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Abstract. Some existing CNN-based methods for single-view 3D ob-
ject reconstruction represent a 3D object as either a 3D voxel occupancy
grid or multiple depth-mask image pairs. However, these representations
are inefficient since empty voxels or background pixels are wasteful. We
propose a novel approach that addresses this limitation by replacing
masks with “deformation-fields”. Given a single image at an arbitrary
viewpoint, a CNN predicts multiple surfaces, each in a canonical loca-
tion relative to the object. Each surface comprises a depth-map and
corresponding deformation-field that ensures every pixel-depth pair in
the depth-map lies on the object surface. These surfaces are then fused
to form the full 3D shape. During training we use a combination of per-
view loss and multi-view losses. The novel multi-view loss encourages the
3D points back-projected from a particular view to be consistent across
views. Extensive experiments demonstrate the efficiency and efficacy of
our method on single-view 3D object reconstruction.
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1 Introduction

Although humans can effortlessly infer the 3D structure of an object from a single
image, it is, however, an ill-posed problem in computer vision. To make it well-
posed, researchers have been using hand-crafted 3D cues such as “Shape from X”
(e.g., shading, texture) [4, 1, 26] , and planarity [28, 23]. More recently, there has
been considerable interest in using deep networks to regress from an image to its
depth [22, 8, 10, 38] for scene geometry reconstruction, and in particular from an
image of an object to its 3D shape for object geometry reconstruction. There is
no settled or best way to represent 3D objects, with methods including meshes
[29, 17], point clouds [7, 21, 33], or voxel occupancy grids [5, 9, 32] , each having
both advantages and disadvantages in terms of the efficiency and convenience of
the representation, and – importantly for our purposes – for learning.

⋆ This work was done prior to joining NVIDIA
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Fig. 1. The overall pipeline of our approach. Given a single RGB image of an object
from an arbitrary viewpoint, the CNN outputs a set of 2D pre-deformation depth maps
and corresponding deformation fields at pre-defined canonical viewpoints. These are
each passed to a Grid Deformation Unit (GDU) that transforms the regular grid of
the depth map to a “deformed depth map”. Finally, we transform the deformed depth
maps into a common coordinate frame to fuse all 3D points into a single dense point
cloud. The colors of points indicate different depth values, and the arrow directions
represent the image grid deformation (for visualization effect, the magnitude of arrow
is not actual scale, the image size is also scaled down)

For volumetric representation methods, most existing CNN-based methods
simply extend 2D deconvolutions to 3D deconvolutions on 3D regular grids, as
done in [5, 9]. For each voxel, the network predicts the score of being occupied
by the object. Thresholding the volumetric score map results in a 3D occupancy
object representation. Nevertheless, 3D volumetric representations are very ex-
pensive in both computation and memory when working with deep networks —
the required memory increases cubically with the grid resolution. Importantly,
only a small portion of the voxels (less than 10%) are occupied by the object,
leaving the rest wasteful. Consequentially, most existing methods are only able to
reconstruct objects with low resolutions (i.e., 32x32x32), thus losing the surface
granularity. Furthermore, it is generally non-trivial to find a suitable threshold
to generate precise object surfaces for different object classes or even different
objects in the same class.

Intuitively, it is more efficient to predict the surface of an object directly,
rather than the whole 3D space. Fan et al. [7] proposed Point Set Generation
Net (PSGN), where the surface is represented by an orderless point cloud. As
point clouds are unstructured, computing the training loss is highly expensive
— for instance, for N prediction points along with N ground-truth points, the
complexity of the Chamfer Distance used in [7] is O(N2). To tackle this issue,
works from Lin et al. [21] and Tatarchenko et al. [33] used a set of depth maps
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from different viewpoints relative to the object, which are easily fused into a
point cloud. In this representation, depth is used for supervision, rather than
point-wise distance between orderless predicted and ground-truth point clouds.
However, the predicted depth maps from a deep neural net inherently cover not
only object points but also unnecessary background. To classify foreground and
background points, [21, 33] also predicted a binary (i.e., foreground/background)
segmentation mask for each depth map, where each pixel is the score of being
foreground. Similar to the 3D volumetric representation, this depth-mask rep-
resentation is also inefficient as background points are unused, and also suffers
from the non-trivial foreground/background thresholding.

Moreover, learning to regress depth from images often generates noisy points
around the surface [33]. The fusion of multiple partial-view point clouds escalates
the noise. In [21], they propose to improve the quality of fused point clouds by a
multi-view consistency supervision based on binary masks and depth maps. The
idea is to project the predicted 3D point cloud to novel viewpoints to generate
new depth maps and masks at these viewpoints, which are then supervised by
the corresponding ground-truth depth maps and binary masks. However, this
supervision, being similar to the shape from silhouette technique [24] and voxel
based multi-view consistency supervision in deep learning based methods [37,
34], encourages masking out the points projected to the background. This further
reduces the density of the predicted point clouds and harms the surface coverage.

In this paper, we present a novel and highly efficient framework (shown in Fig.
1) to generate dense point clouds for representing the 3D shape of objects. Given
a single image of an object of interest, taken from an arbitrary viewpoint, our
network generates multiple partial surfaces of the object, each at a pre-defined
canonical viewpoint. Although it looks similar to the depth-mask representation
as a multi-view representation, each surface is defined by a depth map and corre-
sponding deformation field (instead of a binary mask). In the Grid Deformation
Unit (GDU), a point on the surface is obtained by first shifting a pixel on the
depth map image grid by the amount given by the deformation field and then
back-projecting (to the corresponding depth). The resulting set of points can
then be considered a (dense) point cloud, though it is not an orderless one. The
final 3D object representation is obtained by fusing the point-cloud surfaces into
a single point cloud.

Both the depth maps and the deformation fields are regressed from the orig-
inal image using a deep network trained to predict the set of canonical views.
At training time we use a combination of per-view and multi-view losses. Our
unique representation ensures that the per-view loss can be evaluated in O(n)
time (where n is the number of points) because there is no need to establish
correspondence between predicted and ground-truth depths. This in contrast to,
for instance, Chamfer Distance usually required for unordered point-sets, leading
to O(n2) complexity.

The novel multi-view loss encourages the 3D points back-projected from a
particular view to be consistent across novel views. More specifically when a
predicted 3D point is re-projected into a novel viewpoint but falls outside of
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the object silhouette, our network incurs a loss based on the distance of the
point to the boundary, rather than penalizing a binary cross entropy loss as
done in [21, 37, 34]. Our extensive experiments demonstrate that using these
combined per-view and multi-view losses yields more accurate and dense point
cloud representations than any previous method.

Our contributions in this paper are summarized as follows:

– We propose a novel deformed depth map representation for 3D object re-
construction based on multiple canonical views that is efficient and bypasses
foreground/background thresholding that lead to structural errors;

– We show how this representation can be effectively regressed using a deep
network from a single view;

– We introduce a novel loss for our network that combines a per-view loss –
that can be efficiently calculated thanks to our unique representation – with
a novel multi-view loss based a distance field.

– We evaluate our method extensively showing more accurate and denser point
clouds than current state-of-the-art methods. We include ablation experi-
ments that demonstrate the value of the contributions above separately.

2 Related Work

3D reconstruction from single images has been a long-standing question in com-
puter vision community. While a single image can provide abundant information
about scene or object appearance, it barely provides any information about 3D
geometry. Therefore, one has to resort to other source of information as addi-
tional input for 3D reconstruction.

The use of additional images is a typical example. This branch of works try
to find the geometry correspondence between views to recover geometry, such
as SfM [13] and SLAM [25]. However, these methods require dense viewpoints
because the local appearance has to be preserved for feature matching. To relax
the constraint of dense viewpoints, silhouette carving [24, 19] and space carving
[20] have been proposed. These methods feature the downsides of failure on
concave structures and multiple views needed.

Another type of additional information is prior knowledge. Using prior knowl-
edge improves resilience to incorrect feature matching and concavity (e.g., chairs
should be concave between two arms). Some prior works used simple geometry
entities as shape prior [27, 2]. Recently, Kar et al. [16] leveraged the strong
regularity of objects. For a specific object category, they learn deformable tem-
plates from a large collection of images with object of interest presented and the
corresponding segmentation masks. Dame et al. [6] proposed a framework that
combines a SLAM with deformable object templates. Rather than learning a sin-
gle or a few deformable templates, methods like Huang et al. [12] and Kurenkov
et al. [18] used image features to retrieve similar 3D shapes, from which they
deform to the target shapes.

Even though our method also uses deformation, the differences between our
deformation and that of their approaches are in twofold: firstly, we perform 2D
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deformation on an image grid, such that the deformed image grid matches the
object silhouette, while they deform the 3D shape directly. More importantly,
they perform deformation on 3D basis models with small variants while ours
deforms a regular grid into any 2D shape.

Since large repositories of CAD models become available (e.g., ShapeNet [?]),
it is easy to render vast amount of 2D images from CAD models [30]. The large
number of 2D-3D ground-truth pairs make it seamless to use a powerful yet data
hungry framework — deep neural net. Different deep learning based methods to
generate 3D object shapes from single images are presented.

The pioneering works are from Choy et al. [5] and Girdhar et al. [9] who use
3D CNNs to perform voxel reconstruction that is limited to low resolution voxel
grids. Octree data structure [32, 11] and Discrete Cosine Transform technique
[15] have been used to scale up the voxel grid. More recently, Fan et al. [7]
proposed an alternative approach that predicts an orderless point cloud to shape
the surface of objects directly. Nevertheless, this method is limited to a sparse
point cloud because 1) the number of learnable parameters increases linearly
as the number of predicted points and 2) the direct 3D distance metrics (e.g.,
Chamfer Distance) are also intractable for dense point clouds. Thus, this method
is not scalable in terms of memory and training time.

The most relevant works to us are [21, 33]. We all advocate that in order
to generate dense point clouds, one should resort to partial surfaces each repre-
sented by a structured point cloud. However, the fundamental difference between
our approach and that of [21, 33] is how to shape these surfaces. In their methods,
they shape an object surface by predicting a binary mask along with the depth
map to filter out points that are not back-projected to the surface in 3D space.
Although Lin et al. [21] relaxed their network to predict x and y coordinates
along with a depth map for more flexibility, they still rely on a binary mask
to shape a 3D surface. The side effects of these depth-mask based approaches
are firstly, it is a huge computation waste as a large number of points are dis-
carded, especially for objects with thin structure such as lamp, airplane and
chairs; secondly, foreground/background thresholding inherits the thresholding
issue from 3D voxel grid representation. Instead, we predict the surface directly
by deforming the regular depth map to circumvent issues above.

Moreover, although Lin et al. [21] have realized that the fusion of multiple
partial surfaces generates noisy points and thus developed a multi-view con-
sistency supervision based on binary masks and depths to address this issue.
However, the binary cross entropy penalty leads more points to be discarded and
thus the surface coverage is sacrificed. In contrast, we develop a novel multi-view
supervision framework based on a continuous distance field that does not suffer
from the surface coverage trade-off, and the comparison these two supervision
frameworks shows that using our multi-view supervision framework outperforms
their framework significantly.
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Fig. 2. An 1D example of depth-mask back-projection and deformed depth back-
projection. Blue points are pixel-depth pairs on 1D regular grid. Dark red arrows
are deformation flow. Dark red points are pixel-depth pairs shifted by the deformation
flow. Orange lines are the target 2D surface. Green points are 2D points back-projected
to reconstruct the 2D surface. (a) In the depth-mask representation, because pixels are
filtered out by the mask, there are less points to reconstruct the surface. (b) In our
deformed depth representation, the deformed grid is align with the surface, so that all
pixels are used to reconstruct the surface.

3 Method

Our goal is to learn a CNN that is able to reconstruct a dense 3D point cloud
to represent 3D object shape from a single RGB image. We first introduce how
we represent a partial surface of an object using a deformed depth map and
the per-view supervision for the deformed depth map, followed by a multi-view
consistency supervision based on distance fields. Lastly, we briefly introduce the
network architecture and present the network training algorithm combining the
per-view losses and multi-view loss.

3.1 Deformed Depth Map

One way to represent a view-dependent object surface is to use a depth map D.
For each pixel p at location (xp, yp) with a depth value zp, we can back-project
p to a 3D point p through an inverse perspective transformation, i.e.,

p = R−1(K−1
[

xp yp zp
]T

− t), (1)

where K, R and t are the camera intrinsic matrix, rotation matrix, and transla-
tion vector respectively. Learning a network to reconstruct the 3D object shape
becomes learning to predict a set of depth maps, as done in [21, 33]. Note that the
size of the depth images need not be equal to the size of the input RGB image.
The main issue of this representation is that not all pixels are back-projected
to the object’s surface, therefore the network must additionally predict a bi-
nary segmentation mask for each depth map to suppress background points.
The abandoned points become wasteful.

Notice that in Eq. (1), the pixel locations (xp, yp) are fixed in a regular
image grid, which is not flexible to model the object’s surface. Our insight is
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Fig. 3. Left image is a binary mask; middle image is the corresponding level set where
the silhouette boundary is shown in red line. To define the deformed position for point
p, the closest point on the boundary p0 is located, followed by finding the point at the
maximum level pmax and point at the minimum level pmin along the line of p and p0.
Then, p should be normalized to the range between p0 and pmin. Right images show
a pair of uniform grid and its corresponding deformed grid. The color indicates point
correspondence before and after deformation.

that regardless of depth values, the projection ray of every pixel should hit the
object’s surface. This can be achieved by predicting a deformation flow (vector)
[U,V] for each pixel p (an 1D illustration is presented in Fig. 2). Specifically,
for each pixel p at pixel location (xp, yp), our network predicts a deformation
vector [up, vp] (besides its depth value zp). The position of this pixel is shifted
by the deformation flow. Then the new position of this pixel after deformation
is x′

p = xp + up, y
′

p = yp + vp. The same inverse perspective transformation can
be applied on the deformed depth map to back-project to 3D space,

p = R−1(K−1
[

x′

p y′p zp
]T

− t). (2)

Training Losses for Deformed Depth Map During training, the deforma-
tion flow is supervised by a pseudo ground-truth (see the section below). The
pixel-wise L1 deformation flow losses for x and y directions are given below,

LU = ‖U−Ugt‖1 LV = ‖V −Vgt‖1. (3)

where the Ugt and Vgt are the ground-truth deformation fields on x-direction
and y-direction respectively.

However, the direct pixel-wise loss cannot be used between a regular ground-
truth depth map and a deformed depth map as pixel-wise correspondences have
been changed due to deformation. To supervise the deformed depth map, we use
the pseudo ground-truth deformation flow to deform the ground-truth depth
map to obtain the deformed ground-truth depth map, such that the pixel-wise
loss can be used, which is given below,

Ld = ‖D′ −D′

gt‖, (4)

where the D′

gt and D′ are the deformed ground-truth and predicted depth re-
spectively.
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Pseudo Ground-truth Deformation Flow We define a function that takes
an object binary mask (silhouette as foreground and the rest as background) on
a regular grid as input, and outputs a vector field for deformation. This vector
field is treated as the pseudo ground-truth for the deformation flow. The criteria
of this function are 1) every pixel should be shifted into the silhouette (i.e.,
the regular grid should be deformed to fit the silhouette), 2) the deformed grid
should be uniformly dense.

More specifically, we first convert the binary mask into a level set, where in-
side silhouette is negative levels, background is positive levels and the silhouette
boundary is at the zero level set (shown by red line in Fig. 3). For each pixel
p at coordinate (xp, yp) on the regular grid, it finds its closest pixel at the zero
level set (silhouette boundary) called p0. The deformation direction for a pixel
outside of the silhouette is −−→pp0, and that of a point inside of the silhouette is
−−→p0p.

After the direction is determined, we then calculate the magnitude for de-
formation. As illustrated in Fig. 3, along the line of p and p0, we find the local
maximum point pmax and the local minimum point pmin in the level set. The
deformation flow for pixel p is defined below,

x′

p = xp

‖xmin − x0‖

‖xmax − xmin‖
, y′p = yp

‖ymin − y0‖

‖ymax − ymin‖
(5)

U[xp, yp] = x′

p − xp, V[xp, yp] = y′p − yp. (6)

The Eq. (5) ensures that a point along the line between pmax and pmin moves to
a point on the line between p0 and pmin, such that the pixel is in the silhouette
(the first criteria satisfied). Moreover, no pixels are collided (the second criteria
satisfied).

3.2 Distance Field Multi-view Consistency

As mentioned earlier, the 3D points back-projected from a predicted depth map
are often noisy viewed from other viewpoints. Fig. 4(a) visualizes this problem,
where the point cloud back-projected from the front view of a chair contains
many noisy points between the front and back legs of the chair. To alleviate
this problem, we introduce a novel multi-view consistency supervision, which
encourages the 3D points to project into the object silhouette (i.e., foreground)
but not the background at novel viewpoints.

To that end, we transform ground-truth binary masks (at novel viewpoints)
into a distance field [3], where the values of the foreground pixels are zero in the
distance field (meaning no penalty), whereas the values of the background pixels
are the distance to the closest boundary. Fig. 4(b) demonstrates an example
of distance field. Such distance fields are used as the supervision signal to pull
outliers (i.e., points projected to the outside of the silhouettes) back to the object
silhouettes (in 2D).
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Fig. 4. (a) An example of the noisy reconstruction using only the depth as supervision.
(b) Our distance field multi-view consistency. Given a ground-truth binary mask at a
novel viewpoint, it is transformed to a distance field using distance transform [3]. 3D
points are projected onto the distance field. The projection points are supervised by
the multi-view consistency loss Ldf to move toward the object silhouette. Note that in
the example above, the project point move on the 1D surface only for the purpose of
visualization. In reality, it moves on the 2D distance field surface.

Technically, a 3D point p (Xp, Yp, Zp) is projected to the distance field using
the transformation and camera matrices at the novel viewpoint n, i.e.,

[xp, yp, 1]
T = Kn(Rnp+ tn), (7)

where [xp, yp] is the projection point coordinate in the distance field.
The multi-view consistency training loss Ldf becomes:

Ldf =
N
∑

n

P
∑

p

L
(n,p)
df , (8)

where N is the number of viewpoints and P is the number of 3D points. L
(n,p)
df

is defined as:

L
(n,p)
df =

H
∑

h

W
∑

w

Fn[h,w] max(0, 1− |xp − h|)max(0, 1− |yp − w|), (9)

where H and W are the height and width of the distance field respectively, Fn

is the distance field at viewpoint n, and Fn[h,w] is the distance value at pixel
location [h,w]

Given a point at [xp, yp], the values (distances) of the 4 neighboring pixels
are interpolated to approximate the corresponding distance field F[xp, yp]. By
minimizing Eq. 9, this point is supervised to move toward the object silhouettes.
This technique, called differentiable bilinear interpolation, was used in [14] for
differential image warping.

3.3 Network Architecture and Training

We use an autoencoder-like network where the encoder extracts image features
and project them into a latent space. The decoder is assembled by several 2D
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deconvolution layers to generate pairs of a pre-deformation depth map and a
deformation flow map from 6 fixed viewpoints which are the faces of a cube
centered at the object of interest. More details about the network architecture
and training configuration can be found in the supplementary material.

We train the network with the deformed depth map loss, deformation flow
loss, and the distance field loss jointly. The final loss function is

L =

M
∑

m

(Lm
d + Lm

U + Lm
V ) + λ

N
∑

n

Ln
df , (10)

where M is the 6 fixed viewpoints and N is the number of distance field from
novel viewpoints.

4 Experiments

We evaluate our proposed method beginning with ablation study of key compo-
nents of our framework: deformed depth map and the distance field based multi-
view consistency loss, followed by comparison to the state-of-the-art methods
on single view 3D object reconstruction. In addition, we test our method on a
recently published real dataset to determine whether it can generalize to real
images and comparison with other methods reported.

4.1 Data Preparation

Following previous methods, we use a subset of ShapeNet, which contains objects
in 13 categories, to train and evaluate our network. We render 6 depth maps
along with the binary masks from fixed viewpoints of 6 faces of a cube where a
3D object is centered. The binary mask is used to construct the pseudo ground-
truth deformation field. Additionally, we also render 24 RGB images along with
its binary mask from arbitrarily sampling azimuth and elevation in [0,360),[-
20,30] respectively. The RGB images are input images to the network and the
binary masks are preprocessed to a distance field for multi-view consistency loss.

4.2 Quantitative Measurement

To evaluate results quantitatively, we use the average point-wise 3D Euclidean
distance called Chamfer Distance between predicted and ground-truth point
clouds.

D(S1, S2) =
∑

pi∈S1

min
pj∈S2

‖pi − pj‖
2 +

∑

pj∈S2

min
pi∈S1

‖pi − pj‖
2 (11)

DS1→S2
=

∑

pi∈S1

min
pj∈S2

‖pi − pj‖
2 (12)
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Fig. 5. Chamfer Distance comparison with different foreground/background thresholds
for the depth-mask representation. The lower gt → pred loss of our method demon-
strates that our method provides better coverage than the baseline. Even though the
baseline can achieve lower pred → gt loss when setting the threshold higher (e.g.,
threshold ≥ 0.6) by only preserve points with high confidence, the penalty of coverage
offset the accuracy gain and leading a higher overall loss.

DS2→S1
=

∑

pj∈S2

min
pi∈S1

‖pi − pj‖
2 (13)

where S1 is the predicted point cloud and S2 is the ground-truth point cloud.
As demonstrated by [21], while the Chamfer Distance can evaluate the overall

performance, it is also essential to report the prediction to ground-truth distance
Eq. (12) and ground-truth to prediction distance Eq. (13) individually as they
evaluate different aspects of the prediction point cloud. The former shows how
far each prediction point to the closest ground-truth point (i.e., how accurate
the prediction is), and the latter reports the distance from each ground-truth
point to the closest prediction point indicating the surface coverage. Note that all
numbers reported in the experiment section are scaled up by 100 for readability.

4.3 Ablation Study

In this section, we evaluate two key components of our framework: the deformed
depth map and the distance field based multi-view consistency loss invidiously.

Deformed Depth Map We train two networks with our proposed deformed
depth representation and the depth-mask representation (as a baseline) respec-
tively in an identical training setting.

The networks are trained and evaluated on three categories (plane, car and
chair). The per category results are reported in Fig. 5. It shows that the deformed
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(threshold=0.5) Ours GT GTOursInput imageLin et al.
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Fig. 6. Visual comparison to Lin et al. [21]

Methods overall CD prediction points
Binary mask multi-view loss [21] 3.240 / 3.531 31972 / 25401

Distance field multi-view loss (Ours) 3.102 / 2.987 98304 / 98304

Table 1. Comparison on different multi-view consistency losses. The numbers reported
in overall CD and the number of prediction points are: without multi-view consistency
/ with multi-view consistency

depth representation consistently achieve lower loss under different threshold
setting for the depth-mask baseline (shown in two red lines). There is a dif-
ficult trade-off between the prediction point accuracy and surface coverage in
the baseline. When the Dpred→gt gradually decreases as the threshold rises (i.e.,
only good prediction points are preserved), the surface coverage loss increases
significantly. More importantly, another disadvantage of the depth-mask rep-
resentation revealed from the experiment is that it is not trivial to select an
optimal threshold for different instances. To better visualize this issue, a few
qualitative examples from Lin et al. [21] that use the depth-mask representation
are given in Fig. 6.

Distance Field Multi-view Consistency To evaluate our distance field based
multi-view consistency loss, we compare to a baseline in which the loss is dis-
abled, and a prior art [21] that use a binary mask multi-view consistency loss.
The results reported in Table 1 show that after applying our distance field multi-
view consistency, the network performs better than the baseline. Since our con-
sistency does not simply mask out more points to reduce outliers, our method
also outperforms the binary masked multi-view consistency [21].

4.4 Comparison with Prior Art

We compare our method against previous (state-of-the-art) methods using point
cloud or voxel grid representation in a synthetic dataset and a real dataset in
this section.

Comparing to PSGN Because the pre-trained model of PSGN provided by
the authors generates a point cloud aligned with the input image while ours is in
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Fig. 7. Visual comparison with PSGN

Fig. 8. Densified PSGN Comparison

Category PSGN Ours
plane 2.582 2.66
car 3.253 2.897

chair 4.110 3.731

table 3.916 3.271

bench 3.660 3.357

cabinet 4.835 4.037

display 5.010 4.343

lamp 5.105 4.933

speaker 5.707 5.532

gun 2.949 3.259
sofa 4.644 4.267

telephone 3.999 3.588

watercraft 3.921 3.894

Table 2. Comparison
with PSGN on 13 classes
using Chamfer Distance.

a canonical pose. To have fair comparison, we use their published code to retrain
their network to output point clouds in the canonical pose. Both PSGN and our
network train on our rendered input images using the same training-test split.

Our method outperforms PSGN in the overall performance in most of the
categories (11 out of 13) as reported in Table 2. To resolve the measurement
bias to the density of predicted points, we also report the results of a densified
PSGN, where we densify the point cloud size from 1024 to 98304 (the same size
of our prediction) using linear interpolation between neighboring points as a
post-processing step. This densified PSGN is evaluated on five categories (chair,
car, plane, bench and table) and the mean Chamfer Distance reported in Fig.
8. This graph shows that a densified/interpolated reconstruction cannot capture
the finer 3D details that our method can. To contrast both methods visually, we
present some qualitative examples in Fig. 7.

Comparing to Hierarchical Surface Prediction (HSP) [11] As PSGN has
shown superior performance of point cloud representation over low resolution
voxel grid representation (e.g., 3D-R2N2), we provide a quantitative comparison
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Methods Chair Plane Car Table Bench
HSP 4.716 3.878 3.487 4.072 4.467
Ours 3.731 2.660 2.897 3.271 3.357

Table 3. Chamfer Distance between ours and HSP

Methods
3D-R2N2

[5]
PSGN

3D-VAE-GAN
[36]

DRC
[34]

MarrNet
[35]

AtlasNet
[?]

Pix3D
[31]

Ours
Pix3D

(w/ pose)

EMD 0.211 0.216 0.176 0.144 0.136 0.128 0.124 0.124 0.118
CD 0.239 0.200 0.182 0.160 0.144 0.125 0.124 0.125 0.119

Table 4. Real images evaluated using Earth Movers Distance and Chamfer Distance

between our method and HSP in Table 3. HSP up-scales the voxel grid to 5123

by using Octree data structure. Five categories of the ShapeNet are evaluated
using input images and a pre-trained model provided by the author of HSP. To
calculate Chamfer Distance for HSP outcomes, we generate a mesh from the
voxels using the marching cube algorithm and sample uniformly the same num-
ber of points as ours from the mesh. Although the Octree method increases the
resolution efficiently, it still suffers from the non-trivial occupancy thresholding
and the “structurally unaware” cross entropy loss (i.e., missing thin structures),
leading to poorer performance than ours.

4.5 Generalization to Real Images

Pix3D [31] (a large-scale real dataset with high quality image-shape pairs) has
become available and we compare our results to that benchmark in Table 4. We
train our method on synthetic images with backgrounds randomly selected from
the SUN dataset, then evaluate on Pix3D images directly. Table 4 shows our
method generalizes well to real images and achieves comparable performance to
the state-of-the-art method. Note that the best performance reported in Pix3D
uses joint training of object pose and 3D shape to boost the network perfor-
mance, and thus excluded from the comparison.

5 Conclusions

In this work, we present a novel deformed depth representation. By using defor-
mation, we bypass the need of foreground/background thresholding leading to
denser point clouds and reconstruction with high fidelity. Moreover, to refine the
fused point cloud, we propose a distance field based multi-view consistency which
outperforms the existing multi-view consistency loss. Our completed framework
outperforms the prior art methods in single-view object reconstruction. However,
the expedient approach that we adopted in the current paper can be replaced by
an energy optimization that might lead to a more uniformly distributed deformed
grid.
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