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Abstract. Raw depth images captured by consumer depth cameras suf-
fer from noisy and missing values. Despite the success of CNN-based im-
age processing on color image restoration, similar approaches for depth
enhancement have not been much addressed yet because of the lack of
raw-clean pairwise dataset. In this paper, we propose a pairwise depth
image dataset generation method using dense 3D surface reconstruction
with a filtering method to remove low quality pairs. We also present a
multi-scale Laplacian pyramid based neural network and structure pre-
serving loss functions to progressively reduce the noise and holes from
coarse to fine scales. Experimental results show that our network trained
with our pairwise dataset can enhance the input depth images to become
comparable with 3D reconstructions obtained from depth streams, and
can accelerate the convergence of dense 3D reconstruction results.

Keywords: depth image dataset, depth image enhancement, 3D recon-
struction, deep learning, Laplacian pyramid network

1 Introduction

With consumer RGB-D cameras, e.g., ASUS Xtion [2] and Occipital Structure
sensor [34], depth images can be easily captured and have been utilized for im-
proving the performance of vision algorithms, such as 3D reconstruction [32,
33, 7], object recognition [3, 11], and semantic segmentation [26, 14, 39, 6]. Nev-
ertheless, the quality of depth images from those hand-held consumer RGB-D
cameras is still limited because their important design goal was speed rather
than precise acquisition of 3D geometry. The captured depth images suffer from
heavy noise and missing values, due to physical limitations of the sensors and
low processing power (Fig. 1b).

Several image processing methods have been developed for depth image en-
hancement. As the quality of concurrently captured RGB image is relatively bet-
ter than the depth image, exploiting the correlation between color and geometry
information, called sensor fusion, was investigated, mainly with local filter-based
methods [37, 38, 47]. However, a single degraded depth image contains only par-
tial information of the scene geometry, and previous single image-based methods
have limited capability especially in resolving heavy noise and missing values.



2 J. Jeon and S. Lee

(a) color image (b) noisy input depth (c) our result (d) 3D reconstruction

Fig. 1. Depth enhancement of a low quality raw depth image. In (b-d), the top right
and bottom left parts show the depths and surface normals, respectively. Visualization
of the normals clearly shows small but oscillating noise.

Recent advances of image processing using deep learning have achieved im-
pressive improvements on color image enhancement and restoration, such as
single image super-resolution (SISR) [23, 25], blur removal [45, 30] and image
completion [36, 18]. In those techniques, deep learning networks are optimized
using large datasets to automatically extract useful features and combine them
to produce desired outputs. However, deep learning based depth image enhance-
ment has not been actively researched so far due to the lack of a suitable dataset.

In the case of color image restoration, a network can be trained using a
self-supervised dataset that can be easily generated by degrading high-quality
images [1]. In contrast, a RGB-D camera can capture only low-quality depth im-
ages, and a self-supervised dataset for depth image enhancement cannot be built
in the same way as for color image restoration. As a result, a large-scale dataset
that enables deep learning based approaches for depth image enhancement has
not been made available yet.

In this paper, we present a large-scale pairwise depth dataset that consists of
noisy raw depth images and the corresponding clean depth images. To construct
the raw-clean depth image pairs, we utilize dense 3D reconstruction from a RGB-
D stream to estimate the clean and complete scene geometry. For an input raw
depth image, we generate the corresponding clean depth image by rendering the
reconstructed 3D scene at the estimated camera position. During the process,
structure-based image similarity [42] is measured to filter out low quality depth
image pairs caused by misalignments of camera positions and slight mismatches
of exact scene geometry. This filtering effectively increases the quality of our
dataset for depth image enhancement.

Using the dataset, we train a Laplacian pyramid based neural network to
obtain a clean depth image from a given raw depth image. We introduce a
gradient-based structure loss function to effectively preserve depth discontinu-
ities around object boundaries. Our network can progressively reduce the noise
and holes in the input by producing intermediate clean depth images from coarse
to fine scales.

In the experiments, we show that our network trained with our dataset sig-
nificantly reduces the noise and holes from a raw depth image, while preserving
the desired discontinuities, e.g., between the foreground objects and the back-
ground. As an application of depth image enhancement, we demonstrate that the
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convergence of dense 3D surface reconstruction can be drastically accelerated by
pre-filtering the input depth stream with our enhancement method.

Our main contributions can be summarized as follows:

– we generate a large-scale raw-clean pairwise depth image dataset that can
be used for supervised learning of depth image enhancement, by applying
the state-of-the-art dense 3D surface reconstruction on RGB-D streams.

– we propose a deep Laplacian pyramid network with multi-scale skip con-
nections for depth image enhancement which reduces noise and holes in a
cascaded manner.

– Our loss functions for training the network enable original geometric struc-
tures to be preserved during depth image enhancement, and the property
helps accelerating the convergence of dense 3D surface reconstruction.

2 Related Work

2.1 Depth image enhancement

The most common approach to refine a low quality depth image from a RGB-D
camera is to incorporate the concurrently captured high quality color image.
Besides the conventional joint bilateral filtering based methods [5, 24], various
approaches have been tried to exploit the correlation between color and geometry.
For example, low-rank matrix completion [29], multi-scale sparse representation
learning [22], shape from shading [46, 43], and analysis representation model [13]
have been used for depth map refinement.

Another line of researches to improve the depth image quality is depth im-
age super-resolution. Similar to depth enhancement, high-resolution color im-
ages [28], dictionary learning [19, 41], and shape from shading [15] have been
used. Although these techniques can enhance the quality of depth images from
a consumer RGB-D camera, their main goal is to increase the spatial resolution,
rather than noise reduction or hole filling.

2.2 CNN-based image processing

Convolutional neural network (CNN) based image processing methods have
shown great performance on various problems, covering from low-level image
restoration, such as single image super resolution [10, 25, 23] and image deblur-
ring [45, 30], to high-level tasks, such as image completion [36, 18] and image
generation [9]. Their successes are based on development of novel network archi-
tectures [16, 12] and availability of large-scale training datasets [8, 27].

In contrast, deep learning has not been intensively applied to depth image
processing mainly due to the lack of large-scale training datasets. Recently, Hui
et al. [17] proposed a CNN-based depth map super-resolution method. Their
multi-scale guided network can upscale depth maps with high resolution color
guidance images, but the network as well as the dataset cannot be directly used
for enhancing depth images captured by consumer RGB-D cameras.
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2.3 Dense 3D reconstruction and RGB-D dataset

Our approach for constructing a pairwise depth dataset utilizes a dense 3D
reconstruction method and a large-scale RGB-D dataset. Based on the pioneering
work of KinectFusion [32], a few following works have been proposed. Nießner
et al. [33] drastically reduced the memory consumption for reconstruction using
a sparse hash data structure, enabling large-scale reconstruction of an entire
room or a whole floor. Dai et al. [7] proposed the BundleFusion algorithm that
uses additional color features for registration and global bundle adjustment for
obtaining more precise scene geometry.

By capturing depth streams using consumer RGB-D cameras, several RGB-
D image dataset have been published for computer vision tasks. SUN RGB-D
dataset [39] consists of 10K images with manually annotated semantic informa-
tion. ScanNet dataset [6] contains 2.5 million images from more than 1500 scans.
In our dataset construction, we use the ScanNet dataset [6], as it provides raw
RGB-D streams and the corresponding scene geometries reconstructed using the
state-of-the-art BundleFusion algorithm [7].

Concurrently and independently from our work, Zhang et al. [49] presented a
pairwise depth image dataset generated using 3D reconstruction from a RGB-D
stream. However, in contrast to our work, they mainly focused on estimating
large unobserved depth values rather than removing noise and holes from low
quality RGB-D images. Moreover, they did not address possible misalignments
between the raw input and the rendered depth images caused by inaccurate 3D
reconstruction, which should be resolved for effective training of a depth image
processing network.

3 Our Approach

In this paper, we mainly address three key issues that should be considered
when processing raw depth images captured by consumer RGB-D cameras: depth
noise, depth hole, and depth discontinuity.

Depth noise A raw depth image usually contains strong non-uniform noise
patterns. Since a RGB-D camera captures 3D geometry by analyzing projected
patterns (structured light cameras) or measuring the traveling times of emitted
lights (ToF cameras), noise distributions are affected by surface materials and
distances from the camera (Fig. 2b). Therefore, a conventional image filter with
a fixed kernel size, such as bilateral filter [40], would not be enough for processing
a variety of noise. Instead, in our work, we use a deep CNN that can adaptively
handle the noise by extracting multi-scale features from a given depth image.

Depth hole Similar to the depth noise, physical limitation of a RGB-D camera
causes missing depth values, called holes. These holes are usually found around
object boundaries, because of the visibility differences between the light emitter
and the image sensor (Fig. 2c). In addition, too shiny or light-absorbing parts can
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(a) raw depth image (b) noise (c) holes (d) discontinuity

Fig. 2. Key factors that lower the quality of a raw depth image. (a) a raw depth
image, (b) spatially varying depth noise (visualized using surface normals), (c) depth
holes near the edges (blue regions), (d) depth discontinuity at the object boundary.

cause missing depth values. Predicting the missing values requires understanding
of the local and global contexts of the input scene. To enable such prediction,
our network architecture progressively enhances the depth image from coarse
(1/4 size of the input) to fine scales.

Depth discontinuity The values in a depth image have strong discontinuities
along depth edges (Fig. 2d). Unlike a color image having anti-aliased smooth
pixels around edges, a depth image should not have anti-aliased depth values ob-
tained by blending the foreground and background depths. Such blended depth
pixels would result in small floating fragments of object boundaries between the
foreground and the background. In our work, to preserve the original disconti-
nuities in a depth image, we present a gradient-based structure preserving loss
that can strongly penalize smoothing of depth edges.

Dataset quality To achieve the enhancement from raw noisy depths to clean
depths using supervised learning, the quality of the dataset used for training
is very important. Especially, hole filling and discontinuity preserving filtering
require exact spatial alignments of geometric features, such as depth edges, for
the raw and clean depth image pairs. In the dataset generation process, we check
the quality of raw-clean depth image pairs by measuring the structural similarity,
and filter out low quality pairs to improve the overall quality of the dataset.

4 Pairwise Depth Dataset Generation

To train a deep neural network for depth image enhancement, we need a large-
scale pairwise depth image dataset that consists of raw-clean image pairs. Cap-
turing a scene with a high-precision laser scanner, in addition to a RGB-D cam-
era, could produce smooth and clean depth images for the dataset, but such an
approach requires additional hardware. On the other hand, we can obtain clean
depth image by rendering synthetically modeled high-quality 3D scenes, but in
that case, degrading the rendered depth images to obtain real raw depth im-
ages is not straightforward as complex physical interactions between the capture
setup and object materials should be reflected in the degradation process.
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(a) SSIM histogram (b) good alignment (c) bad alignment

Fig. 3. Structure similarity histogram of the generated patch pairs and example patch
pairs from good (blue) and bad (red) alignment sets. top: raw patch, bottom: rendered
patch.

In this paper, without using any additional sensor or 3D models, we construct
the raw-clean depth image pairs by taking a dense 3D surface reconstruction
technique [7]. Given a depth stream, dense 3D surface reconstruction integrates
multiple depth images into a single volumetric space. The integration reduces
the noise and fills the missing geometry by aggregating geometric information
captured at multiple views. Simultaneously, the reconstruction estimates the
camera poses of input frames, so we can render the reconstructed geometry using
the estimated camera poses to generate clean depth images that correspond to
the input noisy depth images.

4.1 3D reconstruction dataset

For successful learning, the generated pairwise depth dataset should cover real
world scenes as much as possible. We use ScanNet dataset [6] as the input for
3D reconstruction. ScanNet consists of more than a million of RGB-D images
captured from hundreds of scenes. In addition, ScanNet [6] provides high-quality
triangular mesh data and the estimated camera poses obtained by BundleFu-
sion [7].

For input depth frames, we render the corresponding clean depth images
using the reconstructed triangular mesh and the estimated camera poses. As
adjacent frames include lots of overlapping geometry, we only sample a frame
per 40 consecutive frames. In addition, we selected 40 scenes from ScanNet,
avoiding redundant scene information. As a result, we obtain 4,000 depth image
pairs for the dataset in total. Note that 3D scenes often consist of simple primitive
shapes such as planes and curves, and are not as much as complex compared to
color images. Hence, thousands of well-sampled frames could be enough for our
depth enhancement framework. Finally, we slice the depth images into 128×128
patches as the training samples. This is for efficient network training and outlier
handling, which will be discussed in the following sections. Fig. 3 shows rendered
clean depth patches and the corresponding low quality raw depth patches.
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4.2 Misaligned outliers filtering of dataset

Although rendered clean depth images are smooth and contain fewer holes com-
pared to the corresponding raw depth images, there still exists an additional
issue to generate a dataset good enough for training a deep neural network for
depth image enhancement. BundleFusion [7] shows the state-of-the-art 3D re-
construction, but its camera tracking may contain some errors. Moreover, the
geometric integration through a RGB-D stream sometimes misses sharp and thin
structures, e.g., chair legs and clothes hangers. These errors may introduce mis-
alignments between the geometry of an input depth image and the correspond-
ing rendered clean depth image (Fig. 3c). Especially, the misalignments become
prominent around object boundaries as depth values around depth edges change
rapidly and are merged in the volumetric reconstruction. In network learning,
these misalignments work as outlier samples and training becomes unstable (Fig.
8a). Consequently, we need a filtering process for the dataset to discard mis-
aligned depth patch pairs.

To discard the misaligned depth patch pairs, we measure the structural simi-
larity (SSIM) [42] between the raw input and corresponding clean label patches.
SSIM can effectively measure the structural misalignments between two images.
Fig. 3a shows the SSIM histogram of the originally constructed pairwise depth
patch dataset. In Fig. 3, we can see that a large portion of patch pairs have low
SSIM values caused by misalignments around depth edges and small missing ob-
jects. We discard such patch pairs that have SSIM values lower than 0.8, which
are about 20% of the original dataset. We also discard incomplete pairs whose
raw or clean patch contains a hole larger than 10% of the patch area. After
the outlier filtering process, our pairwise depth dataset consists of 56,000 depth
patch pairs, where 52,288 pairs are used for training and 3,712 for validation.

5 Laplacian Pyramid Depth Enhancement Network

5.1 Network architecture

As mentioned in Section 3, to handle spatially varying noise and holes by con-
sidering local and global contexts, our network progressively reduces the noise
and fills the holes from coarse to fine scales. We choose the deep Laplacian pyra-
mid network (LapSRN) as our base network architecture, which was proposed
for image super-resolution [23]. LapSRN progressively upsamples the input low
resolution image by predicting the residual image for the next finer level in an
image pyramid. For more details, please refer the original paper [23].

By modifying LapSRN for depth image enhancement, we propose the deep
Laplacian pyramid depth image enhancement network (LapDEN). Fig. 4 shows
the overall architecture of LapDEN. Unlike super-resolution that directly up-
samples the spatial resolution of a given input image, LapDEN first predicts the
clean complete depth image at the coarsest scale, which has a quarter of the
original resolution. Then the predicted quarter-sized clean depth image is pro-
gressively upsampled through the pyramid to predict the half and original-sized
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Fig. 4. Laplacian pyramid-based depth image enhancement network (LapDEN).

clean depth images. In addition, the features extracted during the downsampling
are passed to the upsampling pyramid with skip connections to prevent loss of
the original details in the input depth image during the upsampling.

The overall structure of LapDEN introduces two advantages. First, noise
reduction and hole filling become easier when tried at a coarse scale. Downsam-
pling the input depth image naturally reduces noise and holes, and the receptive
field size of CNN becomes larger. Then the network can easily learn to predict
the clean and complete depth image representing the overall structure of the
scene. Second, since we estimate the overall structure and smooth surfaces in
the coarse scale prediction, finer scale layers only need to learn to predict the
residuals that sharpen depth edge discontinuities and fine details.

Network architecture details As shown in Fig. 4, LapDEN predicts an en-
hanced depth image through a 3-level image pyramid. After the input depth
image is projected onto a 64 channel feature map using a convolutional layer
with 7×7 kernels, we extract the multi-level features using a stack of multiple
convolutional layers with local residual skip connections. For each level of the
image pyramid, a long skip connection directly passes the extracted features to
the later corresponding part of the network to enable a fusion of the features
extracted in different scales (red arrows).

At the coarsest level, we predict the quarter size residual depth image from
the extracted features using an image reconstruction layer. Noise and holes could
be almost removed at this level. After that, the features are upsampled and
transformed further to predict fine-scale sub-band residuals for the upper levels.
We use 20 and 40 convolutional layers for residual blocks at the mid- and high-
levels of the pyramid, respectively.

Every convolutional layer except the layers predicting the residuals (i.e., re-
construction layers) has a following leaky rectified linear unit (LReLU) with a
negative slope of 0.2. Following the original LapSRN architecture [23], all convo-
lutional layers use 64 filters with size of 3×3. The downsampling and upsampling
are performed by convolutional and transposed convolutional layers using 64 fil-
ters with size of 4× 4.
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5.2 Loss functions for training

Our goal is to train a transform function ŷ = f(x; θ) for estimating an enhanced
depth image ŷ from a given noisy raw depth image x with network parameters
θ. Let y be the ground truth clean depth image corresponding to x. Then our
network training is to find the set of parameters θ that minimize the loss func-
tion

∑

(x,y)∈D L(f(x; θ),y) for the training samples in the pairwise depth image
dataset D. Our overall loss function is defined as a combination of data loss LD

and structure preserving loss LS :

L(ŷ = f(x; θ),y) = LD(ŷ,y) + 10LS(ŷ,x). (1)

Multi-scale data losses We first define LD by the L1 distances of the depth
and the depth gradient between ŷ and y as in usual CNN-based image regres-
sion [44, 23]. In addition, we use the L1 distance of surface normal map between
them. Surface normal direction is highly sensitive to the oscillating noise of depth
values, so minimizing the surface normal distance is effective for removing small
depth noise compared to the previous two measures. Overall, we define the data
loss LD as follows:

LD (ŷ,y) =
1

N

∑

p

(

ρ (ŷp − yp) + λgρ (∇ŷp −∇yp) + λnρ (n̂p − np)
)

, (2)

where p is a pixel position of ŷ, yp and np is a depth and a surface normal of pixel
p, respectively. N is the number of pixels, ∇ is the gradient operator, and ρ(x) =
√

‖x‖
2
+ ǫ2 is the Charbonnier loss function [4], which is a differentiable form

of L1 norm. We used L1 norm because of its robustness against to misaligned
outlier pairs that might still remain in our training data. λg and λn are balancing
parameters. We set λg = λn = 2 in our experiments.

Structure preserving loss As we discussed in Section 3, a depth image has
clear discontinuity and strong aliasing along the edges between foreground and
background regions. Conventional loss functions such as L2 or L1 for the depth
values can hardly preserve this discontinuity. In this work, we propose a gradient-
based structure preserving loss LS to preserve the original geometric structure
and discontinuity of a depth image. Mathematically, depth discontinuity intro-
duces strong gradient magnitudes at the edge pixels. If anti-aliasing or blending
happens, the maximum gradient magnitude around the edge becomes small as
the steep edge is spreaded out to multiple pixels. Based on this observation, LS

is defined as:

LS(ŷ,x) =
1

N

∑

p

(

max
q∈Ω(p)

|∇ŷq| − max
q∈Ω(p)

|∇xq|

)2

, (3)

where Ω(p) is a local window centered at pixel p. LS calculates the maximum
gradient magnitude around pixel p, and measures the distance between those
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maximums for ŷ and x. Therefore, minimizing LS enforces ŷ and x to have
similar depth discontinuity structures. In our experiments, we set Ω(p) as a 5×5
window for all levels of the image pyramid.

Differently from the previous data loss LD, LS uses the input depth image
x as a supervision. As the training sample pairs might not be exactly aligned
despite of the dataset filtering, promoting strong discontinuities following the
target depth image could increase the ambiguity of the transform to be trained.
Instead, we use the input depth image as our supervision to guide the network
output to preserve the original structure of the given input depth image.

In addition, instead of giving a strong penalty to a misaligned edge, we allow
rooms for edge positions by comparing the maximum gradient magnitude around
edge pixels. It enables a predicted edge to take structural information from
neighboring pixels even if the depth pixel is missing at that position in the input
image. As a result, by training the network with the structure preserving loss LS

as well as the data loss LD, the original depth discontinuity of an input image
is effectively preserved while its noisy and missing depth values are significantly
enhanced.

6 Experimental Results

For experiments, we tested our trained network LapDEN on two datasets: Scan-
Net [6] and NYU-Depth V2 dataset [31]. For the ScanNet dataset, we evaluate
our results by comparing them with clean depth images.

6.1 Training details and parameters

LapDEN contains more than 90 convolutional layers and the multi-scale pyramid
supervisions are also included in the network. It was hard to train the entire
network in a single session. Instead, we used three-stage strategy for training.

In the first stage, we train the network only with the coarsest level supervi-
sion. In other words, the network is trained to predict the overall structure and
smooth surfaces by reducing noise and filling the holes in the quarter-sized spa-
tial resolution. After that, we initialize the network with pre-trained parameters
for the second stage training. In this stage, we use both the first and second
level supervisions to retain the prediction ability for the scene structure at the
coarset level. Similarly, in the final third stage, we train the entire network ini-
tialized with pre-trained parameters from the second stage using all three levels
of supervisions to predict the result in the original spatial resolution.

We used NVIDIA Titan Xp GPU to train the network. We built our frame-
work on the Pytorch library [35]. For optimization, we use Adam optimizer [20]
with β = 0.9. For the first and second stages, we trained the network with a
learning rate of 10−4 for 30 epochs. For the last stage, we used a learning rate
of 10−4 for 30 epochs, and then decayed it to 10−5 for additional 20 epochs. We
used a batch size of 64 for the first and second stages, and 32 for the last stage
training.
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(a) input image (b) 1st level (c) 2nd level (d) 3rd level (e) target

Fig. 5. Progressive depth enhancement results of our method.

(a) input color (b) input depth (c) input normal (d) our depth (e) our normal

Fig. 6. Depth enhancement results on NYU-Depth v2 dataset [31]

6.2 Enhancement results

Progressive depth image enhancement LapDEN progressively enhances
a depth image through the 3-level image pyramid. Fig. 5 shows intermediate
enhancement results at the pyramid levels and the target clean depth image.
This example demonstrates that depth noise and holes are refined at the coarsest
scale, and the details and sharp edges are recovered through the two finer scales.
The target clean depth image has been generated by integrating tens of RGB-D
frames with a state-of-the-art 3D reconstruction method [7]. LapDEN only takes
a single depth image as the input, but still it can produce a clean and sharp depth
image which is comparable to the target image. Additional enhancement results
are given in Fig. 1.

We also tested our method on depth images from the NYU dataset [31]. Fig.
6 shows that our method significantly reduces the noise of the given raw depth
images, and well predicts missing depth values.

Comparison with previous methods Fig. 7 shows comparison results of our
method with previous approaches. For the baseline method, we choose the rolling
guidance filter (RGF) [48], which was originally proposed for image texture de-
composition. Since oscillating depth noise can be treated as a texture pattern,
RGF reduces the noise with a few iterations of filtering. We also compared our
results with the recent joint filtering method [38], where the mutual-structures
among color and depth images are exploited to enhance a depth image. As these
two methods are not good at hole filling, before applying the methods, we filled
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(a) input image (b) RGF (c) joint filter (d) our result (e) target

Fig. 7. Visual comparison of our results with (b) rolling guidance filter [48] and (c)
mutual-structure joint filter [38]. Note that the target images contain holes due to
incomplete 3D reconstruction. Additional examples are in the supplementary material.

Table 1. Performance comparison with a test set. We measured SSIM and RMSE
between the noisy input depth and the ground truth depth for a baseline.

Raw input depth RGF [48] Joint filter [38] Ours

SSIM 0.8620 0.9065 0.9152 0.9229

RMSE 0.3450 0.2401 0.2360 0.2148

the holes with joint bilateral upsampling [21] with the guidance of the corre-
sponding color image.

As shown in Fig. 7, our method outperforms the previous methods on remov-
ing the depth noise as well as preserving the depth discontinuity. RGF [48] uses
a fixed-size filter kernel, and requires a large kernel size to remove severe depth
noise in the regions far from the camera, resulting in loss of geometric struc-
tures. The joint filtering method [38] shows relatively good results on reducing
the noise but it introduces some waving artifacts around the edges of the desk,
which seems to be caused by misaligned color information. The artifacts can be
seen more clearly in the surface normal.

For quantitative comparison, we measured the average SSIM and RMSE
between the enhancement results and the ground truth depth images on a test
set that consists of 355 depth images sampled from a subset of ScanNet scenes [6].
Table 1 shows our results reported the highest performance in the experiment.
More comparisons can be found in the supplementary material.

6.3 Component analysis

Dataset filtering As shown in Fig. 8(a), if we do not filter the dataset to remove
misaligned depth pairs, the training process becomes unstable and converges to
a higher loss compared to the filtered dataset. As a result, the output patches
of a network trained without the filtering show blurry and noisy depth values
around the edges (Fig. 8c). In contrast, our dataset filtering improves the quality
of the dataset, and enables clean and sharp results to be obtained (Fig. 8e).
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(a) (b) (c) (d) (e) (f)

Fig. 8. Component analysis of our network. (a) training loss curves, (b) input patches,
(c) without dataset filtering, (d) without LS , (e) our result, (f) ground truth.

Structure preserving loss To verify the effectiveness of our structure pre-
serving loss LS , we trained the network only using the data loss LD with other
settings unchanged. As shown in Fig. 8d, although the network can reduce the
noise of smooth surface well, it introduces blurry depth boundaries compared
to the result of the complete network. These blurry pixels cause 3D floating
points in the space around object boundaries, which would act as outliers in the
applications of depth images, such as 3D reconstruction.

6.4 Application: 3D reconstruction with pre-filtered depth images

As we described in Section 4, we use dense 3D reconstruction for the pairwise
dataset generation. As an application of our depth image enhancement, now we
demonstrate that our method can drastically accelerate the convergence of dense
3D surface reconstruction by enhancing the input depth stream.

Convergence acceleration of depth integration In dense 3D surface recon-
struction, input depth images from multiple viewpoints are integrated to reduce
noise and complete the 3D geometry. In this experiment, we pre-filtered the
input depth stream using our enhancement method and provided it to a 3D
reconstruction method [7]. Fig. 9a shows the results. By integrating only a few
frames, we could already obtain a converged smooth surface, which would have
needed more frames to be integrated if the raw stream was used. This exam-
ple shows that the 3D reconstruction process could be made more effective and
time-saving with our enhancement method, as we do not need to wait until many
frames are integrated to produce smooth surfaces of the scene.

Reconstruction with frame-skipped stream We also show that the pre-
filtered depth stream can reconstruct the complete geometry even if we omit
every other frame to reduce the frame rate of the original stream into a half.
As shown in Fig. 9b, the reconstructed mesh has not been degraded with the
frame-skipped stream, due to the accelerated convergence of depth integration
with our enhancement method. This experiment implies that we can move the
RGB-D camera twice faster than usual while still preserving the quality of 3D
reconstruction using our depth image enhancement method.
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Raw 5 frames Filtered 5 frames Raw 5 frames Filtered 5 frames
(a) Convergence acceleration

Frame-skipped pre-filtered stream Full raw stream
(b) Reconstruction with a frame-skipped stream

Fig. 9. 3D reconstruction experiments with pre-filtered depth images.

input image input depth input normal output depth output normal

Fig. 10. Failure case of the proposed algorithm.

7 Conclusions

This paper presented a pairwise depth image dataset generation method, which
is based on dense 3D surface reconstruction from a RGB-D stream. We also pre-
sented a Laplacian pyramid-based neural network and gradient-based structure
preserving loss for depth image enhancement. With experiments, we demon-
strated that our method can produce clean and sharp depth images from raw
depth images, which can be utilized for accelerating 3D reconstruction process.

There remain few limitations of our method. First of all, the speed is not real-
time, and the method cannot be applied for real-time applications. In addition,
depth holes larger than the patch size used for network training may not be
clearly recovered (Fig. 10). Resolving these limitations with more light-weighted
and advanced network structures would be interesting future work.
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