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Abstract. Reflections often obstruct the desired scene when taking photos through

glass panels. Removing unwanted reflection automatically from the photos is

highly desirable. Traditional methods often impose certain priors or assumptions

to target particular type(s) of reflection such as shifted double reflection, thus have

difficulty to generalize to other types. Very recently a deep learning approach has

been proposed. It learns a deep neural network that directly maps a reflection

contaminated image to a background (target) image (i.e. reflection free image)

in an end to end fashion, and outperforms the previous methods. We argue that,

to remove reflection truly well, we should estimate the reflection and utilize it

to estimate the background image. We propose a cascade deep neural network,

which estimates both the background image and the reflection. This significantly

improves reflection removal. In the cascade deep network, we use the estimated

background image to estimate the reflection, and then use the estimated reflec-

tion to estimate the background image, facilitating our idea of seeing deeply and

bidirectionally.

1 Introduction

When taking photos through windows or vitrines, reflections of the scene on the same

side of the camera, often obstruct the desired scene and ruin the photos. The reflections,

however, are often unavoidable due to the limitations on time and/or space. There are

practical demands for image reflection removal.

To deal with the image reflection, we first assume that, without the obstruction from

the reflection, we can take a clear image, B ∈ R
m×n, and then model the reflection

contaminated image I ∈ R
m×n as a linear combination of B and a reflection layer

(called reflection) R ∈ R
m×n [1]:

I = α ∗B+ (1− α) ∗ (K⊗R), (1)

where the real scale weight α ∈ (0.5, 1) is usually assumed as a homogeneous constant

[1–3], ⊗ is a convolution operator and K usually represents a Gaussian blurring kernel

corresponding a defocus effect on the reflection. Note that K can also be a delta function

(i.e. no blur on R) to represent the case where B and R are both in-focus.

∗ equal contribution
† This work was supported by Australian Research Council grants DP140102270 and

DP160100703



2 Jie Yang, Dong Gong, Lingqiao Liu, Qingfeng Shi

(a) I (b) B (c) I (d) B

Fig. 1. An example of single image reflection removal. (a) and (c) are images taken in front

of a glass display case, which is degenerated by the reflection. (b) and (d) are the recovered

background images of the proposed reflection removal method.

Given an image I contaminated by reflection R, reflection removal aims to recover

the clear background image B. This is challenging since it is highly ill-posed [4]. Some

methods thus require multiple images with variations in reflection and/or background as

input [1, 5–8] or user assistance to label the potential area of reflection and background

[4] to reduce the issue. Multiple images and reliable user guidance are often not easy to

acquire, however. To make reflection removal practical, single image reflection removal

has received increasing attentions [3, 9, 10].

Solving for B from a single observation I usually requires some priors or assump-

tions to distinguish reflection and background. For example, the ghosting cue [9] is used

to identify a special pattern of the shifted double reflection layers from two reflection

surfaces. Priors on image gradients are often used to capture the different properties of

the different layers [3, 11]. These methods assume the reflection K⊗R is highly blurry

due to out-of-focus. Relying on this, recently, a deep learning based method [10] has

been proposed to achieve end-to-end single image reflection removal, which utilizes

strong edges to identify the background scene, and is trained on the images synthesized

with highly blurry reflection layers.

These methods have achieved state-of-the-art performance on many testing exam-

ples. However, they also exhibit some limitations in practices such as oversmoothing the

image, can not handle the case when the reflections do not have strong blurry or have

similar brightness and structure with the background. In this paper, considering the suc-

cess of the deep learning on image restoration [12–15], we propose to tackle the single

image reflection removal by using a cascade deep neural network. Instead of training a

network to estimate B alone from I, we show that estimating not only B, but also the

reflection R (a seemingly unnecessary step), can significantly improve the quality of

reflection removal. Since our network is trained to reconstruct the scenes on both sides

of the reflection surface (e.g. glass pane), and in the cascade we use B to estimate R,

and use R to estimate B, we call our network bidirectional network (BDN).

2 Related Work

Methods relying on conventional priors Single image reflection removal is a very

ill-posed problem. Previous methods rely on certain priors or additional information to

handle specific kinds of scenarios.
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In some cases, the objects in background layer and reflection layer are approxi-

mately in the same focal plane. Some methods exploited gradient sparsity priors to

decompose background and reflection with minimal gradients and local features such

as edges and corners [16, 17].

In other cases, when taking pictures of objects in the background, the objects re-

flected from the other side are out of focus due to the different distances to the camera,

which leads to the different levels of blur in background and reflection. Li and Brown

[3] exploited the relative smoothness and proposed a probabilistic model to regularize

the gradients of the two layers. In addition to ℓ0 gradient sparsity prior, Arvanitopoulos

et al. [11] proposed to impose a Laplacian data fidelity term to preserve the fine details

of the original image. Wan [18] used a multi-scale Depth of Filed map to guide edge

classification and used the method in [4] for layer reconstruction afterward.

To distinguish the reflection layer from the background layer, Shih et al. [9] studied

ghosting cues, which is a specific phenomenon when the glass has a certain thickness

and employed a patch-based GMM prior to model the natural image for reflection re-

moval.

Deep learning based methods Some recent works start to employ learning based

methods in reflection removal problems.

Fan et al. [10] proposed a deep learning based methods to recover background from

the image contaminated by reflections. Similar to [3], it also relies on the assumption

that the reflection layer is more blurry due to out of focus and they further argue that in

some real-world cases, the bright lights contributes a lot to the generation of reflections.

They proposed a data generation model to mimic such properties by performing addi-

tional operations on the reflection part. They proposed a two-stage framework to first

predict an intrinsic edge map to guide the recovery of the background.

Zhang et al. [19] used a deep neural network with a combination of perceptual loss,

adversarial loss and an exclusion loss to exploit low-level and high-level image informa-

tion. Wan et al. [20] proposed to combine gradient inference and image reconstruction

in one unified framework. They also employed perceptual loss to measure the difference

between estimation and ground-truth in feature space.

Other related methods Many previous works use multiple observation images as ad-

ditional information for the recovery of background images. Some use pairs of images

in different conditions, such as flash/non-flash [21], different focus [22]. Some use im-

ages from different viewpoints, such as video frames [2, 7, 23, 24, 5, 6, 1, 25], through

a polarizer at multiple orientations [26, 7, 27], etc . But in many real scenarios, we do

not have the required multi-frame images for reflection removal. Some work requires

manual labelling of edges belonging to reflections to distinguish between reflection and

background [4], which is also not suitable for general applications.

3 Proposed method

Focusing on reflection removal, we seek to learn a neural network which is able to

recover a reflection-free image from an observation containing reflection obstruction.

Specifically, our final goal is to learn a mapping function F(·) to predict the background

image B̂ = F(I) from an observed image I. Instead of training only on the image
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Fig. 2. Overview of our proposed BDN network architecture and the training objectives. Compo-

nent C stands for tensor concatenation.

pairs (I,B)’s, we impose the ground truth reflection layers R’s to boost the training of

F(·) by training on a set of triplets {(It,Bt,Rt)}
N

t=1. Note that Rt’s are only used in

training, not in testing.

3.1 Bidirectional Estimation Model

To directly estimate B from a given I in an end-to-end manner, the straightforward idea

is to let F(·) be a neural network taking I as input and generating B as output. Our

method also includes such a mapping function, and we call it vanilla generator G0(·).
However, our solution further introduces two mapping networks H(·) and G1(·) to esti-

mate the reflection image and refine the background image estimation. In the following

parts, we call a composition of H and G1 as the bidirectional unit since together they

provide estimates for both reflection and background images based on the output of the

vanilla generator. The overall structure of the proposed network is shown in Fig. 3.

Vanilla generator The vanilla generator takes the observation I as the input and gen-

erates a background image B0, i.e. B0 = G0(I), which is the input to the following

bidirectional unit.

Bidirectional unit As shown in Fig. 3, the bidirectional unit consists of two compo-

nents, one for predicting the reflection image and the other for predicting the back-

ground image. The first component H(·) in the bidirectional estimates the reflection

image R from the observation I and the background estimation B0 from G0, i.e. R =
H(B0, I). After that, another background estimator G1(·) refines the background esti-

mation by utilizing information from the estimation of R and the original observation

I. Thus, the final estimation of background image is calculated by

B̂ = G1(H(B0, I), I). (2)

The motivation of using the above bidirectional estimation model is the mutual

dependency of the estimation of reflection images and background images. Intuitively,

if a good estimation of the reflection image is provided, it will be easier to estimate the

background image, vice versa. Also, including the objective of recovering the reflection

image provides additional supervision signals to train the network.
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Fig. 3. The network structure of G0, H and G1. C stands for tensor concatenation.

Bidirectional prediction model Based on the above definition of G0(·), H(·) and

G1(·), we can formulate the whole bidirectional prediction model as:

B̂ = G1(H(G0(I), I), I), (3)

which only takes the observation I as input. The model shown in Eq. (3) approaches

the mapping function F(·) from the observation I to the background image B via a

composition of G0(·), H(·) and G1(·).

3.2 Network Structure for G0(·), H(·) and G1(·)

The proposed BDN mainly consists of three subnetworks G0(·), H(·) and G1(·). We

employ a variation of U-net [28, 29] to implement G0(·), H(·) and G1(·). All the three

modules share the same network structure (except for the first convolutional layer) but

not the same parameters. G0(·) has 14 layers, while H(·) and G1(·) has 10 layer. The

structure of the network structure is illustrated in Fig. 3.

The U-net employed here contains an encoder part and a decoder part. For the en-

coder network, all convolution layers are followed by BatchNorm layer [30] and leaky

ReLU with slope 0.2, except for the first convolution, which does not have Batch-Norm.

For the decoder network, each transposed convolution with stride 2 is used to upsample

the feature maps by a factor of 2. The output channel is followed by a Tanh function.

All convolutions are followed by a BachNorm layer and a leaky ReLU activation. The

kernel size of the filters in all the convolution and transposed convolution layers is fixed

to 4 × 4. The skip connections concatenate each channel from layer i to layer n − i

where n is the number of layers. The skip connections combine the information from

different layers, specifically allowing low-level information to be shared between input

and output. The use of skip connections doubles the number of input channels in the

decoder network. The inputs of H(·) and G1(·) are two images. We simply concatenate

those two images to make the input have 6 channels rather than 3 color channels.

4 Network Training

4.1 Training Objective

The goal of our network is to learn a mapping function from I to B given training

samples {(It,Bt,Rt)}
N

t=1.
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Our model consists of three mapping operations: G0 : I → B, H : (I,B) →
R and G1 : (I,R) → B. Each of the above mapping operations leads to a loss for

comparing the compatibility of the estimation and the ground-truth results. In this work,

we consider to minimizer the difference between the estimate and the ground truth

relying on the ℓ2-loss and the adversarial loss.

(1) ℓ2-loss

ℓ2-loss is widely used to measure the Euclidean distance between the estimated im-

age and the ground-truth image. Minimizing the ℓ2-loss favors the small mean-squared-

error (MSE). Since we have three estimations from the three subnetworks in our net-

work, three respective loss terms are defined and the summation of the three loss term

will be used to train the network:

L2 = L0

B
+ L

R
+ L1

B
, (4)

where

L0

B
=

N∑

t=1

||G0(It)−Bt||2, (5)

L
R
=

N∑

t=1

||H(It,B)−Rt||2, (6)

L1

B
=

N∑

t=1

||G1(It,R)−Bt||2. (7)

In (6) and (7), the B and R can be the ground truth Bt or Rt or the estimates from

previous blocks, which depends on the settings in training (See Section 4.2).

(2) Adversarial loss

ℓ2-loss only calculates the pixel-wise difference between two images, which may

not reflect the perceptual difference between two images. Recently, there are an in-

creasing number of works [29, 31, 12, 32, 33] applying the adversarial loss [34] to pro-

vide additional supervision for training an image mapping network. The adversarial

loss was originally proposed in Generative adversarial networks [34]. The idea is to it-

eratively train a discriminator to differentiate the ground-truth images from the images

generated by a generator at the certain stage of training. Then the objective becomes to

encourage the generator to generate images that can confuse the current discriminator.

When applying such an adversarial loss to image processing (mapping), we treat the

mapping function that maps the observations to the desired output as the generator. The

discriminator in the adversarial loss implicitly leans a distribution of the natural im-

ages, as an image prior. By applying adversarial loss, the implicit image prior performs

as guidance for recovering the images following the natural image distribution. To sim-

plify the training process, we only apply this adversarial loss to the last estimation of

the background image, namely, the output of G1. Formally, the generation function is

defined as F(I) = G1(H(B0, I) and a discriminator D is trained by optimizing the

following objective:

LD =

N∑

t=1

logD(Bt) +

N∑

t=1

log(1−D(F(It))), (8)
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and the adversarial loss is defined as

Ladv =

N∑

t=1

− logD(F(It)) (9)

Full objective Finally, we sum the ℓ2 loss and adversarial loss as the final objective:

L = L2 + λLadv, (10)

where λ is the hyper-parameter that controls the relative importance of the two objec-

tives.

4.2 Training Strategies

Our proposed network has three cascaded modules, the vanilla generator, the reflec-

tion estimator and the refined background estimator. These components can be trained

independently or jointly. In our work, we explored three ways to conduct training:

– The most straightforward way is to train the whole network end-to-end from scratch.

– Each module can also be trained independently. Specifically, we can progressively

train each component until converged and then stack its output to the next compo-

nent as the input. We call this training strategy as greedy training.

– We can also first train each sub-network progressively and then fine-tune the whole

network, which is referred as “greedy training + fine-tuning”.

In Section 5.1, we will present the comparison and analysis of these training strate-

gies.

4.3 Implementation

Training data generation We use the model in Eq. (1) to simulate the images with

reflections. To synthesize one image, we sample two natural images from the dataset and

randomly crop the images into 256 × 256 patches. One patch is served as background

B and the other is used as reflection R. A Gaussian blur kernel of standard deviation

σ ∈ [0, 2] is applied on the reflection patch to simulate the defocus blur may appear

on the reflection layer in reality. The two patches are blended using scale weight α ∈
[0.6, 0.8]. The generated dataset contains triplets of {(It,Bt,Rt)}

N

t=1.

We use images from PASCAL VOC dataset [35] to generate our synthetic data. The

dataset contains natural images in a variety of scenes, and it is suitable to represent the

scenes where the reflection is likely to occur. We generate 50K training images from

the training set of PASCAL VOC dataset, which contains 5717 images.

To compare with [10], which is the only available learning based method as far as we

know, we also use the method introduced by [10] to generate another training dataset.

It subtracts an adaptively computed value followed by clipping to avoid the brightness

overflow when mixing two images. We use the same setting as [10] in data synthesis.

The images are also from PASCAL VOC dataset and are cropped at 224 × 224. The

training data is generated from 7643 images, and test set is generated from 850 images.
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We trained our network and [10] using both our training data and training data generated

by the method of [10].

Training details We implement our model using PyTorch and train the models using

Adam optimizer [36] using the default parameters β1 = 0.9, β2 = 0.999, and the initial

learning rate is set to be 0.001. Weights are initialized using the method in [37]. The

code is available at https://github.com/yangj1e/bdn-refremv.

5 Experiments

In this section, we first present comparisons of ablations of our methods to illustrate

the significance of our design decisions. Then we quantitatively and qualitatively eval-

uate our approach on single image reflection removal against previous methods [3, 11,

10] and demonstrate state-of-the-art performance. For numerical analysis, we employed

peak-signal-to-noise-ratio (PSNR) and structural similarity index (SSIM) [38] as eval-

uation metrics.

5.1 Ablation Studies for the Bidirectional Network

Testing data For ablation studies, we use a dataset synthesized from PASCAL VOC

[35] validation set, which does not contain any images appeared in the training set. We

generate 400 images for testing in ablation studies. The setting of testing data generation

is the same as the setting in Sec. 4.3 for training data generation.

To analyze the performance of reflection removal with respect to the scale weight

of the background, which reflects relative strength between background and reflection,

we generate another smaller dataset. We increment the scale weight from 0.55 to 0.85,

with a step size of 0.05 and generate 10 images for each scale weight.

Analysis of the model structure To verify the importance of our bidirectional unit, we

compare three model structures: vanilla generator G0, vanilla generator G0 + reflection

estimator H, and the full bidirectional network (i.e. the composition of G0, H and G1,

which is referred as G0 + H + G1 in the following).

All networks are trained from scratch using the settings specified in Sec. 4.3. Since

adding the bidirectional unit to vanilla generator will increase the depth of the net-

work and the number of parameters, we cascade three blocks of the vanilla generator

to match the depth and number of parameters of our full model. Table 1 shows that

merely training a vanilla generator is not good enough to recover reflection free im-

ages. Increasing the number of layers of the vanilla generator (see Vanilla G0 (deep) in

Table 1) to enhance the capacity of the model can slightly improve the performance,

but it still underperforms our full model. Appending a reflection estimator to vanilla

generator improved the performance by regularizing the reconstruction and cascading

a background estimator to form a bidirectional unit improve the performance further.

Fig. 4 shows several qualitative examples. It can be observed that adding background

estimator improved the result of estimation the reflection layer, which enhances the

recovery of background in reverse.

Ablation study of the objective functions In Table 1, we compare against ablations of

our full loss. To employ adversarial loss, we need to train a discriminator network with
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Fig. 4. Visual comparison of our ablation studies on model structure. From left to right: I, B (G0),

B (G0 + H), R (G0 + H), B (G0 + H + G1), R (G0 + H + G1). Best viewed on screen with

zoom.

our model. We adopt the 70 × 70 PatchGAN of [29] for discriminator, which only pe-

nalizes structure at the scale of patches. To train the network with GAN, we pretrain our

BDN without adversarial loss first for 2 epochs, and then use the pretrained network to

initialize the generator. As the evaluation metrics like PSNR is directly related to MSE,

adding adversarial loss has very little improvements compared to directly optimizing

ℓ2 loss in numerical analysis, but for visual appearance, we noticed improvements in

restoring the fine details of the background, as shown in Fig. 5.

Fig. 5. Visual comparison of our ablation studies on model structure on objective functions. From

left to right: I, B (BDN w/o adversarial loss), R (BDN w/o adversarial loss), B (BDN with

adversarial loss), R (BDN with adversarial loss). The upper image is synthetic and the bottom

image is real. Best viewed on screen with zoom.

Analysis of training strategy We compare three training strategies specified in Sec-

tion 4.2. Progressively training each module and then stacking them together, i.e. BDN
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(greedy training + fine-tuning) in Table 1, results in poor performance. The reason is

that the reflection estimator and background estimator in the bidirectional unit needs to

coordinate, e.g. if we train background estimator greedily using the ground truth pairs

{(It,Bt)}
N

t=1, but when we stack it after the vanilla generator, the input of this module

becomes {(It, B̂t)}
N

t=1. Although finetuning from the progressively trained module im-

proves performance and converges quickly, it underperforms end-to-end joint training

from scratch, as the greedy initialization is more likely to converge to a bad local op-

tima. For all the following experiments, we train our model from scratch, i.e. the three

subnetworks are trained jointly.

Table 1. Quantitative comparison with ablation of our methods and with the state-of-the-art meth-

ods on 500 synthetic images with reflection generated using the method in Section 4.3, the best

results are bold-faced.

PSNR SSIM

Vanilla G0 22.10 0.811

Vanilla G0 (deep) 22.16 0.817

Vanilla G0 + H 22.30 0.813

BDN (greedy training) 20.82 0.792

BDN (greedy training + fine-tuning) 22.43 0.825

BDN (joint training, w/o adversarial loss) 23.06 0.833

BDN 23.11 0.835

Li and Brown [3] 16.46 0.745

Arvanitopoulos et al. [11] 19.18 0.760

Fan et al. [10] 19.80 0.782

5.2 Quantitative Evaluation

Comparison with the-state-of-the-art We perform quantitative comparison between

our method and the-state-of-the-art single image reflection methods of Li and Brown

[3], Arvanitopoulos et al. [11] and Fan et al. [10] using synthetic dataset. The numerical

results shown in Table 1 indicates that our method outperforms the state-of-the-art.

Comparison with learning based method We specifically perform some comparisons

with [10] as [10] is the only method of solving single image reflection removal problem

using deep learning techniques so far. Both [10] and our method require training with

synthetic data, but we use different data synthesis mechanism. To compare with [10],

we train both our model and [10] using our training data as described in Sec. 4.3 and a

training set generated using the algorithm in [10]. Then we evaluate trained models on

the corresponding test set, and the results are shown in Table. 2.

Trained on synthetic data in [10], our model achieves comparable performance on

the test set in [10] and outperforms [10] when training and testing on our synthetic

dataset. Because [10] explicitly utilize edge information and removes reflection by re-

covering the intrinsic edge of the background image, it relies more on the assumption

that the reflection layer is blurry. Therefore, when training in our dataset, which is less
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Table 2. Comparison between our method and [10]. Both models are trained and evaluated using

the synthetic dataset of [10], the best results are bold-faced.

Dataset in [10] Our dataset

PSNR SSIM PSNR SSIM

BDN (Ours) 20.82 0.832 23.11 0.835

Fan et al. [10] 18.29 0.8334 20.03 0.790

0.55 0.6 0.65 0.7 0.75 0.8 0.85
14
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(b) SSIM

Fig. 6. Evaluation of PSNR and SSIM with the change of scale weight α for the background.

blurry and contains a more general form of reflections, [10] does not perform as well as

it does in [10]. By contrast, our model has a stronger capacity to learn from data directly

and dealing with less blurry reflections.

Learning based methods train models on synthetic data due to the lack of real la-

beled data. Since we choose different methods to generate training data and it is difficult

to tell which data synthesis method fits the real data the best, we use SIR dataset [39] to

evaluate the generational ability of our model on real data with reflections. SIR dataset

[39] contains 454 triplets of images shot under various capture settings, e.g. glass thick-

ness, aperture size and exposure time, to cover various types of reflections. The dataset

contains three scenarios: postcards, solid objects, and wild scenes. The images in this

dataset are in size 540× 400.

Table 3. Numerical study of the learning based methods on SIR benchmark dataset [39], the best

results are bold-faced.

Postcard Solid objects Wild scenes

PSNR SSIM PSNR SSIM PSNR SSIM

Fan et al. [10] 21.0829 0.8294 23.5324 0.8843 22.0618 0.8261

BDN (Ours) 20.4076 0.8548 22.7076 0.8627 22.1082 0.8327
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Sensitivity to the reflection level Considering the weight α in model (1) reflects the

strength of the reflection level, to study the sensitivity of the proposed method to the re-

flection, we conduct and experiments to evaluate the performance of different methods

on the images with different α’s. As shown in Fig. 6, with the scale weight of back-

ground decreases, it is increasingly difficult to separate reflection from the background.

Actually when the background layer and reflection layer have similar brightness and

structure, sometimes it is even painful for humans to distinguish them apart. Also, note

that the range of α exceeds the range we used in data synthesis, and our methods are

robust in different levels of scale weights.

5.3 Qualitative Evaluation

We compare with the previous works using real images collected from previous works

[11, 10, 5] and collected from the Internet and wild scenes. Since these images have no

ground truth, we can only perform the visual comparison.

Comparison with the method only estimating background Arvanitopoulos et al.

[11] focus on suppressing the reflections, i.e. they do not recover the reflection layer.

Therefore, we can only show the comparison with I and B in Fig. 7. It can be seen

that our method better preserves the details in the background and has fewer artifacts,

while [11] tends to oversmooth the image and lose too much information details. For

example, in the image of clouds, our result keeps more details of cloud than [11] and in

the image of the bag, our result looks more realistic.

Comparison with methods separating two layers We compare our methods with Li

and Brown [3], and Fan et al. [10], which generate a reflection layer along with the

background layer. Although our method focuses on recovering the background rather

than separating two layers, our estimation of reflection contains more meaningful in-

formation compared to previous methods by looking bidirectional. The quality of the

reflection layer reconstructed helps boost our recovery of background in our case. Fig.

8 shows the qualitative comparison results. Our methods outperform the state-of-the-art

in recovering the clear background in real scenes with obstructive reflections. Com-

pared to [10], our method better recovers the color of the original image. Because a

portion of the light will be reflected back to the side of the background, the objects in

the background usually look pale compared to the observation directly without glass.

This is reflected by the scale operation when generating our training data.

In Fig. 9, we show an examples of failure case. The image, which is from [39],

is taken using two postcards through a thick glass. The reflection is very strong and

contains ghosting artefacts, while the background is very blurry, and the interactions

between reflections have very complex structure. None of the methods works well in

this case.

6 Conclusion

In this paper, we studied the single image reflection removal problem. Motivated by

an idea that one can estimate the reflection and use it to boost the estimation of the

background, we propose a deep neural network with a cascade structure for single image
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Fig. 7. Comparison with the method of Arvanitopoulos et al. [11] on real images. From left to

right: I, B ([11]), B (Ours). [11] tends to be oversmooth and our results look more natural. Best

viewed on screen with zoom.

removal, which is referred as the bidirectional network (BDN). Benefiting from the

powerful supervision, the proposed BDN can recover the background image effectively.

Extensive experiments on synthetic data and the real-world data demonstrate that the

proposed methods work well in diverse scenarios.
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