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Abstract. Recent studies have shown that deep neural networks can sig-
nificantly improve the quality of single-image super-resolution. Current
researches tend to use deeper convolutional neural networks to enhance
performance. However, blindly increasing the depth of the network can-
not ameliorate the network effectively. Worse still, with the depth of the
network increases, more problems occurred in the training process and
more training tricks are needed. In this paper, we propose a novel multi-
scale residual network (MSRN) to fully exploit the image features, which
outperform most of the state-of-the-art methods. Based on the residual
block, we introduce convolution kernels of different sizes to adaptively
detect the image features in different scales. Meanwhile, we let these
features interact with each other to get the most efficacious image in-
formation, we call this structure Multi-scale Residual Block (MSRB).
Furthermore, the outputs of each MSRB are used as the hierarchical fea-
tures for global feature fusion. Finally, all these features are sent to the
reconstruction module for recovering the high-quality image.

Keywords: Super-resolution · Convolutional neural network · Multi-
scale residual network

1 Introduction

Image super-resolution (SR), particularly single-image super-resolution (SISR),
has attracted more and more attention in academia and industry. SISR aims
to reconstruct a high-resolution (HR) image from a low-resolution (LR) image
which is an ill-posed problem since the mapping between LR and HR has multiple
solutions. Thence, learning methods are widely used to learn a mapping from
LR to HR images via applying large image datasets.

Currently, convolutional neural networks (CNNs) have indicated that they
can provide remarkable performance in the SISR problem. In 2014, Dong et al.
proposed a model for SISR problem termed SRCNN [1], which was the first
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successful model adopting CNNs to SR problem. SRCNN was an efficient net-
work that could learn a kind of end-to-end mapping between the LR and HR
images without requiring any engineered features and reached the most satis-
factory performance at that time. Since then, many studies focused on building
a more efficient network to learn the mapping between LR and HR images so
that a series of CNNs-based SISR models [2–9] were proposed. EDSR [9] was
the champion of the NTIRE2017 SR Challenge. It based on SRResNet [8] while
enhanced the network by removing the normalization layers as well as using
deeper and wider network structures. These models received excellent perfor-
mance in terms of peak signal-to-noise ratio (PSNR) and structural similarity
index (SSIM [10]) in the SISR problem. Nevertheless, all of these models tend
to construct deeper and more complex network structures, which means train-
ing these models consumes more resources, time, and tricks. In this work, we
have reconstructed some classic SR models, such as SRCNN [1], EDSR [9] and
SRResNet [8]. During the reconstruction experiments, we find most existing SR
models have the following problems:

(a) Hard to Reproduce: The experimental results manifest that most SR
models are sensitive to the subtle network architectural changes and some of
them are difficult to reach the level of the original paper due to the lack of the
network configuration. Also, the same model achieves different performance by
using different training tricks, such as weight initialization, gradient truncation,
data normalization and so on. This means that the improvement of the perfor-
mance may not be owing to the change of the model architecture, but the use
of some unknown training tricks.

(b) Inadequate of Features Utilization: Most methods blindly increase
the depth of the network in order to enhance the the performance of the network
but ignore taking full use of the LR image features. As the depth of the network
increases, the features gradually disappear in the process of transmission. How
to make full use of these features is crucial for the network to reconstruct high-
quality images.

(c) Poor Scalability: Using the preprocessed LR image as input will add
computational complexity and produce visible artifacts. Therefore, recent ap-
proaches pay more attention to amplifying LR images directly. As a result, it
is difficult to find a simple SR model that can accommodate to any upscaling
factors, or can migrate to any upscaling factors with only minor adjustments to
the network architecture.

In order to solve the mentioned problems, we propose a novel multi-scale
residual network (MSRN) for SISR. In addition, a multi-scale residual block
(MSRB) is put forward as the building module for MSRN. Firstly, we use the
MSRB to acquire the image features on different scales, which is considered as
local multi-scale features. Secondly, the outputs of each MSRB are combined for
global feature fusion. Finally, the combination of local multi-scale features and
global features can maximize the use of the LR image features and completely
solve the problem that features disappear in the transmission process. Besides,
we introduce a convolution layer with 1×1 kernel as a bottleneck layer to ob-



Multi-scale Residual Network for Image Super-Resolution 3

tain global feature fusion. Furthermore, we utilize a well-designed reconstruction
structure that is simple but efficient, and can easily migrate to any upscaling
factors.

We train our models on the DIV2K [11] dataset without special weight initial-
ization method or other training tricks. Our base-model shows superior perfor-
mance over most state-of-the-art methods on benchmark test-datasets. Besides,
the model can achieve more competitive results by increasing the number of M-
SRB or the size of training images. It is more exciting that our MSRB module
can be migrate to other restoration models for feature extraction. Contributions
of this paper are as follows:

– Different from previous works, we propose a novel multi-scale residual block
(MSRB), which can not only adaptively detect the image features, but also
achieve feature fusion at different scales. This is the first multi-scale mod-
ule based on the residual structure. What’s more, it is easy to train and
outperform the existing modules.

– We extend our work to computer vision tasks and the results exceed those
of the state-of-the-art methods in SISR without deep network structure.
Besides, MSRB can be used for feature extraction in other restoration tasks
which show promising results.

– We propose a simple architecture for hierarchical features fusion (HFFS) and
image reconstruction. It can be easily extended to any upscaling factors.

2 Related Works

2.1 Single-image Super-resolution

The SISR problem can be divided into three major stages roughly. Early ap-
proaches use interpolation techniques based on sampling theory like linear or
bicubic. Those methods run fast, but can not rebuild the detailed, realistic tex-
tures. Improved works aim to establish complex mapping functions between LR
and HR images. Those methods rely on techniques ranging from neighbor em-
bedding to sparse coding.

Recent works tend to build an end-to-end CNNs model to learn mapping
functions from LR to HR images by using large training datasets. Since Dong et
al. proposed the SRCNN [1] model, various CNNs architectures have been used
on SISR problem. Previous work often used pre-processed LR image as input,
which was upscaled to HR space via an upsampling operator as bicubic. However,
this method has been proved [2] that it will add computational complexity and
produce visible artifacts. To avoid this, new methods are proposed, such as Fast
Super-Resolution Convolutional Neural Networks (FSRCNN [3]) and Efficient
Sub-pixel Convolutional Networks (ESPCN [2]). All of the models mentioned
above are shallow networks (less than 5 layers). Kim et al. [12] first introduced the
residual architecture for training much deeper network (20 layers) and achieved
great performance. After that, many SR models have been proposed, including
DRCN [5], DRNN [7], LapSRN [6], SRResNet [8], and EDSR [9]. Unfortunately,
these models become more and more deeper and extremely difficult to train.
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(a) Residual block (b) Dense block (c) Inception block

Fig. 1. Feature maps visualization. Represent the output of the residual block, the
dense block, and our MSRB, respectively.

2.2 Feature Extraction Block

Nowadays, many feature extraction blocks have been proposed. The main idea
of the inception block [13] (Fig. 1.(c)) is to find out how an optimal local sparse
structure works in a convolutional network. However, these different scale fea-
tures simply concatenate together, which leads to the underutilization of local
features. In 2016, Kim et al. [12] proposed a residual learning framework (Fig.
1.(a)) to ease the training of networks so that they could achieve more compet-
itive results. After that, Huang et al. introduced the dense block (Fig. 1.(b)).
Residual block and dense block use a single size of convolutional kernel and the
computational complexity of dense blocks increases at a higher growth rate. In
order to solve these drawbacks, we propose a multi-scale residual block.

Based on the residual structure, we introduce convolution kernels of different
sizes, which designed for adaptively detecting the features of images at different
scales. Meanwhile, a skip connection is applied between different scale features
so that the features information can be shared and reused with each other.
This helps to fully exploit the local features of the image. In addition, a 1×1
convolution layer at the end of the block can be used as a bottleneck layer, which
contributes to feature fusion and reduces computation complexity. We will give
a more detailed description in section 3.1.

3 Proposed Method

In this work, our intent is to reconstruct a super-resolution image ISR from a
low-resolution image ILR. The ILR is the low-resolution version of IHR, which
is obtained by the bicubic operation. We convert the image to the YCbCr color
space and train only on the Y channel. For an image with C color channels, we
describe the ILR with a tensor of size W × H × C and denote the IHR, ISR

with rW × rH ×C, where C = 1, represents the Y channel and r represents the
upscaling factor.

Our ultimate goal is to learn an end-to-end mapping function F between

the ILR and the IHR. Given a training dataset
{

ILR
i

, IHR
i

}N

i=1
, we solve the
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Fig. 2. The complete architecture of our proposed model. The network is divided into
feature extraction and reconstruction, different color squares represent different oper-
ations, the top-right of the picture gives a specific description.

following problem:

θ̂ = arg min
θ

1

N

N
∑

i=1

LSR(Fθ(I
LR

i ), IHR

i ), (1)

where θ = {W1,W2,W3...Wm, b1, b2, b3...bm}, denotes the weights and bias of our
m-layer neural network. LSR is the loss function used to minimize the difference
between ISR

i
and IHR

i
. Recently, researchers also focus on finding a superior loss

function to improve the network performance. The most widely-used image ob-
jective optimization functions are the MSE function and L2 function. Although
these methods can obtain high PSNR/SSIM, solutions for MSE optimization
and L2 optimization problems often produce excessively smooth textures. Now, a
variety of loss functions have been proposed such as VGG [4] function and Char-
bonnier Penalty function [6]. On the contrary, we find that their performance
improvement is marginal. In order to avoid introducing unnecessary training
tricks and reduce computations, we finally choose the L1 function. Thus, the
loss function LSR can be defined as:

LSR(Fθ(I
LR

i ), IHR

i ) =
∥

∥Fθ(I
LR

i )− IHR

i

∥

∥

1
. (2)

As shown in Fig. 2, it is the complete architecture of our proposed model. Our
model takes the unprocessed LR images as input, which are directly upsampled
to high-resolution space via the network. Our model can be divided into two
parts: the feature extraction module and the image reconstruction module. The
feature extraction module is composed of two structures: multi-scale residual
block (MSRB) and hierarchical feature fusion structure (HFFS).

3.1 Multi-scale Residual Block (MSRB)

In order to detect the image features at different scales, we propose multi-scale
residual block (MSRB). Here we will provide a detailed description of this struc-
ture. As shown in Fig. 3, our MSRB contains two parts: multi-scale features
fusion and local residual learning.
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Fig. 3. The structure of multi-scale residual block (MSRB).

Multi-scale Features Fusion: different from previous works, we construct
a two-bypass network and different bypass use different convolutional kernel. In
this way, the information between those bypass can be shared with each other
so that able to detect the image features at different scales. The operation can
be defined as:

S1 = σ(w1
3×3 ∗Mn−1 + b1), (3)

P1 = σ(w1
5×5 ∗Mn−1 + b1), (4)

S2 = σ(w2
3×3 ∗ [S1, P1] + b2), (5)

P2 = σ(w2
5×5 ∗ [P1, S1] + b2), (6)

S
′

= w3
1×1 ∗ [S2, P2] + b3, (7)

where w and b represent the weights and bias respectively, and the superscripts
represent the number of layers at which they are located, while the subscripts
represent the size of the convolutional kernel used in the layer. σ(x) = max(0, x)
stands for the ReLU function, and [S1, p1],[P1, S1],[S2, P2] denote the concate-
nation operation.

Let M denote the number of feature maps sent to the MSRB. So the input
and output of the first convolutional layer have M feature maps. And the second
convolutional layer has 2M feature maps, either input or output. All of these
feature maps are concatenated and sent to a 1×1 convolutional layer. This layer
reduces the number of these feature maps to M, thus the input and output of
our MSRB have the same number of feature maps. The distinctive architecture
allows multiple MSRBs to be used together.

Local Residual Learning: In order to make the network more efficient,
we adopt residual learning to each MSRB. Formally, we describe a multi-scale
residual block (MSRB) as:

Mn = S
′

+Mn−1, (8)

where Mn and Mn−1 represent the input and output of the MSRB, respectively.
The operation S

′

+Mn−1 is performed by a shortcut connection and element-wise
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addition. It is worth mentioning that the use of local residual learning makes the
computational complexity greatly reduced. Simultaneously, the performance of
the network is improved.

3.2 Hierarchical Feature Fusion Structure (HFFS)

For SISR problem, input and output images are highly correlated. It is crucial to
fully exploit the features of the input image and transfer them to the end of the
network for reconstruction. However, as the depth of the network increases these
features gradually disappear during transmission. Driven by this problem, vari-
ous methods have been proposed, among which the skip connection is the most
simple and efficient method. All of these methods try to create different connec-
tions between different layers. Unfortunately, these methods can’t fully utilize
the features of the input image, and generate too much redundant information
for aimlessness.

In the experiment, we notice that with the growth of depth, the spatial ex-
pression ability of the network gradually decreases while the semantic expression
ability gradually increases. Additionally, the output of each MSRB contains dis-
tinct features. Therefore, how to make full use of these hierarchical features will
directly affect the quality of reconstructed images. In this work, a simple hierar-
chical feature fusion structure is utilized. We send all the output of the MSRB to
the end of the network for reconstruction. On the one hand, these feature maps
contain a large amount of redundant information. On the other hand, using them
directly for reconstruction will greatly increase the computational complexity. In
order to adaptively extract useful information from these hierarchical features,
we introduce a bottleneck layer which is essential for a convolutional layer with
1×1 kernel. The output of hierarchical feature fusion structure (HFFS) can be
formulated as:

FLR = w ∗ [M0,M1,M2, ...,MN ] + b, (9)

where M0 is the output of the first convolutional layer, Mi(i 6= 0) represents the
output of the ith MSRB, and [M0,M1,M2, ...,MN ] denotes the concatenation
operation.

3.3 Image Reconstruction

The previous work paid close attention to learn a mapping function between LR
and HR images, where the LR image was upsampled to the same dimensions
as HR by bicubic. Yet, this approach introduced redundant information and
increased the computational complexity. Inspired by it, recent work tends to
use the un-amplified LR as the input image to train a network that can be
directly upsampled to HR dimensions. Instead, it is difficult to find an SR model
which is able to migrate to any upscaling factors with only minor adjustments
to the network architecture. Moreover, most of these networks tend to be a fixed
upscaling factor (x4), with no specific instructions given to migrate to other
upscaling factors.
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Fig. 4. Comparison of some common image reconstruction structure (×4).

PixelShuffle [2] and deconvolutional layer are widely used in SISR tasks.
As shown in Fig. 4, there are several common reconstruction modules. Taking
the upscaling factor of ×4 as an example, all of these modules use pixelShuffle
or deconvolution operation and the SR image is reconstructed gradually with
upscaling factor 2 as the base. However, as the upscaling factor increases (e.g.
×8), the network becomes deeper accompanied with more uncertain training
problems. Moreover, these methods does not work on odd upscaling factors,
while one might expect a tardy growth in upscaling factor(e.g. ×2,×3,×4,×5)
rather than exponential increase.

For this purpose, we put forward a new reconstruction module (Fig. 4(ours)),
which is a simple, efficient, and flexible structure. Thanks to pixelshuffle [2], our
modules can be migrated to any upscaling factor with minor adjustments. In
Table 1. we provide thorough configuration information about the reconstruc-
tion structure. In our network, for different upscaling factors, we only need to
change the value of M whose change is negligible. Experiments indicate that this
structure performs well on different upscaling factors.

4 Experiments

In this section, we evaluate the performance of our model on several benchmark
test-datasets. We first introduce the dataset used for training and testing, then
we give implementation details. Next, we compare our model with several state-
of-the-art methods. Finally, we give a series of qualitative analysis experiments
results. In addition, we show some of the results on other low-level computer
vision tasks with our MSRB.

4.1 Datasets

The most widely used training dataset in previous studies includes 291 images,
of which 91 images are from [14] and the other 200 images are from [15]. And
some methods take ImageNet [16] as training dataset, since it contains richer
samples. In our work, we choose DIV2K [11] as our training dataset, a new high-
quality image dataset for image restoration challenge. During testing, we choose
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Table 1. Detailed configuration information about the reconstruction structure. For
different upscaling factors, we only need to change the value of M.

Laye name Input channel Output channel Kernel size

conv input 64 64×2×2 3×3
PixelShuffle(×2) 64×2×2 64 /
conv output 64 1 3×3

conv input 64 64×3×3 3×3
PixelShuffle(×3) 64×3×3 64 /
conv output 64 1 3×3

conv input 64 64×4×4 3×3
PixelShuffle(×4) 64×4×4 64 /
conv output 64 1 3×3

conv input 64 64×8×8 3×3
PixelShuffle(×8) 64×8×8 64 /
conv output 64 1 3×3

conv input 64 64×M×M 3×3
PixelShuffle(×M) 64×M×M 64 /

conv output 64 1 3×3

five widely used benchmark datasets: Set5 [17], Set14 [18], BSDS100 [19], Ur-
ban100 [20] and Manga109 [21]. These datasets contain a wide variety of images
that can fully verify our model. Following previous works, all our training and
testing are based on luminance channel in YCbCr colour space, and upscaling
factors: ×2, ×3, ×4, ×8 are used for training and testing.

4.2 Implementation Details

Following [6], we augment the training data in three ways: (1) scaling (2) rotation
(3) flipping. In each training batch, we randomly extract 16 LR patches with the
size of 64×64 and an epoch having 1000 iterations of back-propagation. We train
our model with ADAM optimizer [22] by setting the learning rate lr = 0.0001.
In our final model, we use 8 multi-scale residual blocks (MSRB, N = 8) and the
output of each MSRB has 64 feature maps. Simultaneously, the output of each
bottleneck layer (1×1 convolutional layer) has 64 feature maps. We implement
MSRN with the Pytorch framework and train them using NVIDIA Titan Xp
GPU. We do not use a special weight initialization method or other training
tricks, and code is available at https://github.com/MIVRC/MSRN-PyTorch.

4.3 Comparisons with State-of-the-art Methods

We compare our model with 10 state-of-the-art SR methods, including Bicubic,
A+ [23], SelfExSR [20], SRCNN [1], ESPCN [2], FSRCNN [3], VDSR [4], DR-
CN [5], LapSRN [6] and EDSR [9]. For fair, we retrain most of these models
(except for EDSR [9], the results of EDSR provided by their original papers).
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Taking the equality of comparison into account, we evaluate the SR images with
two commonly-used image quality metrics: PSNR and SSIM. Moreover, all the
reported PSNR/SSIM measures are calculated on the luminance channel and
remove M-pixel from each border (M stands for the upscaling factor).

Table 2. Quantitative comparisons of state-of-the-art methods. Red text indicates the
best performancen and blue text indicate the second best performance. Notice that the
EDSR results were not retrained by us, but were provided by their original paper.

Algorithm Scale
Set5

PSNR/SSIM
Set14

PSNR/SSIM
BSDS100

PSNR/SSIM
Urban100

PSNR/SSIM
Manga109

PSNR/SSIM
Bicubic x2 33.69/0.9284 30.34/0.8675 29.57/0.8434 26.88/0.8438 30.82/0.9332
A+ [23] x2 36.60/0.9542 32.42/0.9059 31.24/0.8870 29.25/0.8955 35.37/0.9663
SelfExSR [20] x2 36.60/0.9537 32.46/0.9051 31.20/0.8863 29.55/0.8983 35.82/0.9671
SRCNN [1] x2 36.71/0.9536 32.32/0.9052 31.36/0.8880 29.54/0.8962 35.74/0.9661
ESPCN [2] x2 37.00/0.9559 32.75/0.9098 31.51/0.8939 29.87/0.9065 36.21/0.9694
FSRCNN [3] x2 37.06/0.9554 32.76/0.9078 31.53/0.8912 29.88/0.9024 36.67/0.9694
VDSR [4] x2 37.53/0.9583 33.05/0.9107 31.92/0.8965 30.79/0.9157 37.22/0.9729
DRCN [5] x2 37.63/0.9584 33.06/0.9108 31.85/0.8947 30.76/0.9147 37.63/0.9723
LapSRN [6] x2 37.52/0.9581 33.08/0.9109 31.80/0.8949 30.41/0.9112 37.27/0.9855
EDSR [9] x2 38.11/0.9601 33.92/0.9195 32.32/0.9013 -/- -/-
MSRN(our) x2 38.08/0.9605 33.74/0.9170 32.23/0.9013 32.22/0.9326 38.82/0.9868
Bicubic x3 30.41/0.8655 27.64/0.7722 27.21/0.7344 24.46/0.7411 26.96/0.8555
A+ [23] x3 32.63/0.9085 29.25/0.8194 28.31/0.7828 26.05/0.8019 29.93/0.9089
SelfExSR [20] x3 32.66/0.9089 29.34/0.8222 28.30/0.7839 26.45/0.8124 27.57/0.7997
SRCNN [1] x3 32.47/0.9067 29.23/0.8201 28.31/0.7832 26.25/0.8028 30.59/0.9107
ESPCN [2] x3 33.02/0.9135 29.49/0.8271 28.50/0.7937 26.41/0.8161 30.79/0.9181
FSRCNN [3] x3 33.20/0.9149 29.54/0.8277 28.55/0.7945 26.48/0.8175 30.98/0.9212
VDSR [4] x3 33.68/0.9201 29.86/0.8312 28.83/0.7966 27.15/0.8315 32.01/0.9310
DRCN [5] x3 33.85/0.9215 29.89/0.8317 28.81/0.7954 27.16/0.8311 32.31/0.9328
LapSRN [6] x3 33.82/0.9207 29.89/0.8304 28.82/0.7950 27.07/0.8298 32.21/0.9318
EDSR [9] x3 34.65/0.9282 30.52/0.8462 29.25/0.8093 -/- -/-
MSRN(our) x3 34.38/0.9262 30.34/0.8395 29.08/0.8041 28.08/0.8554 33.44/0.9427
Bicubic x4 28.43/0.8022 26.10/0.6936 25.97/0.6517 23.14/0.6599 24.91/0.7826
A+ [23] x4 30.33/0.8565 27.44/0.7450 26.83/0.6999 24.34/0.7211 27.03/0.8439
SelfExSR [20] x4 30.34/0.8593 27.55/0.7511 26.84/0.7032 24.83/0.7403 27.83/0.8598
SRCNN [1] x4 30.50/0.8573 27.62/0.7453 26.91/0.6994 24.53/0.7236 27.66/0.8505
ESPCN [2] x4 30.66/0.8646 27.71/0.7562 26.98/0.7124 24.60/0.7360 27.70/0.8560
FSRCNN [3] x4 30.73/0.8601 27.71/0.7488 26.98/0.7029 24.62/0.7272 27.90/0.8517
VDSR [4] x4 31.36/0.8796 28.11/0.7624 27.29/0.7167 25.18/0.7543 28.83/0.8809
DRCN [5] x4 31.56/0.8810 28.15/0.7627 27.24/0.7150 25.15/0.7530 28.98/0.8816
LapSRN [6] x4 31.54/0.8811 28.19/0.7635 27.32/0.7162 25.21/0.7564 29.09/0.8845
EDSR [9] x4 32.46/0.8968 28.80/0.7876 27.71/0.7420 -/- -/-
MSRN(our) x4 32.07/0.8903 28.60/0.7751 27.52/0.7273 26.04/0.7896 30.17/0.9034
Bicubic x8 24.40/0.6045 23.19/0.5110 23.67/0.4808 20.74/0.4841 21.46/0.6138
A+ [23] x8 25.53/0.6548 23.99/0.5535 24.21/0.5156 21.37/0.5193 22.39/0.6454
SelfExSR [20] x8 25.49/0.6733 24.02/0.5650 24.19/0.5146 21.81/0.5536 22.99/0.6907
SRCNN [1] x8 25.34/0.6471 23.86/0.5443 24.14/0.5043 21.29/0.5133 22.46/0.6606
ESPCN [2] x8 25.75/0.6738 24.21/0.5109 24.37/0.5277 21.59/0.5420 22.83/0.6715
FSRCNN [3] x8 25.42/0.6440 23.94/0.5482 24.21/0.5112 21.32/0.5090 22.39/0.6357
VDSR [4] x8 25.73/0.6743 23.20/0.5110 24.34/0.5169 21.48/0.5289 22.73/0.6688
DRCN [5] x8 25.93/0.6743 24.25/0.5510 24.49/0.5168 21.71/0.5289 23.20/0.6686
LapSRN [6] x8 26.15/0.7028 24.45/0.5792 24.54/0.5293 21.81/0.5555 23.39/0.7068
MSRN(our) x8 26.59/0.7254 24.88/0.5961 24.70/0.5410 22.37/0.5977 24.28/0.7517

The evaluation results of the SR method including our model and 10 state-
of-art methods are demonstrated in Table 2. Our model outperforms by a large
margin on different upscaling factors and test-datasets. It can be seen that our
results are slightly lower than EDSR [9]. But it is worth noting that EDSR [9] use
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Table 3. Specifications comparison (x4). ’RGB’ means the model is trained on RGB
channels, ’Y’ means the model is trained on luminance channel in YCbCr colour space,
and ’M’ means million.

Algorithm Feature extraction Filters Layers Depth Parameters Updates Channel

EDSR [9] 32 blocks 256 69 69 43M 1 × 106 RGB
MSRN (our) 8 blocks 64 44 28 6.3M 4 × 105 Y

Fig. 5. Quantitative comparison of three different feature extraction blocks (residual
block [12], dense block [24], and MSRB(our)) on SISR. The green line represents our
model and it achieves the best results under different upscaling factors.

RGB channels for training, meanwhile, the data augment methods are different.
To better illustrate the difference with EDSR [9], we show a comparison of model
specifications in Table 3. EDSR [9] is an outstanding model gained amazing
results. However, it is a deep and wide network which contains large quantities
of convolutional layers and parameters. In other words, training this model will
cost more memory, space and datasets. In contrast, the specifications of our
model is much smaller than EDSR [9], which makes it easier to reproduce and
promote.

In Fig. 6 and Fig. 7 we present visual performance on different datasets with
different upscaling factors. Our model can reconstruct sharp and natural images,
as well as outperforms other state-of-the-art methods. This is probably owing
to the MSRB module can detect the image features at different scales and use
them for reconstruction. For better illustration, more SR images reconstructed
by our model can be found at https://goo.gl/bGnZ8D.

4.4 Qualitative Analysis

Benefit of MSRB: In this work, we propose an efficient feature extraction
structure: multi-scale residual block. This module can adaptively detect image
features at different scales and fully exploit the potential features of the image.
To validate the effectiveness of our module, we design a set of comparative exper-
iments to compare the performance with residual block [12], dense block [24] and
MSRB in SISR tasks. Based on the MSRN architecture, we replace the feature
extraction block in the network. The three networks contain different feature
extraction block, and each network contains only one feature extraction block.
For quick verification, we use a small training dataset in this part, and all these
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×2: SRCNN [1] ×2: LapSRN [6] ×2: MSRN(our) Orignal(HR)

×3: SRCNN [1] ×3: LapSRN [6] ×3: MSRN(our) Orignal(HR)

×4: SRCNN [1] ×4: LapSRN [6] ×4: MSRN(our) Orignal(HR)

Fig. 6. Visual comparison for ×2, ×3, ×4 SR images. Our MSRN can reconstruct
realistic images with sharp edges.

×8: SRCNN [1] ×8: LapSRN [6] ×8: MSRN(our) Orignal(HR)

Fig. 7. Visual comparison of MSRN with other SR methods on large-scale (×8) SR
task. Obviously, MSRN can reconstruct realistic images with sharp edges.
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Fig. 8. Performance comparison of MSRN with different number of MSRBs.

(a) Residual block (b) Dense block (c) MSRB (our)

Fig. 9. Feature maps visualization. Represent the output of the residual block [12], the
dense block [24], and our MSRB, respectively.

models are trained in the same environment by 105 iterations. The results (Fig.
5) show that our MSRB module is superior to other modules at all upsampling
factors. As shown in Fig. 9, we visualize the output of these feature extraction
blocks. It deserves to notice that the activations are sparse (most values are
zero, as the visualization shown in black) and some activation maps may be all
zero which indicates dead filters. It is obvious that the output of the MSRB
contains more valid activation maps, which further proves the effectiveness of
the structure.

Benefit of Increasing The Number of MSRB: As is acknowledged, in-
creasing the depth of the network can effectively improve the performance. In
this work, adding the number of MSRBs is the simplest way to gain excellent
result. In order to verify the impact of the number of MSRBs on network, we
design a series of experiments. As shown in Fig. 8, our MSRN performance im-
proves rapidly with the number of MSRBs growth. Although the performance
of the network will further enhance by using more MSRB, but this will lead to
a more complex network. While weighing the network performance and network
complexity, we finally use 8 MSRBs, the result is close to EDSR, but the number
of model parameters is only one-seventh of it.

Performance on Other Tasks: In order to further verify the validity of our
proposed MSRB module, we apply it to other low-level computer vision tasks for
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(A.1) input (A.2) output (B.1) input (B.2) output

Fig. 10. Application examples for image denoising and image dehazing, respectively.

feature extraction. As shown in Fig. 10, we provide the results of image-denoising
and image-dehazing, respectively. It is obvious that our model achieves promising
results on other low-level computer vision tasks.

5 Discussion and Future Works

Many training tricks have been proposed to make the reconstructed image more
realistic in SISR. For example, multi-scale (the scale here represents the upscal-
ing factor) mixed training method is used in [4], [9], and geometric selfensemble
method is proposed in [9]. We believe that these training tricks can also improve
our model performance. However, we are more inclined to explore an efficient
model rather than use training tricks. Although our model has shown superi-
or performance, the reconstructed image is still not clear enough under large
upscaling factors. In the future work, we will pay more attention to large-scale
downsampling image reconstruction.

6 Conclusions

In this paper, we proposed an efficient multi-scale residual block (MSRB), which
is used to adaptively detect the image features at different scales. Based on
MSRB, we put forward multi-scale residual network (MSRN). It is a simple and
efficient SR model so that we can fully utilize the local multi-scale features and
the hierarchical features to obtain accurate SR image. Additionally, we achieved
promising results by applying the MSRB module to other computer vision tasks
such as image-denoising and image-dehazing.
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