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Abstract. Archetypal analysis is an unsupervised learning approach
which represents data by convex combinations of a set of archetypes. The
archetypes generally correspond to the extremal points in the dataset and
are learned by requiring them to be convex combinations of the training
data. In spite of its nice property of interpretability, the method is slow.
We propose a variant of archetypal analysis which scales gracefully to
large datasets. The core idea is to decouple the binding between data
and archetypes and require them to be unit normalized. Geometrically,
the method learns a convex hull inside the unit sphere and represents
the data by their projections on the closest surfaces of the convex hull.
By minimizing the representation error, the method pushes the convex
hull surfaces close to the regions of the sphere where the data reside.
The vertices of the convex hull are the learned archetypes. We apply
the method to human faces and poses to validate its effectiveness in the
context of reconstructions and classifications.
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1 Introduction

Unsupervised basis learning is a class of methods [8] which aims to discover
the underlying low-dimensional structures of the data. They may serve different
purposes depending on the specific tasks. For example, methods such as [36, 23,
32] are usually used for dimension reductions. Methods such as sparse coding
[21, 17], non-negative matrix factorization [14] and the clustering methods [37,
5] are usually used as data modeling tools.

Archetypal Analysis (AA) [6, 4] is an unsupervised learning method which
represents data by convex combinations of the archetypes. One distinctive prop-
erty of AA is that the archetypes are convex combinations of the training data
which binds the data and archetypes. There is a geometric interpretation for
the method. See Fig. 1. First, convex combinations of the archetypes form a
principal convex hull which we call P-hull. To minimize the representation error
on the dataset, the P-hull should be large enough to cover as many training
data as possible. Second, since each archetype is required to be chosen from the
convex hull (D-hull) formed by convex combinations of training data, the P-hull
should be within the D-hull. So archetypal analysis seeks for the largest P-hull
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(a) Training data and D-hull (b) Suboptimal P-hull (b) Optimal P-hull

Fig. 1: Illustrations of D-hulls and P-hulls. (a) The convex combinations of train-
ing data form a convex hull called D-hull. (b) The red dots denote the archetypes.
Each archetype is chosen from convex combinations of training data. So it is
within the D-hull. Archetypal analysis represents data by convex combinations
of archetypes which forms another hull called P-hull (c) To minimize the repre-
sentation error, the P-hull should be large enough to represent all the data.

whose vertices are within the D-hull. In general cases, the learned archetypes
approximately correspond to the extremal points in the dataset.

In spite of the nice interpretability, the method has not received sufficient
attention because it is slow especially when the dataset is large. To scale to large
training datasets, sparse coding uses online dictionary learning [20] to iteratively
update the bases, where each iteration is based on a mini-batch of data. However,
this learning scheme cannot be applied to AA because of the explicit binding
between the data and the archetypes. More specifically, updating the archetypes
needs to recompute the coefficients with respect to all the training data which
makes mini-batch learning meaningless.

In this work, we propose a fast variant of archetypal analysis called Decoupled
Archetypal Analysis (DAA). The core idea is to decouple the binding between
the data and the archetypes, thus making mini-batch based dictionary learning
possible. The method first projects the data onto the unit sphere without severely
distorting the data structures. Then it learns a set of archetypes on the sphere.
Instead of requiring the archetypes to be within the D-hull as in the original AA
method, we require them to be within the unit sphere which is a relaxation of
the original requirement.

As shown in Fig. 2(b), the method learns a convex hull (triangle in the figure)
within the sphere and represents data using their surfaces. By minimizing the
representation error, DAA drives the surfaces to be close to the data. Thus the
convex hull vertices are pushed towards the extremal points. The union of the
surfaces resembles the P-hull in AA.

The decoupling between data and archetypes enables us to use an online
algorithm (similar to [20]) to optimize the problem which scales gracefully to
large datasets. For example, we learn 400 archetypes from 300K human pose
data using only several minutes. We present extensive experiments on realistic
data sources including human faces and poses. In particular, we obtain decent
performance on 3D human pose estimation and pose-based action recognition
which are comparable to the state-of-the-arts.
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(a) Archetypal Analysis (b) Our Method

Fig. 2: Comparisons of (a) archetypal analysis and (b) our method. The gray and
red dots represent the training data and the learned archetypes, respectively. Our
method first embeds the two-dimensional data to a 3D unit sphere and learns a
convex hull whose surfaces are close to the data.

2 Related Work

We briefly discuss the related work on unsupervised learning including sparse
coding, non-negative matrix factorization and manifold learning.

2.1 Sparse Coding and Non-negative Matrix Factorization

It is natural to compare our approach to sparse coding [33, 25, 9, 24] which acti-
vates only a small number of bases when representing a datum. Sparse coding
enforces that the l1-norm of the coefficients is smaller than a threshold λ. In
contrast, our method requires that the l1-norm of the coefficients equals one. In
addition, the representation is also sparse which we will discuss in more details
later. Another related work is non-negative matrix factorization, which assumes
the data are non-negative and learns two non-negative and rank-reduced factor
matrices such that their product approximates the input data. Some variants
of sparse coding such as [13] incorporate these two methods and require non-
negative coefficients in addition to sparsity in order to learn additive object
parts features. Our approach differs from the above approaches in that we re-
quire the data and bases to be unit normalized and enforce joint non-negative
and sum-to-one constraints.

2.2 Manifold Learning

Principal Component Analysis (PCA) is a common method for representing
high-dimensional data in terms of bases. It is well suited for data which lie
in a linear space or equivalently on a low-dimensional linear manifold. But it is
inappropriate for data which lie in non-linear spaces. The limitations of PCA mo-
tivate researchers to develop approaches for detecting low-dimensional manifold
structures in high-dimensional data [31, 27, 12, 1, 7, 39]. Typically these methods
use projection methods that preserve local properties of the data (e.g., geodesic
distance). These methods are global, in that a single low dimensional structure
is used in the representation of the data and they typically assume that the
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manifold is connected. Although our approach also represents data by bases
(archetypes), it does not explicitly learn the low-dimensional data manifolds
as the above approaches. Instead it learns a set of representative bases which
correspond to the extremal data to best represent the dataset.

3 Revisit Archetypal Analysis

We consider a dataset X = {x1, · · · ,xn} having n training data where xi ∈ R
m

is a datum. Archetypal analysis represents a datum x by convex combinations
of archetypes Z = {z1, · · · , zk}: x = Zα where α resides in the simplex ∆k:

∆k ,
{

α ∈ R
k s.t. α � 0 and |α|1 = 1

}

. (1)

Meanwhile each archetype z is required to be chosen from the convex combina-
tions of the training data: z = Xβ where β ∈ ∆n. The archetypes are learned
by minimizing the representation error on the whole training dataset:

min
A,B

‖X−XBA‖2
F
, A = [α1, · · · ,αn], B = [β1, · · · ,βk]

αi ∈ ∆k, for i = 1 . . . n, βj ∈ ∆n, for j = 1 . . . k,
(2)

where Z = XB denotes the learned k archetypes.
It would help to give a geometric interpretation for AA which inspires our

approach. There are two convex hulls which are constructed from the dataset
(D-hull) and the archetypes (P-hull), respectively. See Fig. 1 for illustrations.
Loosely speaking, the P-hull is within the D-hull and is optimized to have the
largest overlap with the D-hull. Ideally, the P-hull is the same as the D-hull.

4 Decoupled Archetypal Analysis

We learn archetypes without requiring them to be chosen from convex combina-
tions of data. However, if there is no constraint on the archetypes, the problem
becomes ill-posed and has infinite numbers of solutions. We solve the problem
by normalizing the data to lie on the unit sphere and the archetypes are within
the unit sphere which can be regarded as a relaxation to the constraints in AA.

4.1 Project Data onto the Unit Sphere

We normalize each datum xi such that it lies on the unit sphere: ‖xi‖2 = 1, ∀i.
This is usually accomplished by directly normalizing the data: xi 7→ xi

‖xi‖2
, or

by centering and then normalizing: xi 7→ xi−x̄

‖xi−x̄‖2
where x̄ is the data mean

1

n

∑n

i=1
xi. For many signals, little information is lost in normalization. Indeed

the normalization is a common first step in many applications. We directly nor-
malize the data in the following experiments in this paper unless stated else-
where.
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Fig. 3: (a) The torus is flattened into a band when normalized. (b) Stereographic
projection from the equatorial plane into the sphere maps P to Q. (c) A triangle
in the plane and the corresponding curved triangle on the sphere.

However, some structures may collapse under direct normalization. Consider,
for example, the usual two-dimensional torus. Fig. 3(a) shows the torus and its
normalization in the sphere. The normalization flattens the torus into a band
around the equator and the inner cavity is lost. To avoid data collision, we use
stereographic projection to map data in R

d into the d dimensional sphere S
d in

R
d+1. Fig. 3(b) shows stereographic projection from the equatorial plane onto

the sphere, through the north pole N . The point P is mapped to the point
Q, which is the intersection of the line through N,P and the unit sphere. It
is worth noting that this is an invertible conformal map because it preserves
angles between curves. The mapping is: P 7→ Q = N + 2

1+|P‖2 (P −N), and the

inverse mapping is Q 7→ P = N + 1

1−Qd+1
(Q−N), where Qd+1 is the (d+1)-th

coordinate of Q. In some situations, the entire data analysis can be carried out in
the normalized space rather than in the original space. But for some situations,
e.g., for visualization purposes, it would help to map the learned bases back to
the original space. Fig. 3(c) shows an example in which the learned bases are
back-projected to the original space.

4.2 Learning the Archetypes

We now describe how to learn a set of archetypes D = [d1, · · · ,dk] from the nor-
malized data. We first give the formulation and then explain why the formulation
can learn the archetypes. The following is the proposed formulation:

min
D,C

‖X−DC‖2F, C = [c1, · · · , cn],

ci ∈ ∆k, ‖xi‖2 = 1, D ∈ C,
(3)

where C , {D ∈ R
m×k s.t. ∀j = 1 . . . k, ‖dj‖22 ≤ 1.}

Since the learned archetypes lie inside the unit sphere, their convex combina-
tions will form a convex hull inside the unit sphere. See Fig. 4 for an illustration.
Since the data are also normalized to lie on the unit sphere, they are guaranteed
to lie outside the convex hull. So in the reconstruction stage, the data will be
projected onto the surfaces of the convex hull so as to minimize the representa-
tion error. In the learning stage, to minimize the overall representation error on
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Fig. 4: Illustration of data reconstructions in 3D and 2D. The black points are
the learned archetypes and the blue/cyan points are the data.

the whole dataset, the algorithm will push the surfaces as close to the data as
possible. The union of the set of convex hull surfaces (which data are projected
on) resembles the P-hull as defined in the original archetypal analysis. The con-
vex hull vertices are the learned archetypes. In summary, directly optimizing
the problem (3) will learn archetypes which approximately correspond to the
extremal points in the dataset.

4.3 Represent Data by Archetypes

After learning the archetypes, we represent a datum x by convex combinations
of the archetypes: x̂ = Dc∗ where

c∗ , argmin
c∈∆k

‖x−Dc‖22 (4)

We would like to note that by solving the equation (4), the datum is projected
to the surface of the convex hull. In ideal cases, the difference between x and
the reconstructed datum x̂ is small.

One interesting property of our method is that only the archetypes on the
same surface can be activated at the same time (co-activated). For example,
in Fig. 4(b), the archetypes x4 and x6 will never be co-activated to represent a
datum. If they are co-activated, the datum would be projected into the interior of
the convex hull, which is impossible. This is because projecting the datum to the
interior will first cross a surface and projecting the datum to that surface achieves
smaller error. So the archetypes learned using our method are automatically
clustered in groups which provides a tight representation of the datasets. This is
a desirable property for reconstruction and classification tasks which need strong
regularization capabilities.

4.4 Geometric Comparison with Related Work

To highlight their differences to our approach, we provide geometric interpre-
tations for sparse coding and non-negative matrix factorization. Sparse coding
represents a datum by a small number of bases by constraining the l1-norm
of the coefficient vector ‖α‖1 to be smaller than a constant λ, which could be
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interpreted geometrically. We augment each basis d by its negative −d and re-
quire non-negative coefficients as shown in Fig. 5(a). Sparse coding projects a
datum to a scaled convex hull (cyan in Fig. 5(a)) formed by the bases where the
scale is ‖α‖1 which varies for different data. The variation of the scale makes it
non-trivial to interpret the properties of the bases. In contrast, the scale of the
convex hull for our approach is fixed to be one.

(b1)  bases learned by our method (b2) bases learned by AA (b3) bases learned by NMF

�ଵ
�ଶ

�ଷ−�ଵ
−�ଶ

−�ଷ

(a) reconstruction by sparse coding

Fig. 5: Geometric interpretation of sparse coding and comparison of different
methods on a naive dataset. The orange points represent the learned bases and
the points within the orange area could be reconstructed without any error.

We also compare different methods on a naive dataset in Fig. 5(b). Geomet-
rically, data lie in a convex polyhedral cone and NMF aims to find the edges of
the cone. Similar to archetypal analysis, this method also tends to learn a large
convex hull for non-convex datasets but does not explore the local structures of
the manifold. Instead, our method tends to use a mixture of small surfaces to
approximate the local non-convex regions.

5 Optimization

We sketch the optimization algorithm in this section. Although the problem (3)
is not convex with respect to D and C, it is convex with respect to one of them
with the other fixed. We propose an online learning algorithm similar to [20]. At
each iteration, only a mini-batch of samples are used to update the dictionary of
archetypes, endowing us with the ability to handle large-scale datasets. Similarly
as [20], the sufficient statistics with respect to coefficients ci are aggregated,
which are used for dictionary updates.

5.1 Algorithm Outline

The outline is shown in Algorithm 1. At each iteration t, we deal with one sample
xt (the extension to multiple samples is straightforward). Given the sample for
current iteration, we first compute the coefficient by solving the equation (5)
based on the dictionary Dt−1 computed in the last iteration. Then the sufficient
statistics of ci, namely A and B, are updated. Finally, the dictionary is updated
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Algorithm 1 Online dictionary learning

Require: Data X in R
m×n, k (number of archetypes), T (number of iterations)

1: A0 ← 0,B0 ← 0 (reset past information).
2: Initialize D in R

m×k with random columns from X.
3: for t = 1→ T do
4: Sample xt from X.
5: Compute coefficient ct for xt by solving equation (5)
6: At ← At−1 + ctc

T

t .
7: Bt ← Bt−1 + xtc

T

t .
8: Compute dictionary Dt using equation (6)
9: end for
10: return DT

based on historical observed data, by minimizing f̂t(D) , 1

t

∑t

i=1
||xi −Dci||22,

where the coefficients ci are obtained at iteration i of the algorithm. It acts as an
approximation to ĉi(Dt−1) which denotes recomputing the coefficients for all the
data in previous iterations based on the update-to-date dictionary Dt−1. We will
describe the details for computing the coefficients and updating the dictionary
in the following subsections.

5.2 Compute Coefficients

For calculating the coefficient ct given current dictionary Dt−1, we need to solve
the following problem:

ct , argmin
c∈∆k

||xt −Dt−1c||22. (5)

which is a least-squares optimization problem with simplicial constraint. Several
approaches have been used for this kind of problem. Culter et al. [6] proposed a
penalty approach. Also, fast iterative shrinkage-thresholding algorithm (FISTA)
could be used. Following [4], we use an active-set algorithm, which benefits from
the sparsity of the coefficient c. It is worth noting that the coefficients obtained
by the equation (5) are sparse because of the interaction of curved geometry
of the sphere and the linear surfaces, which encourages using low dimensional
surfaces to represent the data. The maximum number of activated archetypes is
determined by the number of vertices of the surface.

5.3 Update Dictionary

We update the dictionary using the sufficient statistics A and B:

Dt , argmin
D∈C

1

t

t
∑

i=1

‖xi −Dci‖22

= argmin
D∈C

1

t
(Tr(DTDAt)− 2Tr(DTBt)).

(6)
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Since this formula is the same as the one in [20], we utilize the same dictionary
update scheme. Block-coordinate descent approach with warm restart is used,
and the main advantage of it is parameter free.

We sequentially update the column dj , while fixing the others. Firstly, the
algorithm calculates a new position uj = dj + (1/A[j, j])(bj −Daj), where bj

and aj are j-th column of A and B respectively. Then we project uj into the
unit sphere by d′

j = uj/max(‖uj‖2, 1) to satisfy the constraint ‖dj‖ ≤ 1. The
convergence of this convex optimization problem is guaranteed.

6 Experiments

We evaluate the proposed method from three aspects. First, we evaluate the
learning speed on large-scale datasets and compare with the original archetypal
analysis method [4]. Second, we experimentally demonstrate that the convex
combinations of the learned archetypes accurately approximate the D-hull. In
particular, the archetypes correspond to the extremal points in the dataset.
Third, we give applications of using the archetypes for data modeling in the
context of reconstruction and classification tasks1.
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Fig. 6: Comparison of the learning speed for our approach and [4] on the H3.6M
dataset. The results of our method and [4] are represented by blue and red lines,
respectively. The solid line denotes the results on the training set and the dotted
line denotes the results on the testing set. For [4], the points are plotted for each
iteration. For our method, the points are plotted for every ten batches.

1 We give more experiment results in the supplementary files
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6.1 Speed

We implement our algorithm based on Eigen [11]. For the original AA method
[4], we use the fastest implementation included in the SPAMS toolbox [20]. Both
approaches use Intel MKL and multi-threading. The experiments are done on a
single Intel CPU of i7-5930K.

We experiment on the H3.6M dataset [16] which has about three million
human poses. The dimension of a pose is 48. Following the protocol in [22],
we sample about 300K training poses and 3000 testing poses. We learn 400
archetypes from the dataset. The results are shown in Fig. 6.

First, the reconstruction error of our approach on the training dataset drops
to a lower level than [4]. This is expected as the archetypes in our approach
have larger flexibility because they can be anywhere in the sphere. This differs
from [4] where the archetypes can only be in the D-hull. Second, our approach
uses much less time than [4] to reach similar levels of reconstruction errors. In
particular, when the first iteration (which has to traverse the whole dataset once)
of archetypal analysis is finished, our method has updated the dictionary for
about 1700 times (around 3 epochs) and obtained a small reconstruction error.
The gap will become even larger when the number of training data increases.

6.2 Interpretability

One distinctive property of archetypal analysis [6, 4] is that some of the learned
archetypes correspond to the extremal points in the dataset. In this case, the
convex combinations of the archetypes will form a convex hull which tightly
surrounds the data hull. In this section, we examine the archetypes learned on
two data sources: human faces and poses.

Face Images It is known that the imaging of an object in variable illumination
conditions can be accurately approximated by convex combinations of a set of
images captured at extreme illumination conditions [10]. Hence this is a good
data source to visually evaluate whether the proposed approach can identify the
extremal points as the AA method.

We experiment on the cropped Yale face dataset [10]. We normalize each
image to have unit l2-norm for our method. The archetypal analysis directly uses
the original images. The results are shown in Fig. 7. For visualization purposes,
for each archetype, we find the nearest neighbor in the face dataset and highlight
that face image in a particular color. The face images with blue rectangles denote
the archetypes learned by our method. We also visualize the archetypes learned
by AA in red rectangles. We can see that for both methods, the archetypes
mostly correspond to the extremal illumination conditions, and the convex hull
of the archetypes largely overlapped with the convex hull of the images, which
justifies the effectiveness of our method.
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Fig. 7: This figure shows 64 images from the Yale face dataset which correspond
to the same person under different lighting directions. We arrange the images
according to the two axis-es of the lighting directions. The nearest neighbors of
archetypes identified by our method and archetypal analysis are annotated with
blue and red rectangles, respectively.
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(a) (b)

Fig. 8: Visualization of the learned archetypes on human poses. We use [36] to
project the data into 2D. The data and the learned archetypes are represented
by cyan and red points respectively. The convex hull of the data/archetypes is
plotted using the dotted line. (a) the archetypes learned on all poses. (b) the
archetypes learned on the poses of a particular action.

Pose We also experiment on the large 3D human pose dataset H3.6M. We visu-
alize the poses and the learned archetypes by projecting them to two-dimensional
space using PCA [36]. The results are shown in Fig. 8. We can see that some
of the learned archetypes correspond to the extremal points in the dataset. In
addition, the convex combinations of the archetypes form a convex hull which
tightly surrounds the training dataset. The left and right figures show the results
learned on all poses and on poses of a particular action respectively.

6.3 Applications

In this section, we use the learned archetypes as a data modeling tool for 3D
human pose estimation and pose-based action recognition where strong regular-
ization capabilities would help.

3D Pose Estimation A 2D pose is represented by d joint locations in 2D
x ∈ R

2d. Similarly, a 3D pose is denoted by y ∈ R
3d. The 2D and 3D pose are

related by the camera parameters M : x = My [26].
The task of 3D human pose estimation is to estimate the 3D pose y and

the camera parameters M from a 2D pose x. It is usually achieved by min-
imizing ‖x − My‖2 which is an ill-posed problem. The authors of [26] pro-
pose to reduce the ambiguities by representing a 3D pose by a set of PCA
bases B and seeking for the optimal coefficient for a testing 2D pose: M∗,β∗ =
argminM,β ‖x−MBβ‖2. The estimated 3D pose is ŷ = Bβ∗.

We replace the PCA bases in [26] with the archetypes learned by our ap-
proach. In particular, we learn 400 archetypes on the training set. We also
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compare with a related baseline which uses the bases learned by sparse cod-
ing [20]. The sparse bases are learned with the regularization factor being set as
λ = 1.2/

√
3d as suggested in [20] where 3d is the data dimension.

We experiment on the H3.6M dataset where the groundtruth 2D poses are
assumed known. To reveal the properties of different bases (or archetypes), we
calculate three metrics: (1) the projection error in 2D which is computed as
‖x−MBβ∗‖ when groundtruth camera parameters are known; the unit is pixel;
(2) the mean per joint position error (MPJPE) in 3D when groundtruth cam-
era parameters are known; the unit is mm; (3) MPJPE in 3D when camera
parameters are jointly estimated.

Table 1: Pose estimation results on the H3.6M dataset. Results using estimated
2D pose are listed in parentheses for comparison with state-of-the-arts.

Method projection error
MPJPE

known camera estimated camera

Chen et al. [3] - - - (114.18)
Tome et al. [34] - - - (88.39)
Zhou et al. [40] - - - (79.90)
Sun et al. [30] - - - (59.10)

sparse coding 0.37 231.82 252.86 (276.75)
archetypal analysis 4.13 52.56 75.93 (126.88)
our method 3.68 50.71 76.91 (106.52)

The results are shown in Table 1. First, we can see that the projection error of
sparse coding is much smaller than archetypal analysis and our method. However,
the 3D pose estimation error is much larger. This is because the bases learned
by sparse coding have weaker regularization properties. In other words, sparse
coding doesn’t provide a tight/bounded representation for the data manifold as
our method. Second, the result of our method is similar to archetypal analysis.
Third, the final error 106.52mm is achieved when the 2D poses are estimated
by [2] and the camera parameters are jointly estimated using our method. The
result is comparable to some state-of-the-arts which rely on deep networks.

Pose-based Action Recognition We also evaluate our approach on a classifi-
cation task of pose-based action recognition. We adopt a simple nearest neighbor
based classification framework. For a pose sequence, following [35], we extract
a set of snippets with each being a short sequence of poses, to represent the
original sequence. Then for each action class, we learn a set of archetypes based
on the snippets. In the testing stage, for a pose sequence, we reconstruct its
snippets using the archetypes of each class and the class which achieves the min-
imum average reconstruction error over all the snippets of the sequence is the
predicted action class.
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We experiment on the NTU RGB+D dataset [28], which is a large benchmark
consisting of four million poses. The number of archetypes is set to 1024 by cross-
validation. For sparse coding, the regularization factor is set to 0.1 by cross-
validation. Following previous works, we report the results using two different
train/test split methods: Cross-Subject (CS) and Cross-View (CV).

Table 2: Action recognition accuracy (%) on the NTU RGB+D dataset with
Cross-Subject and Cross-View settings.

Method CS CV

LieNet [15] 61.37 66.95
PA-LSTM [28] 62.93 70.27
ST-LSTM (Tree Traversal) + Trust Gate [19] 69.20 77.70
STA-LSTM [29] 73.40 81.20
Ensemble TS-LSTM [18] 74.60 81.25
VA-LSTM [38] 79.40 87.60

archetypal analysis - -
sparse coding 64.95 77.61
our method 68.07 80.93

The experimental results are shown in Table 2. It is not feasible to learn
archetypes using [4] on such a large dataset so we don’t list its results. We observe
our method outperforms sparse coding by 3.12% and 3.32% in accuracy for CS
and CV settings respectively, as our method learns a tighter representation than
sparse coding. We also compare with the state-of-the-art methods which take
advantage of deep neural networks such as [28, 15, 19, 29, 18, 38]. The recognition
accuracy of our method is lower than VA-LSTM. The reason may be that our
method doesn’t model the motions as LSTM. However, considering that our
method is simple and not tuned for the action recognition task, the results are
already promising.

7 Conclusion

We present a fast variant of archetypal analysis, which not only maintains the fa-
vorable interpretability, but also scales gracefully to large datasets. It decouples
the deep binding between data and archetypes, thus enables an online optimiza-
tion algorithm. This formulation learns tight representations which is a favorable
property for many tasks. Experiments on pose estimation and pose-based action
recognition reveal its power.

References

1. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data
representation. Neural Computation 15(6), 1373–1396 (2003)



Online Dictionary Learning for Approximate Archetypal Analysis 15

2. Cao, Z., Simon, T., Wei, S., Sheikh, Y.: Realtime multi-person 2d pose estimation
using part affinity fields. In: CVPR. pp. 1302–1310 (2017)

3. Chen, C., Ramanan, D.: 3d human pose estimation = 2d pose estimation + match-
ing. In: CVPR. pp. 5759–5767 (2017)

4. Chen, Y., Mairal, J., Harchaoui, Z.: Fast and robust archetypal analysis for repre-
sentation learning. In: CVPR. pp. 1478–1485 (2014)

5. Coates, A., Ng, A.Y.: Learning feature representations with k-means. In: Neural
Networks: Tricks of the Trade - Second Edition, pp. 561–580. Springer (2012)

6. Cutler, A., Breiman, L.: Archetypal analysis. Technometrics 36(4), 338–347 (1994)
7. Donoho, D.L., Grimes, C.: Hessian eigenmaps: Locally linear embedding tech-

niques for high-dimensional data. Proceedings of the National Academy of Sciences
100(10), 5591–5596 (2003)

8. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification. Wiley, New York (1973)
9. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., et al.: Least angle regression.

The Annals of statistics 32(2), 407–499 (2004)
10. Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: Illumi-

nation cone models for face recognition under variable lighting and pose. TPAMI
23(6), 643–660 (2001)

11. Guennebaud, G., Jacob, B., et al.: Eigen v3. http://eigen.tuxfamily.org (2010)
12. Ham, J., Lee, D.D., Mika, S., Schölkopf, B.: A kernel view of the dimensionality

reduction of manifolds. In: ICML (2004)
13. Hoyer, P.O.: Non-negative sparse coding. In: Proceedings of the 12th IEEE Work-

shop on Neural Networks for Signal Processing, NNSP 2002, Martigny, Valais,
Switzerland, September 4-6, 2002. pp. 557–565 (2002)

14. Hoyer, P.O.: Non-negative matrix factorization with sparseness constraints. Jour-
nal of Machine Learning Research 5, 1457–1469 (2004)

15. Huang, Z., Wan, C., Probst, T., Gool, L.V.: Deep learning on lie groups for
skeleton-based action recognition. In: CVPR. pp. 1243–1252 (2017)

16. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6m: Large scale
datasets and predictive methods for 3d human sensing in natural environments.
TPAMI 36(7), 1325–1339 (2014)

17. Lee, H., Battle, A., Raina, R., Ng, A.Y.: Efficient sparse coding algorithms. In:
NIPS. pp. 801–808 (2006)

18. Lee, I., Kim, D., Kang, S., Lee, S.: Ensemble deep learning for skeleton-based
action recognition using temporal sliding LSTM networks. In: ICCV. pp. 1012–
1020 (2017)

19. Liu, J., Shahroudy, A., Xu, D., Wang, G.: Spatio-temporal LSTM with trust gates
for 3d human action recognition. In: ECCV. pp. 816–833 (2016)

20. Mairal, J., Bach, F.R., Ponce, J., Sapiro, G.: Online dictionary learning for sparse
coding. In: ICML. pp. 689–696 (2009)

21. Mallat, S.: A wavelet tour of signal processing. Academic press (1999)
22. Martinez, J., Hossain, R., Romero, J., Little, J.J.: A simple yet effective baseline

for 3d human pose estimation. In: ICCV. pp. 2659–2668 (2017)
23. Mika, S., Ratsch, G., Weston, J., Scholkopf, B., Mullers, K.R.: Fisher discriminant

analysis with kernels. In: Neural networks for signal processing IX, 1999. Proceed-
ings of the 1999 IEEE signal processing society workshop. pp. 41–48. IEEE (1999)

24. Olshausen, B.A., et al.: Emergence of simple-cell receptive field properties by learn-
ing a sparse code for natural images. Nature 381(6583), 607–609 (1996)

25. Osborne, M.R., Presnell, B., Turlach, B.A.: On the lasso and its dual. Journal of
Computational and Graphical statistics 9(2), 319–337 (2000)



16 Jieru Mei, Chunyu Wang and Wenjun Zeng

26. Ramakrishna, V., Kanade, T., Sheikh, Y.: Reconstructing 3d human pose from 2d
image landmarks. In: ECCV. pp. 573–586 (2012)

27. Saul, L.K., Roweis, S.T.: Think globally, fit locally: unsupervised learning of low di-
mensional manifolds. Journal of machine learning research 4(Jun), 119–155 (2003)

28. Shahroudy, A., Liu, J., Ng, T., Wang, G.: NTU RGB+D: A large scale dataset for
3d human activity analysis. In: CVPR. pp. 1010–1019 (2016)

29. Song, S., Lan, C., Xing, J., Zeng, W., Liu, J.: An end-to-end spatio-temporal
attention model for human action recognition from skeleton data. In: AAAI. pp.
4263–4270 (2017)

30. Sun, X., Shang, J., Liang, S., Wei, Y.: Compositional human pose regression. In:
ICCV. pp. 2621–2630 (2017)

31. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for
nonlinear dimensionality reduction. science 290(5500), 2319–2323 (2000)

32. Thompson, B.: Canonical correlation analysis. Encyclopedia of statistics in behav-
ioral science (2005)

33. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society. Series B (Methodological) pp. 267–288 (1996)
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