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Abstract. In many domains of computer vision, generative adversarial
networks (GANs) have achieved great success, among which the fam-
ily of Wasserstein GANs (WGANs) is considered to be state-of-the-art
due to the theoretical contributions and competitive qualitative perfor-
mance. However, it is very challenging to approximate the k-Lipschitz
constraint required by the Wasserstein-1 metric (W-met). In this pa-
per, we propose a novel Wasserstein divergence (W-div), which is a re-
laxed version of W-met and does not require the k-Lipschitz constraint.
As a concrete application, we introduce a Wasserstein divergence ob-
jective for GANs (WGAN-div), which can faithfully approximate W-
div through optimization. Under various settings, including progressive
growing training, we demonstrate the stability of the proposed WGAN-
div owing to its theoretical and practical advantages over WGANs. Also,
we study the quantitative and visual performance of WGAN-div on stan-
dard image synthesis benchmarks, showing the superior performance of
WGAN-div compared to the state-of-the-art methods.

Keywords: Wasserstein metric, Wasserstein divergence, GANs, Pro-
gressive growing.

1 Introduction

Over the past few years, we have witnessed the great success of generative ad-
versarial networks (GANs) [1] for a variety of applications. GANs are a useful
family of generative models that expresses generative modeling as a zero-sum
game between two networks: A generator network produces plausible samples
given some noise, while a discriminator network distinguishes between the gen-
erator’s output and real data. There are numerous works inspired by the original
GANs, [2–5] to name a few. While GANs can produce visually pleasing samples,
they lack a reliable way of measuring the difference between fake and real data
distribution, which leads to unstable training.

To address this issue, [6] introduced the Wassestein-1 metric (W-met) to the
GAN framework. Compared to the Jensen-Shannon (JS) or the Kullback-Leibler
(KL) divergence, W-met is considered to be more sensible for distributions sup-
ported by low dimensional manifolds. Given that the primal form of W-met
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is intractable to compute, [6] proposed to use the dual form of W-met, which
requires the k-Lipschitz constraint. A series of ideas [6–9] were proposed to ap-
proximate the dual W-met and achieved impressive results compared to the
non-Wasserstein based GANs. However, they generally suffer from unsatisfying
regularization for the k-Lipschitz constraint, mainly because it is a very strict
constraint and non-trivial to approximate [9, 10].

Other studies have tackled the stability issue from different angles. For exam-
ple, [10] proposed a gradient-based regularizer associated with the f-divergence [11]
to address the dimensional misspecification. In order to stabilize the training to-
wards high resolution images, [12, 13] applied deep stack architectures by incor-
porating extra information. Recently, building upon the dual W-met objective
of [7], [14] presented a sophisticated progressive growing training scheme and
obtained excellent high resolution images.

In this paper, we propose to resolve the k-Lipschitz constraint by introducing
a relaxed version of W-met and incorporating it in the GAN framework. Our
contributions can be summarized as follows:

1. We introduce a novel Wasserstein divergence (W-div) and prove that the
proposed W-div is a symmetric divergence. Moreover, we explore the con-
nection between the proposed W-div and W-met.

2. Benefiting from the non-challenging constraint required by the W-div, we
introduce Wasserstein divergence GANs (WGAN-div) as its practical appli-
cation. The proposed objective can faithfully approximate the corresponding
W-div through optimization.

3. We demonstrate the stability of WGAN-div under various settings including
progressive growing training. Also, we conduct various experiments on stan-
dard image synthesis benchmarks and present superior results of WGAN-div
compared to the state-of-the-art methods, both quantitatively and qualita-
tively.

2 Background

Imagine there are two players in a game. One player (Generator) intends to
generate visually plausible images, aiming to fool its opponent, while the oppo-
nent (Discriminator) attempts to discriminate real images from synthetic images.
Such adversarial competition is the key idea behind GAN models. To measure
the distance between real and fake data distributions, [1] proposed the objective

LJS(Pr,Pg) = E
x∼Pr

[ln(f(x))] + E
x̃∼Pg

[ln(1− f(x̃))], (1)

which can be interpreted as the JS divergence up to a constant [15] and where
f is a discriminative function. The model can thus be defined as a min-max
optimization problem:

min
G

max
D

E
x∼Pr

[ln(D(x))] + E
G(z)∼Pg

[ln(1−D(G(z)))], (2)
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where G is the generator parametrized by a neural network and D is the dis-
criminative neural network parametrizing f . Usually, we let z be low dimensional
random noise, and x, G(z) are the real and fake data satisfying the probability
measures Pr,Pg.

Wasserstein GANs (WGANs). The rise of the Wasserstein-1 metric (W-
met) in GAN models is primarily motivated by unstable training caused by
the gradient vanishing problem [6]. Given two probability measures Pr,Pg, the
W-met [16] is defined as

W1(Pr,Pg) = sup
f∈Lip

1

E
x∼Pr

[f(x)]− E
x̃∼Pg

[f(x̃)], (3)

where Lip1 is the function space of all f satisfying the 1-Lipschitz constraint
‖f‖L ≤ 1. It is worth mentioning that W1 is invariant up to a positive scalar k if
the Lipschitz constraint is modified to be k. W1 is believed to be more sensible to
distributions supported by low dimensional manifolds such as image, video, etc.
Generally, the existing Wasserstein GANs (WGANs) fall into two categories:
Weight Constraints. To approximately satisfy the Lipschitz constraint, [6] pro-
posed a weight clipping method that imposes a hard threshold c > 0 on the
weights w of the discriminator D, which parametrizes f in Eq. 3:

w
′ =







w if |w| < c

c if w ≥ c

−c if w ≤ −c

(4)

This approach was proven to be unsatisfactory by [7], since through weight
clipping, the neural network tends to learn oversimplified functions. Later, [8]
proposed spectral normalization GANs (SNGANs). To impose the 1-Lipschitz
constraint, SNGANs normalize the weights wi of each layer i by the L2 matrix
norm,

w
′

i =
wi

‖wi‖2
. (5)

Because the set of functions satisfying the local 1-Lipschitz constraint is merely
a subset of the function space Lip1, such a constraint inevitably narrows the
effective search space and entails a sub-optimal solution.
Gradient Constraints. To overcome the disadvantages of weight clipping, [7] in-
troduced a gradient penalty term to Wasserstein GANs (WGAN-GP). The ob-
jective is defined as

LGP = E
x∼Pr

[f(x)]− E
x̃∼Pg

[f(x̃)]

︸ ︷︷ ︸

Wasserstein term

+k E
x̂∼Py

[(‖∇f(x̂)‖2 − 1)2]

︸ ︷︷ ︸

gradient penalty

, (6)

where ∇ is the gradient operator and Py is the distribution obtained by sampling
uniformly along straight lines between points from the real and fake data distri-
butions Pr and Pg. As pointed out by [9, 10], with a finite number of training it-
erations on limited input samples, it is very difficult to guarantee the k-Lipschitz
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constraint for the whole input domain. Thus, [9] further proposed Wasserstein
GANs with a consistency term (CTGANs). Inspired by the original 1-Lipschitz
constraint, CTGANs add the following term to Eq. 6,

CT|x1,x2
= Ex1,x2

[max(0,
d(f(x1), f(x2))

d(x1,x2)
− c)], (7)

where x1,x2 are two data points, d is a metric and c is a threshold. Recently,
to improve stability and image quality, [14] proposed a training scheme in which
GANs are grown progressively. In addition to progressive growing, [14] also pro-
posed an objective LPG = LGP + PG, where

PG =







E
x̂∼Py

[(‖∇f(x̂)‖2 − 750)2/7502] for CIFAR-10

0.001 E
x̂∼Py

[‖∇f(x̂)‖22] for other datasets
(8)

f-GANs. Outside the family of Wasserstein metrics, there is another important
family of divergences—the f-divergences. [11] argued that f-divergence can be
used for training generative samplers and proposed f-GANs. Since the f-GANs
are vulnerable to the dimension mismatch between fake and real data, [10] pro-
posed a gradient-based regularizer to stabilize the training and gave an example
based on JS-divergence:

LRJS(Pr,Pg) = E
x∼Pr

[ln(f(x))] + E
x̃∼Pg

[ln(1− f(x̃))]− kΩ(Pr,Pg)

Ω(Pr,Pg) := E
x∼Pr

[
(1− f(x))2‖∇f(x)‖2

]
+ E

x̃∼Pg

[
f(x̃)2‖∇f(x̃)‖2

]
.

(9)

Information Geometry. In information geometry, [17] studied the connec-
tions between the Wasserstein distance and the Kullback-Leibler (KL) diver-
gence employed by early GANs. They exploit the fact that by regularizing the
Wasserstein distance with entropy, the entropy relaxed Wasserstein distance in-
troduces a divergence and naturally defines certain geometrical structures from
the information geometry viewpoint.

3 Proposed Method

As discussed above, it is very challenging to approximate the W-met. This is
due to the gap between limited input samples on the one hand and the strict
1-Lipschitz constraint on the whole input sample domain [18, 9] on the other
hand. At the same time, it is natural to ask whether there exists an optimal
f∗ for W-met (Eq. 3). According to [19], by solving a family of minimization
problems given p > 0

fp = argmin
f∈W

1,p
c

E
x∼Pr

[f(x)]− E
x̃∼Pg

[f(x̃)] +
1

p
E

x̂∼Pu

[‖∇f(x̂)‖p], (10)

where Pu is a Radon probability measure and W 1,p
c is the Sobolev space contain-

ing all the functions f in Lp space with first order weak derivatives and compact
support, we can find a sequence pk → ∞ such that fpk

→ −f∗.
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3.1 Wasserstein Divergence

The connection between Eq. 10 andW-met inspires us to propose a novel Wasser-
stein divergence (W-div) and we prove that it is indeed a valid symmetric diver-
gence.

Theorem 1. (Wasserstein divergence) Let Ω ⊂ R
n be an open, bounded, con-

nected set and S be the set of all the Radon probability measures on Ω. If for
some p 6= 1, k > 0 we define

W
′

p,k : S × S → R
− ∪ {0}

(Pr,Pg) → inf
f∈C1

c (Ω)
E

x∼Pr

[f(x)]− E
x̃∼Pg

[f(x̃)] + k E
x̂∼Pu

[‖∇f(x̂)‖p],
(11)

where C1
c (Ω) is the function space of all the first order differentiable functions on

Ω with compact support, then W
′

p,k is a symmetric divergence (up to the negative
sign).

Proof. See supplementary material.

By imposing the C1
c (Ω) function space, we rule out pathological functions

with weak derivatives. Compared to the k-Lipschitz constraint, f ∈ C1
c (Ω) is

less restrictive, since ‖∇f‖ does not need to be bounded by a hard threshold
k. Given the universal approximation theorem and the modern architecture of
neural networks—stacking differentiable layers to form a nonlinear differentiable
function—f ∈ C1

c (Ω) can easily be parameterized by a neural network.
In the following we further explore the connection between the proposed

W-div and the original W-met in Eq. 3.

Remark 1. (Upper bound) Given Radon probability measures Pr,Pg,Pu on Ω,
let

W
′

Pu
(Pr,Pg) := inf

f∈C∞

c (Ω)
E

x∼Pr

[f(x)]− E
x̃∼Pg

[f(x̃)] +
1

2
E

x̂∼Pu

[(‖∇f(x̂)‖2], (12)

where C∞

c is the function space of all the smooth functions f with compact
support. There exists an optimal f∗ for W1(Eq. 3) such that

W1(Pr,Pg) = E
x∼Pr

[f∗(x)]− E
x̃∼Pg

[f∗(x̃)], (13)

and a W
′

Pu∗
determined by f∗ such that

W
′

Pu∗
(Pr,Pg) = sup

Pu∈S

W
′

Pu
(Pr,Pg). (14)

Please see the detailed discussion in [19].

Remark 1 indicates that W
′

Pu∗
, which is determined by the optimal f∗, is the

upper bound of our W-div W
′

Pu

3.

3 W
′

Pu
is a family of special cases of Eq. 11 with a more restrictive function space C∞

c .
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Given the similarities between our proposed W-div and LGP (Eq. 6), it may
be interesting to know if there exists a divergence corresponding to LGP. In
general, the answer is no.

Remark 2. If for n > 0 we let

W
′′

p,k,n(Pr,Pg) := inf
f∈C1

c (Ω)
E

x∼Pr

[f(x)]− E
x̃∼Pg

[f(x̃)]+k E
x̂∼Pu

[(‖∇f(x̂)‖−n)p], (15)

then W
′′

p,k,n is not a divergence in general.

Counterexample. Assuming Ω = (−1, 1) and p = 2, it suffices to show that
W

′′

2,k,n(Pr,Pg) 6= 0 for Pr = Pg almost everywhere. Since Ex∼Pr
[f(x)] and

Ex̃∼Pg
[f(x̃)] cancel out, in order to guarantee W

′′

2,k,n(Pr,Pg) = 0, ‖∇f(x̂)‖ must
be equal to n on (−1, 1), which implies that f is affine and contradicts the com-
pact support constraint. For m-dimensional sets such as (−1, 1)m and an even
integer p we need to employ the uniqueness argument of the Picard-Lindelöf
Theorem to show that f can only be affine.

Remark 2 implies that the plausible statistic distance W
′′

2,k,1 corresponding
to Eq. 6 is neither a divergence, nor a valid metric.

3.2 Wasserstein Divergence GANs

Although W-met enjoys the tempting property of providing useful gradients, in
practice, the original formulation Ex∼Pr

[f(x)] − Ex̃∼Pg
[f(x̃)] of W-met cannot

be directly applied as an objective without imposing the strict 1-Lipschitz con-
straint. In contrast, it is very straightforward to use our proposed W-div as an
objective. Therefore, we introduce Wasserstein divergence GANs (WGAN-div).
Our objective can be smoothly derived as

LDIV = E
x∼Pr

[f(x)]− E
x̃∼Pg

[f(x̃)] + k E
x̂∼Pu

[‖∇f(x̂)‖p], (16)

which is identical to the formulation of W-div without the infimum. Minimizing
LDIV faithfully approximates W

′

p,k, in a sense that the decrease of LDIV indicates

a better approximation of W
′

p,k. In comparison, lowering LGP does not neces-
sarily imply that LGP approximates W1 better, since LGP can be decreased at
the cost of violating the gradient penalty term (Eq. 6).

By incorporating our objective LDIV in the GAN framework, together with
parameterizing f ∈ C1

c by a discriminator D and the fake data distribution Pg

by a generator G, our min-max optimization problem can be written as

min
G

max
D

E
G(z)∼Pg

[D(G(z))]− E
x∼Pr

[D(x)]− k E
x̂∼Pu

[‖∇x̂D(x̂)‖p], (17)

where z is random noise, x is the real data, and x̂ is sampled as a linear combi-
nation of real and fake data points. For more studies of sampling strategies we
refer readers to our supplementary material. The final algorithm is obtained as
shown in Alg. 1. Following the good practice of [7], our building blocks for D and
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Algorithm 1 The proposed WGAN-div algorithm

Require: Batch size m, generator G and discriminator D, power p, coefficient k,
training iterations n, and other hyperparameters

1: for i← 1 to n do

2: Sample real data x1, . . . ,xm from Pr

3: Sample Gaussian noise z1, . . . , zm from N (0, 1)
4: Sample vector µ = (µ1, . . . , µm) from uniform distribution U [0, 1] such that
5: x̂j = (1− µj)xj + µjG(zj)
6: Update the weights wG of G by descending:

wG ← Adam(∇wG
( 1

m

∑m

j=1
D(G(zj))),wG, α, β1, β2)

7: Update the weights wD of D by descending:
wD ← Adam(∇wD

( 1

m

∑m

j=1
D(xj)−D(G(zj))

+k‖∇x̂j
D(x̂j)‖

p),wD, α, β1, β2)
8: end for

Generator Kernel size Resampling Output shape

Noise – – 128
Linear – – 512× 4× 4

Residual block [3× 3]× 2 Up 512× 8× 8
Residual block [3× 3]× 2 Up 256× 16× 16
Residual block [3× 3]× 2 Up 128× 32× 32
Residual block [3× 3]× 2 Up 64× 32× 32
Conv, tanh 3× 3 – 3× 64× 64

Discriminator

Conv 3× 3 – 64× 64× 64
Residual block [3× 3]× 2 Down 128× 32× 32
Residual block [3× 3]× 2 Down 256× 16× 16
Residual block [3× 3]× 2 Down 512× 8× 8
Residual block [3× 3]× 2 Down 512× 4× 4

Linear – – 1

Table 1. The default architecture of WGAN-div for 64× 64 image generation

WGAN-GP CTGAN WGAN-div

0.02 0.04 0.04 0.02 0.03 0.03 0.01 0.02 0.01

Table 2. Visual and FID comparison for generated samples (green dots) and real
samples (yellow dots) on Swiss Roll, 8 Gaussians and 25 Gaussians. The value surfaces
of the discriminators are also plotted.

G are residual blocks [20]. The default architecture of WGAN-div is presented
in Tab. 1. We apply Adam optimization [21] to update G and D. We study the
crucial hyperparameters such as the coefficient k and the power p in the next
section.



8 Wu et al.

Fig. 1. Curves of FID vs. iteration (top left), Discriminator cost vs. iteration (top
right), FID vs. power p (bottom left), and FID vs. coefficient k (bottom right) for
WGAN-div on CelebA.

4 Experiments

In this section, we evaluate WGAN-div on toy datasets and three widely used
image datasets—CIFAR-10, CelebA [22] and LSUN [23]. As a preliminary eval-
uation, we use low-dimensional datasets such as Swiss roll, 8 Gaussians and 25
Gaussians to justify that our proposed W-div can be more effectively learned
than W-met used by WGAN-GP and CTGAN, in terms of more meaningful
value surfaces of discriminator D i.e. f , and better generated data distribution
(Tab. 2). Meanwhile, the three large scale datasets highlight a variety of chal-
lenges that WGAN-div should address and evaluation on them is adequate to
support the advantages of WGAN-div.

Recently, [24] pointed out that the inception score (IS) [25] is not reliable
because it does not incorporate the statistics of real image samples. As an al-
ternative, they introduced the Fréchet inception distance (FID) to measure the
difference between real and fake data distributions. Experiments verified that the
FID score is consistent with visual judgment by humans. Later, [26] conducted
a comprehensive study of the state-of-the-art GANs based on FID, which con-
firmed that FID provides fairer assessment. Hence, we consider the FID score as
the major criterion for evaluating our method. Also, visual results are provided
as a complementary form of verification.

We compare our WGAN-div to the state-of-the-art DCGAN [2], WGAN-
GP [7], RJS-GAN [18], CTGAN [9], SNGAN [8], and PGGAN [14]. For each
method, we apply the default architectures and hyperparamters recommended
by their papers. The default architectures for G and D of WGAN-div follow
the ResNet design [20] as presented in Tab. 1. We use Adam optimization [21]
for updating G and D with a learning rate of 0.0002 for all three datasets. The
number of training steps are 100000 for CelabA and CIFAR-10, and 200000 for
LSUN. By cross validation we determine the number of iterations for D per
training step to be 4 for CelebA and LSUN, and 5 for CIFAR-10.
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4.1 Hyperparameter Study

We demonstrate the impact of two important hyperparameters—the power p and
the coefficient k—on our WGAN-div method. Both of them control the gradient
term of LDIV. We report the obtained FID scores on the 64× 64 CelebA dataset
in the bottom row of Fig. 1. For a fixed optimal p = 6 and varying k, Fig. 1
shows that LDIV is not sensitive to changes of k, with the FID score fluctuating
mildly around 16. On the other hand, for a fixed k = 2 and changing p, we
obtain the optimal FID at p = 6, which differs from the common choice p = 2
applied in WGAN methods. The fact that fp (Eq. 10) converges to the optimal
discriminator when p becomes larger may explain why LDIV favors a larger power
p. To summarize, our default p, k are determined to be p = 6 and k = 2.

4.2 Stability Study

In this section we evaluate the stability of our method to changes in architecture
and compare it to other approaches. In this light, we apply various architec-
ture settings for WGAN-div, WGAN-GP, and RJS-GAN, which represent three
types of statistical distances: W-div, W-met, and f-divergence. We train these
methods with two standard architectures—ConvNet as used by DCGAN [2] and
ResNet [20], which is used by WGAN-GP [7]. Since batch normalization [27]
(BN) is considered to be a key ingredient in stabilizing the training process [2],
we also evaluate the FID without BN. In total, we use four settings: ResNet,
ResNet without BN, ConvNet, and ConvNet without BN. As shown in Tab. 3,
each column reports the visual and FID results obtained under the same ar-
chitecture. Our WGAN-div achieves the best FID scores for all four settings.
Tab. 3 also features corresponding visual results. Compared to WGAN-GP and
RJS-GAN, WGAN-div produces more visually pleasing images and the visual
quality remains more stable under changing settings. This experimental study
confirms the advantages gained by our W-div and its identical objective LDIV.

4.3 Evaluation on the Standard Training Scheme

In this experiment, we intend to fairly compare the performance of various GANs
by ruling out the impact caused by fine-tuned training strategies. For this pur-
pose, we follow the standard, i.e. non-growing, training scheme, which fixes the
size and architecture of the discriminator and generator through the whole train-
ing process. We compute the FID scores for DCGAN, WGAN-GP, RJS-GAN,
CTGAN, and WGAN-div. The configurations of the compared methods are set
according to the recommendations from the authors. The results are reported in
Tab. 4. WGAN-div reaches the best FID scores among the compared approaches,
which quantitatively confirms the advantages of our method.

While the FID score of WGAN-div mildly outperforms the state-of-the-art
methods on the dataset CIFAR-10, it demonstrates clearer improvements on the
larger scale datasets CelebA and LSUN. Similarly, the facial results shown in
Fig. 2 tell us that WGAN-div is better than the compared methods with regard
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ResNet ResNet without BN ConvNet ConvNet without BN

WGAN-GP 18.4 20.3 21.2 24.6

RJS-GAN 21.4 23.2 21.7 22.4

WGAN-div 15.2 18.6 17.5 21.5

Table 3. FID scores and qualitative comparison of various architectures on CelebA.

to diversity and semantics. For example, Fig. 2 shows diverse faces generated
by WGAN-div in terms of gender, age, facial expression and makeup. We can
make the same conclusions on LSUN. The proposed WGAN-div outperforms the
compared methods with a considerable margin both quantitatively and qualita-
tively. For example, WGAN-div achieves an FID score of 15.9 on LSUN, which
is 4.4 lower than CTGAN, which is already an improved version of WGAN-GP,
that introduced an extra regularizer to enhance WGAN-GP.

The examples of visually plausible bedrooms shown in Fig. 2 further high-
light the advantages gained by introducing W-div in the GAN model. For the
interpolation results in the latent space please check our supplementary material.

The top row of Fig. 1 reports the learning curve of the compared methods
showing that the training process of our WGAN-div is comparatively stable and
converges fast. It achieves top FID scores with less than 60K iterations. The top
right plot of Fig. 1 illustrates the meaningful correlation between image quality
and discriminator cost. It is worth mentioning that [24] proposed a two time-
scale update method to generally improve the training of a variety of GANs. We
believe that WGAN-div can also benefit from such a sophisticated update rule.
However, due to the space limit, this is left for further studies.
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CT-GAN RJS-GAN WGAN-GP WGAN-div

Fig. 2. Visual results of WGAN-div and compared methods on CelebA (top row),
LSUN (middle row), and CIFAR-10 (bottom row).

CIFAR-10 CelebA LSUN

DCGAN [2] 30.9 52.0 61.1
WGAN-GP [7] 18.8 18.4 26.8
RJS-GAN [10] 19.6 21.4 16.7
CTGAN [9] 18.6 16.4 20.3
SNGAN [8] 21.7* - -
WGAN-div 18.1 15.2 15.9

Table 4. FID comparison between WGAN-div and the state-of-the-art methods. The
result with a * was taken from the original paper [8].

4.4 Evaluation on the Progressive Growing Training Scheme

Inspired by the success of PGGAN [14], which trained a W-met based GAN
model in a progressive growing fashion, we evaluate how our objective LDIV per-
forms with this sophisticated training scheme. More specifically, we replace LPG

with our LDIV while following the default configurations suggested in [14] and
propose PGGAN-div. However, computing the FID scores for this experimental
setting is challenging, as it is non-trivial to adapt existing FID models for evalu-
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Resolution CelebA LSUN

PGGAN 64× 64 16.3 17.8
PGGAN-div 64× 64 16.0 16.5

PGGAN 128× 128 14.1 15.4

PGGAN-div 128× 128 13.5 15.5

PGGAN 256× 256 - 15.1
PGGAN-div 256× 256 - 14.9

Table 5. FID comparison between PGGAN-div and PGGAN at different resolutions.

ating higher resolution generated images. Since [14] does not specify the details
of how their FID scores were computed for higher resolution images, we propose
to downscale higher resolution images to 64 × 64 resolution and then compute
the FID score. The resulting scores are reported in Tab. 5.

Interestingly, Tab. 5 shows that, for low resolution images, the FID score of
PGGAN is slightly worse than the one of some top methods reported in Tab. 4,
including WGAN-div. We believe that this phenomenon is not surprising. Since
it is comparatively easy to learn a data distribution in low dimensional space,
applying the standard training scheme suffices to achieve good FID scores. There
is no need to introduce the sophisticated progressive growing strategy during the
low dimensional phase. For higher resolution images (128× 128 and 256× 256)
on the other hand, the FID scores for both PGGAN and PGGAN-div decrease
with non-negligible margin. It is worth mentioning that our PGGAN-div slightly
improves the FID scores over the original PGGAN, demonstrating the stability
of our objective LDIV under a sophisticated training scheme.

We also present the 256 × 256 visual results for CelebA-HQ (Fig. 3) and
LSUN (Fig. 4). Since CelebA-HQ was generated by post-processing CelebA [14],
we do not report its FID scores due to the distribution shift introduced by
the artificial post-processing algorithms. The visual results in Fig. 3 and Fig. 4
demonstrate that our PGGAN-div is very competitive compared to the original
PGGAN for both datasets. To summarize, we demonstrate the stability of our
W-div objective under this training scheme.

5 Conclusion

In this paper, we introduced a novel Wasserstein divergence which does not
require the 1-Lipschitz constraint. As a concrete example, we equip the GAN
model with our Wasserstein divergence objective, resulting in WGAN-div. Both
FID score and qualitative performance evaluation demonstrate the stability and
superiority of the proposed WGAN-div over the state-of-the-art methods.

Acknowledgment. We would like to thank Nvidia for donating the GPUs used
in this work.
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Fig. 3. Visual results of PGGAN (top), PGGAN-div (bottom) on CelebA-HQ.
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Fig. 4. Visual results of PGGAN (top), PGGAN-div (bottom) on 256× 256 LSUN.
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