of voxel j, pj is the predicted possibility, and wj ∈

{

0, 1
}

is the weight of this voxel. The final loss is a summation of all losses as follows:

L =
∑

i

αiLi, (3)

where αi is the weight for each scale. We found αi = 1 works well.

3.4 Implementation Details

Dataset. We train and evaluate our network on the SUNCG dataset, which is
a manually created large-scale synthetic scene dataset [40]. It contains 139368
valid pairs of depth map and complete labels for training, and 470 pairs for
testing. Depth maps are converted to volumes with a size of 240 × 144 × 240.
The ground truth labels are 12-class volumes with 1/4 size of input volume.
Network Details. The detailed network architecture is illustrated in Fig. 3. For
volumetric data encoding, we use flipped Truncated Signed Distance Function
(fTSDF), which can enhance performance because it eliminates strong gradients
in empty space [40]. The input size of our network is 2563, and we put the
original fTSDF volume in the middle of input volume. The input volume is down-
sampled twice using Max-pooling layer. Then a U-Net architecture follows, which
contains six resolution scales, from 643 to 23. Features from encoding stages
and decoding stages are summed, and zeros are filled at missing locations. The
network uses pre-activation Resnet block in encoding and decoding modules
[18,19], and each block has two 3× 3× 3 convolutions. Down-sampling and up-
sampling are implemented by convolution layers with stride 2 and kernel size 2.
SGC is used in resolution scales not less than 323, which account for most of the
computation. Partition operation is performed again once the resolution scale
changes, which can help information flow across each other group.
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The weight of each voxel is computed by randomly sampling empty and non-
empty voxels at a ratio of 1 : 2 [40]. All non-empty voxels are positive examples.
For negative examples, we mainly consider empty voxels around the surface
as hard examples, which can be determined by the TSDF value of GT labels
(|TSDF | < 1). The ratio of hard negative and easy negative examples is 9:1.
Training Policy. Networks are trained using stochastic gradient descent with
a momentum of 0.9. The initial learning rate is 0.1, and L2 weight decay is 1e-4.
We train our network for 10 epochs with a batch size of 4, and decay learning
rate by a factor of exp(−0.5) in each epoch. In order to reduce training time,
we randomly select 40000 samples in each epoch, and the total training time is
about 5 days with a GTX TitanX GPU and two Intel E5-2650 CPUs.

4 Evaluation

In this section, we evaluate our network on the standard SUNCG test dataset.
Both semantic scene completion results and scene completion results are given.
Voxel-level IoU evaluation metric is used. Semantic scene completion results are
evaluated on both observed and unobserved voxels, and completion results are e-
valuated on unobserved voxels. Table 1 and Table 2 show the quantitative results
of our network without or with SGC. Fig. 4 shows the qualitative comparison
with previous work. We also give results on real-word noisy NYU dataset [39].

4.1 Comparision to SSCNet

Table 1 shows the result of our baseline network without SGC (group number is
1). We outperform the previous SSCNet by a significant margin, having an im-
provement of 24.1% in semantic scene completion and 11.0% in scene completion,
and achieving state-of-the-art results. Our network exceeds SSCNet in almost all
classes, especially in small and hard categories such as chair, tvs and objects. We
attribute this improvement to the novel SCN architecture that enables the usage
of several advanced deep learning techniques such as deeper networks (15-layer
vs 57-layer), multiscale network architecture (3 resolution scales vs 8 resolution
scales), batch normalization layer [21] and stacked Resnet style blocks. Fig. 4
shows the visualization results of semantic scene completion from a single depth
image. Obviously our baseline network produces visually better results compared
to SSCNet, especially around the object boundaries.

4.2 Spatial Group Convolution Evaluation

This section describes the results of networks with SGC (see Table 2). We con-
duct experiments on 2,3,4,6 groups with different partition strategies. The effi-
ciency is evaluated with FLOPs, i.e., the number of floating-point multiplication-
adds of the whole network. As shown in Table 2, SGC can reduce about (G−1)/G
of the whole computation. Experiments show that 3D sparse CNNs can be
sparsity-invariant to some extent, because accuracy only drops about 0.5% when
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ceil floor wall win. chair table tvs furn.bed sofa obj.

Visible Surface SSCNet Ours Ground Truth

Fig. 4. Qualitative results of our network and SSCNet. We achieve obviously much
better results, such as predictions around object boundaries.
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Table 1. Quantitative results of our network and SSCNet on the SUNCG dataset.
Scene completion IoU is measured on unobserved voxels, and all non-empty classes are
treated as one category. Semantic scene completion IoU is measured on both observed
and unobserved voxels. Overall, our method outperforms SSCNet by a large margin.
Better results of each category are bold.

scene completion semantic scene completion

Method prec. recall IoU ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.

SSCNet [40] 76.3 95.2 73.5 96.3 84.9 56.8 28.2 21.3 56.0 52.7 33.7 10.9 44.3 25.4 46.4

Our 92.6 90.4 84.5 96.6 83.7 74.9 59.0 55.1 83.3 78.0 61.5 47.4 73.5 62.9 70.5

Table 2. Quantitative IoU (%) results of networks using SGC with random partition
strategy or fixed pattern partition strategy. Both accuracy and FLOPs are given. For
fixed pattern partition method, flexible parameters (a,b,c) are also given and we select
the best results in our experiments. Best trade-off is bolded.

Group No. Method scene completion semantic scene completion FLOPs/G

1(Baseline) 84.5 70.5 79

Random 83.9 69.9 42
2

Pattern(1,1,1) 84.0 69.6 39

Random 82.6 67.6 29
3

Pattern(1,1,1) 84.0 69.6 27

Random 83.1 67.6 23
4

Pattern(1,2,3) 83.8 69.3 22

Random 82.3 66.6 17
6

Pattern(1,2,1) 82.6 66.9 16

dividing voxels into two groups even randomly, while only about 50% voxels p-
reserved in this case. Increasing group number will reduce more computation at
the cost of a little drop of performance. Compared to random partition method,
fixed pattern partition strategy can give better performance yet requires less
computation. For example, 1.7% IoU enhancement for semantic completion can
be achieved using fixed pattern partition method when dividing voxels into four
groups. Overall, SGC can significantly reduce the computation while maintain-
ing accuracy, achieving a drop of only 0.7% and 1.2% in terms of IoU for scene
completion and semantic completion task while using only 27.8% computation.

Table 3 shows the detailed semantic scene completion results of different cat-
egories using SGC. The accuracies of best and worst three categories compared
to baseline network are marked in the table. It can be found that the IoUs of cat-
egories with small physical sizes such as chair, furniture, and objects drop more
than categories with large size such as ceiling and floor. This may be caused by
the fact that those small objects have fewer voxels. Dividing these voxels into
different groups may lose important geometric information and makes it harder
to distinguish these objects (see chair’s leg in Fig. 1). While large objects have
surplus voxels, sparser voxels can still keep a rough structure. So, a possible fu-
ture work to increase the accuracy of semantic scene completion is to adaptively
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Table 3. Influence of SGC on each category. The numbers in third to sixth row mean
IoU (%) drop when using SGC. The best or worst three are underlined or bolded.

Group No. Method ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.

Baseline 96.6 83.7 74.9 58.9 55.1 83.3 78.0 61.5 47.4 73.5 62.9 70.5

random 0.4 -0.6 -2.0 -2.9 -4.4 -3.0 -3.2 -4.1 -3.5 -4.4 -4.7 -2.9
4

pattern 0.2 -0.3 -0.8 0.7 -3.7 -1.7 -1.5 -3.1 1.1 -1.9 -2.1 -1.2

random 0.1 -0.7 -3.7 -2.8 -5.7 -2.9 -3.5 -5.6 -5.4 -6.8 -6.0 -3.9
6

pattern 0.2 -0.4 -2.3 -3.8 -5.5 -1.8 -3.7 -6.9 -4.0 -5.5 -5.8 -3.6

Table 4. Scene completion (IoU %) and semantic scene completion results (IoU %) on
NYU dataset.

scene completion semantic scene completion

Method prec. recall IoU ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.

SSCNet 57.0 94.5 55.1 15.1 94.7 24.4 0 12.6 32.1 35 13 7.8 27.1 10.1 24.7

Ours 71.9 71.9 56.2 17.5 75.4 25.8 6.7 15.3 53.8 42.4 11.2 0 33.4 11.8 26.7

handle large easy objects and small hard objects, sampling small objects with
high density while sampling large objects with relatively low density.

We also tried sparsity invariant convolution [42] in random partition method,
which normalizes convolution by a factor of valid voxels number, but it does not
work in our task.

4.3 Evaluation on NYU dataset

NYU [39] contains 1449 depth maps captured by Kinect. Following SSCNet [40],
we use Guo et al.’s algorithm [12] to generate ground truth annotations for se-
mantic scene completion task. The object categories are mapped based on Handa
et al. [16]. We trained the network described above from scrath on NYU dataset.
The base of exponential learning rate decay is 0.12 and we trained it for 40 e-
pochs using the whole dataset. Other hyperparameters are same as experiments
on SUNCG. Table 4 shows that our network achieves an improvement of 2.0% in
semantic scene completion and 1.1% in scene completion compared to SSCNet.
Table 5 gives detail results on NYU dataset. It shows that SGC operation is
still effective on real data. The fixed pattern partition method gives comparable
or even better results than baseline network, and it is consistently better than
the random partition method. Note that there exists a gap between the improve-
ments on SUNCG and NYU. We attribute this gap to the fact that misalignment
and incomplete annotations are common in the generated labels [12]. This may
both mislead the training and evaluation procedures, and it may be unfavorable
for our network considering the sparisty geometry representation.
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Table 5. Results (IoU%) of networks with SGC using different partition strategies on
NYU dataset. (SSC stands for semantic scene completion)

Group No. 1 2 3 4

Method baseline random pattern random pattern random pattern

SSC 26.4 24.1 26.5 23 26.7 22.6 25.9

Completion 55.7 53 54.8 52.2 56.2 52.6 55.1

Baseline Group2 Group4 Group6

Fig. 5. Histograms of learned weight values of SCN and SGC with different groups.
The first row shows the statistics of the first convolution layer, and the second row
shows that of the last convolution layer. Filters of SGC have “sharper” histograms.

5 Discussion

5.1 What does Spatial Group Convolution learn?

In Fig. 5, we visualize the histograms of learned weight values of networks with-
out or with SGC using random partition method. It can be observed that filters
of SGC have “sharper” histograms while normal SCN filters have relative “flat”
histograms, which means the values of SGC filters are pretty close. The his-
tograms become “sharper” with the increase of group number. This may be
caused by that filters of SGC need to be invariant to different sparsity pattern-
s, so the values of filters at different locations had better be close to adapt to
different sparsity patterns.

As for SGC with fixed pattern partition, we find it learned an irregular con-
volutional kernel. In Fig. 6a, we show a simple case in a 2D convolution which
divides voxels into two groups. The valid convolutional kernel shape is always
“X” because the sparsity pattern keeps the same when sliding the convolutional
kernel. Fig. 6b shows the valid convolutional filter shapes used in Table 2.

5.2 Information flow among different groups

The SGC operation partitions voxels into different groups. During convolution,
different groups are independent and have no information flow across each other.
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Group2 Group3 Group4 Group6

(a) (b)

Fig. 6. Illustration of SGC with fixed pattern partition. (a) shows that for a 3 × 3
kernel, an “X” shape filter is learned when partitioning voxels into two groups. (b)
shows the learned 3× 3× 3 filters in Table 2. Filters are drawn by slice.

However, after SGC, the voxels are gathered and fed into down-sampling con-
volution or up-sampling deconvolution layers, in which information of different
groups can communicate. Besides, we also explored more complicated methods
to help information exchange among different groups. For example, Shuffled S-
GC, which is inspired by ShuffleNet [50]. ShuffleNet uses channel shuffle to help
information flow across feature channels, while we shuffle the features across
spatial dimensions which is implemented by using different partition patterns
in the two convolution layers of Resnet block. But no obvious improvement is
observed in our case.

6 Conclusions

The paper presents an efficient semantic scene completion network with Spatial
Group Convolution. SGC partitions feature maps into different groups along the
spatial dimensions and can significantly reduce the computation with slight loss
of accuracy. Besides, we propose a novel end-to-end sparse convolutional network
architecture for 3D semantic scene completion and set a new accurancy record
on the SUNCG dataset.
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