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Abstract. Visual tracking is confronted by the dilemma to locate a
target both accurately and efficiently, and make decisions online whether
and how to adapt the appearance model or even restart tracking. In
this paper, we propose a deep reinforcement learning with iterative shift
(DRL-IS) method for single object tracking, where an actor-critic net-
work is introduced to predict the iterative shifts of object bounding box-
es, and evaluate the shifts to take actions on whether to update object
models or re-initialize tracking. Since locating an object is achieved by an
iterative shift process, rather than online classification on many sampled
locations, the proposed method is robust to cope with large deformations
and abrupt motion, and computationally efficient since finding a target
takes up to 10 shifts. In offline training, the critic network guides to learn
how to make decisions jointly on motion estimation and tracking status
in an end-to-end manner. Experimental results on the OTB benchmarks
with large deformation improve the tracking precision by 1.7% and runs
about 5 times faster than the competing state-of-the-art methods.

Keywords: Visual object tracking, reinforcement learning, actor-critic
algorithm

1 Introduction

Visual object tracking (VOT) aims at locating a target efficiently in a video
sequence, which remains a challenging problem in unconstrained applications
due to deformation, abrupt motion, occlusions and illumination, after several
decades of intensive research [5, 10, 20, 36, 41, 42, 51]. Essentially VOT needs to
address 3 key issues: 1) How to represent a target, i.e., the observation model;
2) How to efficiently leverage the motion smoothness assumption to locate a
target in the next frame; 3) How to update tracking models online, if necessary,
to handle dynamic scenarios.

The appearance models have evolved from intensity templates [19], color
histograms [14], and sparse features [4], to the dominating deep features [47]
extracted by CNN models. Thus, naturally tracking may be formulated as a
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(a) Classification based methods (b) Iterative shift based method

Fig. 1: Illustration of tracking using classification (left column) vs. iterative shift
(right column): tracking a fast moving vehicle (first row) and tracking a diving
athlete with large deformation (second row). Given the initial box (green), clas-
sification based methods sample many proposals, select the box (red) with the
highest classification score, and collect positive (yellow and red) and negative
samples (blue) to fine-tune the classifiers online. There may not be enough good
samples for online learning in these hard scenarios. In contrast, the proposed it-
erative shift tracking adjusts the bounding box step by step to locate the target
(e.g., 3 steps for the vehicle and 2 steps for the athlete), and makes decisions
formally when and how to update object models by reinforcement learning. The
shift process generally tends to be more efficient since less candidate regions are
evaluated than in classification based methods

classification or detection-and-association problem [35] using CNN classifiers.
Even a strong observation model may not capture all possible variations of tar-
gets and need to be updated on-the-fly during tracking. Nevertheless, online
classifier learning may be vulnerable to samples with ambiguous labels in hard
scenarios, such as deformation, quick motion and occlusions, etc., leading to
model drift. The tracker needs to make decisions simultaneously on target’s mo-
tion status and on tracking status, i.e., whether and how to update observation
models or even restart tracking if necessary. These are indeed tough decisions to
make during online tracing.

To tackle the aforementioned issue 2 and 3, we introduce a deep reinforcement
learning process to make decisions jointly on a target’s motion status and a
tracker’s status in VOT. The motion status, i.e., the displacement and scaling
of an object’s bounding box, is estimated in an efficient iterative shift process by
a prediction network. The tracker’s status, referring to whether or how to update
the observation model and whether stop and restart tracking, is determined by
an actor network. The proposed method, coined as deep reinforcement learning
with iterative shift (DRL-IS), exploits the correlation between object’s motion
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estimation and current tracking status. The prediction and actor networks are
learned offline from a large number of training video sequences guided by a critic

network, on how to take actions given the current frame and the previous target
location and representations.

This method utilizes reinforcement learning as a principled way to learn how
to make decisions during tracking, therefore, it is especially robust to deal with
hard cases such as deformation or abrupt motion, where either updating the
model or stop-and-restart may be a sensible action. In contrast, existing methods
ADNet [52], EAST [21] and POMDP [44] which employed reinforcement learn-
ing to either estimate motion or make decisions on tracking status separately.
Moreover, as shown in Fig. 1, the tracking result is estimated iteratively, instead
of performing CNN classification on many candidate locations, thus leading to
an efficient computation.

The main contributions of our paper are on two-fold: 1) We propose an Actor-
Critic network to predict the object motion parameters and select actions on the
tracking status, where the rewards for different actions are dedicatedly designed
according to their impacts; 2) We formulate object tracking as an iterative shift
problem, rather than CNN classification on possible bounding boxes, thus locates
a target efficiently and precisely. The proposed DRL-IS is particularly capable
of dealing with objects with large deformations and abrupt motion, since the
motion parameters are iteratively estimated and accumulated by the prediction
network, and in such hard cases the tracker is kind of self-aware to update
the target feature and model or resort to detection to restart tracking. Our
tracker achieves 0.909 distance precision, 0.671 overlap success on the OTB2015
benchmark and 0.812 distance precision and 0.590 overlap success on the Temple-
Color128 benchmark, on a par with the best performance, and runs about 5 times
faster than competing state-of-the-art methods.

2 Related Work

Visual tracking has undergone extensive study over several decades on how to
represent and locate a target in video sequences, and adapt the observation mod-
el online if necessary. Deep neural networks, pre-trained for recognition tasks,
tend to be also effective in delineating an object appearance in tracking, e.g.,
as in the MDNet [35], FCNT [46], and CREST [42] trackers, and [10,18,32,47].
To find a target in current frame, a motion model is assumed to sample some
candidate locations, as in the Kalman filter [1] or particle filter [22, 38]. Then,
the observation model may be evaluated on hundreds of these locations, as a
correlation filtering in MOSSE [5] and KCF [20], or as a discriminative clas-
sification [11] or regression problem [16], which is demanding in computation.
Alternatively, an observation model may allow to calculate or search the candi-
date locations gradually and iteratively, as in the optical flow [14] or mean-shift
tracking [9], which is generally efficient since only a few locations examined. This
motivates us to propose the iterative shift process, where a prediction network
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adjusts target locations in an iterative manner and evaluates the neural net much
less times.

The observation model may need to be updated during tracking to follow
the changing appearance of an target, for instance, by collecting positive and
negative samples [24] or bags [3] to conduct online learning [50]. A tracker has
to make very tough decisions on when and how to update the observation model.
For some difficult scenarios, such as deformation, occlusion and abrupt motion,
on one hand, without any model update, the tracker may lost the target, on the
other hand, due to some ambiguous or wrong labels, the tracker may drift to
clutter background after the online update. In these hard but not rare cases, a
sensible decision might be to stop tracking and resort to object detection or other
means to reinitialize, rather than drifting blindly and silently. This fundamental
issue demands for a formal decision making procedure in tracking.

Deep reinforcement learning [2,6,7,23,26,29,33,34,40] is a principled paradig-
m to learn how to make decisions and select actions online, which has achieved
great successes in Atari games [34], search of attention patches [7], and finding
objects [29] and visual relations [40]. Recently, reinforcement learning has been
adopted for tracking [21, 25, 44, 52, 53], e.g., an action-decision network [52] to
generate actions to seek the locations and the sizes of a target object, or a deci-
sion policy tracker [44] by using reinforcement learning to decide where to look
in the upcoming frames, and when to re-initialize and update its appearance
model for the tracked object. In this paper, we extend to learn how to jointly
derive the target motion and make decisions on the tracker status, by a new and
unified actor-critic network.

3 Approach

The proposed deep reinforcement learning with iterative shift (DRL-IS) approach
involves three sub-networks: 1) the actor network, 2) the prediction network,
and 3) the critic network, which share the convolutional layers and one fully
connected layer (fc4), as shown in Fig. 2. We elaborate the formulation of DRL-
IS for tracking and the learning procedure of these networks, in the following
subsections.

3.1 Iterative Shift for Visual Tracking

We formulate visual object tracking as an iterative shift problem. Given current
frame and previous tracking results, the prediction network ψ iteratively shifts
the candidate bounding box to locate the target, meanwhile, the actor network
θ makes decisions on the tracking status, whether or not to update the target
representation and the prediction network, or even restart tracking.

Formally, given a video V = {I1, I2, · · · , IN}, where It is the tth frame.
The tracker is initialized by cropping a target with l1 = {x1, y1, w1, h1} in
the first frame and its appearance is represented by the feature f1 , i.e., the
fc4 layer’s outputs in the shared network. With the tracking results of l∗t−1 =
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Fig. 2: The overview of the DRL-IS tracking method. Given the initial bounding
box of a target, we first extract deep feature f ∈ R

1∗512 from fc4 layer. Then we
concatenate the the feature of a candidate box f and the current target feature
f∗ ∈ R

1∗512. We generate shift δ using the prediction network ψ and employ the
actor network θ. For action continue, we adjust the bounding box of the target
according to the output δ of ψ. For action stop and update, we stop the iteration
and update the appearance features of the target and the parameters of ψ, while
we skip the update for action stop and ignore. When taking action restart, the
target may be lost, so we re-sample for the initial bounding box. In the training
stage, we use a deep critic network to estimate the Q-value of current actions
with δ, and fine-tune the prediction network ψ and actor network θ

{xt−1, yt−1, wt−1, ht−1} and f∗t−1, we first extract ft of It cropped by l∗t−1, and
exploit the prediction network ψ to predict the movement δ of the target between
frames, which takes ft and f

∗
t−1 as input:

δ = ψ(ft, f
∗
t−1). (1)

We denote the outputs of the prediction network as δ = {∆x, ∆y, ∆w, ∆h}:

∆x = (xt − xt−1)/wt−1,

∆y = (yt − yt−1)/ht−1,

∆w = log(wt/wt−1),

∆h = log(ht/ht−1), (2)

where ∆x and ∆y specify a scale-invariant translation of the bounding box, ∆w

and ∆h specify log-space translations of the width and height of bounding box
against the previous frame [17]. It is hard to estimate the movement and shape
change of the target accurately in one step when the object moves rapidly or
deforms. Hence, the prediction network outputs the adjustments of the bounding
box iteratively and accumulate them to obtain the tracking result. Thus, the
neural network is evaluated in Kt iterations at It and δk of each step in Eq. 2
are accumulated. This iterative shift process is considerably faster than running
a classification network on hundreds of bounding boxes.
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Meanwhile, the tracking status may affect the results as well, e.g., updating
the prediction network on the fly if necessary. To make decisions jointly on a tar-
get’s motion status and a tracker’s status, we use the actor network θ to generate
the actions a1, a2, · · · , ak, · · · , aKt

according to a multinomial distribution:

p(a|st,k) = π(st,k|θ),
∑

i

p(ai|st,k) = 1, (3)

where ak ∈ A = {continue, stop & update, stop & ignore, restart}, and the
initial state st,0 = {It, lt,0, f

∗
t−1} contains the image It, initial location lt,0 = l∗t−1,

and the appearance feature f∗t−1, and π(st,k|θ) derives from the outputs of the
actor network θ.

For the action continue (continue shifting without updating the model) in
step k, the shift δk = ψ(ft,k, f

∗
t−1) is generated by the prediction networks ψ.

ft,k is extracted from the crop lt,k. The position, lt,k, of the target is updated
iteratively according to δk with lt,k−1.

For the action stop & update (stop shifting and update the model), we stop
the iterations and take l∗t = lt,Kt

as the location for object and update the
feature of the target and the parameters of the prediction network ψ,

f∗t = ρft,Kt
+ (1− ρ)f∗t−1, (4)

ψt = ψt−1 + µEs,a

∂Q(s, a, δ|φ)

∂δ

∂δ

∂ψ
, (5)

where ρ is a weight coefficient since Eq.(5) is a common practice in tracking
allowing the target feature evolve as a weighted sum of current and previous rep-
resentations. Eq.(6) is an online learning rule to update the prediction network,
so µ is an adequate learning rate. Q(s, a, δ) is the output of critic network φ and
defined in Eq. 11. This action indicates a reliable tracking, confident enough to
update the target representation and the model.

For the action stop & ignore (stop shifting without updating the object
feature), we stop the iteration and take l∗t = lt,k as the location for object and
move on to track the target in the next frame, where the appearance feature
f∗t and the prediction network ψ are not updated. This action indicates that
the target is found, yet the tracker is not confident to update the model, e.g., if
motion blur or occlusions present.

For the action restart (restart tracking), we restart the iterationby re-sampling
a random set of candidate patches Lt around l∗t−1 in It, and select the patch
which has the highest Q-values, which is defined in Eq. 12 according to the IoU
objective, as the initial location:

lt,0 = arg max
s={It,l,f∗

t−1
},l∈Lt

Q(s, a = stop & update, δ = 0|φ). (6)

This action represents the cases that the tracker loses the target temporarily
and resorts to an extensive search to re-initialize tracking.

Fig.3 presents a sample action sequence in tracking. The prediction and actor
networks formulate the motion estimation and tracking status change in a unified
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way as taking actions in reinforcement learning. Nevertheless, learning these
neural networks requires dedicatedly designed rewards for each type of actions.

3.2 Training the neural networks in DRL-IS

In this subsection, we detail the training procedure of the prediction, actor,
and critic networks by deep reinforcement learning, from a large number of
labeled video sequences. Note that the prediction network is pre-trained offline
while during online tracking, both the prediction and actor networks are jointly
updated by the actor-critic approach.

Learning of the prediction network: The prediction network estimates the
iterative shift of the object in a given frame, from the object location and features
in consecutive frames. We pre-train a convolutional neural network in an end-to-
end manner to predict the shift of the target object between frames or iteration
steps.

Network Architecture: As illustrated in Fig. 2, the prediction network
uses three convolutional layers to extract features from the target patch and the
current candidate box during pre-training. Then the features are concatenated
and fed into two fully connected layers to produce the parameters which estimate
the location translation and scaling changes.

Network Inputs: We sample pairs of crops from the sequences between
every two frames to feed the network. The first crop is the object location in the
previous frame and the second crop is in the current frame at the same location.
The crops are padded with a fixed ratio to the object scale, which is empirically
determined in our experiments. The network receives a pair of crops which are
warped into 107× 107 pixels and estimates the motion δ between two adjacent
frames.

Network Pretraining: Instead of extracting the feature of the region pro-
posals and performing regression on the bounding box, we train a fully end-to-
end network to learn location translations and deformations directly. We perform
data augmentation by sampling multiple examples with scale variations which
are near the target bounding box and then create crops in the current frame. Us-
ing labeled video frames and these augmented samples, the training of prediction
network promotes to locate a target with less iteration steps.

DRL-IS with Actor-Critic: We exploit the actor-critic algorithm [28] to joint-
ly train the three sub-networks, θ, ψ, φ. Firstly, we define the rewards according
to the tracking performance. The reward of the action continue with δt,k is
defined by ∆IoU rather than the IoU to adjust bounding boxes.

rt,k =







1 ∆IoU ≥ ǫ
0 −ǫ < ∆IoU < ǫ
−1 ∆IoU ≤ −ǫ

, (7)
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where ǫ > 0 and ∆IoU is computed as:

∆IoU = g(l∗t , lt,k)− g(l∗t , lt,k−1), g(li, lj) =
li ∩ lj
li ∪ lj

. (8)

For the action stop & update and stop & ignore, the rewards are defined by the
IoU of the final prediction and the ground truth. To encourage tracking stop
with less iterations, the positive reward is related to the the iteration times Kt.
We take l∗t as the location for object and the rewards are computed as:

rt,Kt
=







10/Kt g(l∗t , lt,Kt
) ≥ 0.7

0 0.4 ≤ g(l∗t , lt,Kt
) ≤ 0.7

−5 else
. (9)

For the action restart, the reward is positive when the IoU of the final prediction
and the ground truth is less than 0.4 considering the high computational costs
of restart.

rt,Kt
=







−1 g(l∗t , lt,Kt
) ≥ 0.7

0 0.4 ≤ g(l∗t , lt,Kt
) ≤ 0.7

1 else
. (10)

Then we define the calculation of Q-values of each action. The Q value of
the action continue and other actions are quite different, since the reward of
continue is based on the increment of IoU while others are based on the track-
ing performance evaluated by IoU. The Q value of action continue with δt,k is
computed as follows:

Q(s, a, δt,k) =

Kt
∑

i=k

γ(i−k)rt,i. (11)

The Q values of actions stop & update, stop & ignore, restart are computed
as:

Q(s, a, δt,k = 0) =
N
∑

j=t

γj−trj,kj
. (12)

Eq.(12) sums the rewards upon the step k in the current frame while Eq.(13)
sums the rewards upon the time step t. The reason for the different calculations
of Q-values in Eq.(12) and Eq.(13) is that the action continue locates the tar-
get with the current models in frame t while other actions involve the decision
whether to stop tracking based on previous tracking performance.

Finally, we formulate the optimization problem of φ and θ as follows:

φ = argmin
φ
L(φ) = Es,a(Q(s, a|φ)− r − γQ(s′, a′, |φ−))2, (13)

θ = argmin
θ
J(θ) = −Es,a log(π(a, s|θ))Â(s, a). (14)

s′ is the next state and a′ = argmaxaQ(s′, a|φ−). Action-value Â(s, a) and value
function V (s) is calculated as follows:

Â(s, a) = Q(s, a|φ)− V (s), (15)
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Fig. 3: An illustrative example of the actions on tracking status change by the
actor network: 1) at It, the target is readily located by two continue actions and
a stop & update action updates the target feature f∗t and the prediction network
φ accordingly; 2) at It+1, at first, a continue action tracks to a distractor person
nearby, than the tracker spots this and take a restart action to re-initialize the
tracking; 3) the shift process is restarted at It+1, with a continue action, the
target is found yet the scale is not reliable, and then a stop & ignore action
return the results but does not update the target feature f∗t

V (s) = Esπ(s, a|θ
−)Q(s, a|φ−), (16)

where φ− is the target network, which has the same architecture with φ but is
only updated in each 10 iterations. Please refer to [37] for the details of rein-
forcement learning. We update the parameters of the critic network φ and actor
network θ as follows:

φ = φ− µφ

∂L(φ)

∂φ
, (17)

θ = θ − µθ

∂J(θ)

∂θ
. (18)

Algorithm 1 summarizes the learning of proposed method.

4 Experiments

To validate the proposed approach, we conducted experiments on the popular
Object Tracking Benchmark [48, 49], Temple-Color128 [31] and VOT-2016 [30],
and compared with recent state-of-the-art trackers.

4.1 Datasets and Settings

We conducted experiments on the standard benchmarks: OTB-2015, Temple-
Color128 and VOT-2016. OTB-2015 [49] contains 100 video sequences, where
each video was fully annotated with ground truth bounding boxes. Temple-
Color128 contains 128 color sequences. The challenging attributes for visual
object tracking on these two datasets include illumination variation (IV), s-
cale variation (SV), occlusion (OCC), deformation (DEF), motion blur (MB),
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Algorithm 1 : The training of networks in DRL-IS

Input: Training set: V = {Vi}, ψ, and convergence error ǫ1, maximal iterations M .
Output: φ, θ and ψ
1: Initialize φ and θ;
2: for all m = 1, 2, . . . ,M do

3: Randomly select a video V ;
4: Initialize the appearance feature f and l1 using the ground truth in 1-st frame
5: for all t = 2, 3, . . . , N do

6: Generate the action a using θ;
7: while a == continue do

8: compute δ using ψ;
9: Adjust lt = lt + δ

10: Generate an action a using θ;
11: end while

12: Update ψ, f∗
t or restart according to a;

13: end for

14: Calculate Jt(θ) and Lφ;
15: Update actor network θ and critic network φ;
16: if l > 1 and |Jt(θ)− Jt−1((θ))|+ |Lt(φ)− Lt−1((φ))| < ǫ1 then

17: Go to return

18: end if

19: end for

20: return θ, ψ and φ;

fast motion (FM), in-plane rotation (IPR), out-of-plane rotation (OPR), out-
of-view (OV), background clutters (BC), and low resolution (LR). We followed
the standard evaluation metrics on these benchmarks. We used the one-pass e-
valuation (OPE) with the distance precision metric and overlap success plots
metrics, where each tracker was initialized with the ground truth location un-
til the end of each sequence. Specifically, the overlap success rate measures the
overlap between predicted bounding boxes and ground truth bounding boxes,
and the distance precision metric is the percentage of frames where the estimat-
ed location center error from the ground truth is smaller than a given distance
threshold. In our experiments, we set the threshold distance as 20 pixels for al-
l trackers. The VOT-2016 dataset consists 60 challenging videos from a set of
more than 300 videos. The performance in terms of both accuracy (overlap with
the ground-truth) and robustness (failure rate) is evaluated in our experiments.
Noting that on VOT-2016 dataset, a tracker is restarted by the ground-truth in
the case of a failure.

4.2 Implementation Details

We implemented our tracker in Python using the Pytorch library. The imple-
mentation was conducted on a PC with an Intel Core i7 3.4GHz CPU with 24GB
RAM and the deep neural networks were trained on GeForce GTX 1080 Ti GPU
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with 11GB VRAM. In our settings, the proposed tracker runs about 10 frames
per second on these two benchmarks [48, 49].

Prediction Network: The prediction network has three convolutional lay-
ers which are initialized by the VGG-M [8] network which was pretrained on
ImageNet [15]. The next two fully connected layers has 512 and 100 output u-
nits with ReLU activations. The output fully connected layer has 4 output units
combined with the tanh activation.

Actor-Critic Network: The actor network has two fully connected layers
of 100 and 4 output units with the ReLU activation. The critic network is similar
to the actor network but the final layer has only one output unit. The current and
candidate features are concatenated as the input to these two networks. We use
the Adam optimizer [27] with a learning rate of 0.0001 and a discount of β (set
as 0.95) to train the actor-critic network. We trained our actor-critic network by
using sequences which were randomly sampled from the VOT-2013, VOT-2014,
and VOT-2015 [30] in which videos overlapping with OTB and Temple-Color
were excluded. The maximal number of actions is set to 10 for each frame and
the starting frame for each episode is randomly selected. The end operation is de-
termined by the mean IoU ratio of the last 5 predicted bounding boxes compared
to the ground truth bounding boxes of the total frames of one sequence. If the
mean IoU is under 0.2 or at the end of a sequence, we terminate the episode and
update the models. We trained the network for a total num of 50,000 episodes
until convergence. On VOT-2016 dataset, we conducted experiments using Ima-
geNet as the training set for our tacker. Since each object on the training set has
only one frame (static image), we set γ as 0 in Eq. 12, and removed the action
stop & ignore.

4.3 Results and Analysis

Quantitative Evaluation: We conducted quantitative evaluations on the OTB-
2015 Dataset, Temple-Color Dataset and VOT-2016 Dataset.

OBT-2015 Dataset. We compared our approach with the state-of-the-art
trackers including CREST [43], ADNet [52], MDNet [36], HCFT [32], SINT [45],
DeepSRDCF [12], and HDT [39]. Fig. 4 shows the performance of different track-
ers in terms of precision and success rate based on center location error and over-
lap ratio on OTB-2015. We also evaluated the performance of different tracking
methods and the processing speed (fps) on OTB-2015 dataset. Overall, our track-
er performs favorably on both the precision and the success rate, meanwhile runs
at 10.2 fps which is 5 times faster than the state-of-the-art tracker MDNet (2.1
fps in Pytorch implementation). One variant of our tracker with only two action
types shown later runs even faster with an acceptable trade-off of accuracy.

We also analyzed the performance of our tracker for three different challenge
attributes labeled for each sequence including fast motion, deformation, scale
variations. We compute the OPE on the distance precision metric under 8 main
video attributes. As shown in Fig. 5, our tracker shows competitive results on
all the attributes. Specifically, the effectiveness in deformation attributes to the
prediction network update according to the policy to capture target appearance
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Success plots of OPE - deformation (40)
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Success plots of OPE - scale variation (55)
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Fig. 5: The success plots over three tracking challenges, including fast motion,
deformation, scale variations, for all the compared trackers on OTB-2015

changes. For scale variation, our tracker still performs well which demonstrates
that our prediction network is robust to the scale change of the target object.
Our tracker performs better on all three challenges than ADNet [52], which is
also a deep reinforcement learning based tracker. The main reason is that our
prediction network can be adjusted according to the action learned by the policy
network. Meanwhile, the action stop & ignore and stop & update can guide our
tracker whether to update the target feature, which avoids inadequate model
update in long-term tracking. We have also obtained similar performance in fast
motion, where MDNet [36] and our tracker both benefit from the convolutional
features and the re-detection process. However, the percentage of the frames
using re-detection to the total frames of MDNet [36] is high, resulting in more
computation.

Temple-Color Dataset. We evaluate our approach on the Temple-Color
dataset containing 128 videos. Fig. 7 shows the performance of different trackers
in terms of precision and success rate based on center location error and over-
lap ratio. The C-COT tracker [13] and MEEM [54] reach the average distance
precision score of 0.781 and 0.706. Our approach improves by a significant mar-
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Ours MDNet ADNet CREST

Fig. 6: Qualitative evaluation of our
tracker, MDNet [36], ADNet [52]
and CREST [43] on 7 challenging
sequences

Fig. 7: The precision and success plots over
all sequences by using one-pass evaluation
on the Temple-Color Dataset. The legend
contains the average distance precision s-
core and the area-under-the-curve score for
each tracker

Table 1: Comparison with state-of-the-art methods in terms of robustness and
accuracy ranking on the VOT-2016 dataset(the lower the better)

Baseline MDNet N DeepSRDCF Staple MLDF SSAT TCNN C-COT DRL-IS

Robustness 5.75 5.92 5.70 4.23 4.60 4.18 2.92 2.70

Accuracy 4.63 4.88 4.23 6.17 3.42 4.22 4.85 3.60

gin, achieving a score of 0.818. In the success plot in Fig. 7, our method also
achieves a notable absolute gain of 1.2% in area-under-the-curve score compared
to state-of-the-art method C-COT.

VOT-2016 Dataset. Table 3 shows the comparison of our approach with
the top 5 competing trackers in the VOT-2016 challenge. As shown in Table 1, we
obtain competitive accuracy and robustness ranking with state-of-the-art meth-
ods on the VOT-2016 Dataset. Our method achieves favorable results in terms of
accuracy while keeping a low failure rate, which attributes to the decision mak-
ing on motion estimation and tracking status guided by reinforcement learning.
Noting that MDNet N is a variation of MDNet, which does not pre-train CNNs
with other tracking datasets. MDNet N is also initialized using the ImageNet
like our method. Our DRL-IS improves the performance of MDNet N by a sig-
nificant margin, which shows that our tracker has good generality without using
the tracking sequences as training data.

Qualitative Evaluation: Fig. 6 shows qualitative comparisons of top per-
forming visual tracking methods including MDNet [36], ADNet [52], CREST [43]
and our method on 7 challenging sequences. Our tracker performs well against
the compared these methods in all sequences. Moreover, none of the other meth-
ods is able to track targets for the CarScale sequence whereas our tracker suc-
cessfully locates the target as well as estimates the scale changes. There are two
reasons: 1) Our method accounts for the appearance changes caused by defor-
mation and background clutters (Bird1, Soccer and Freeman4) by adjusting
the bounding box of the object iteratively; 2) The feature of objects and the
models are updated adaptively with deep reinforcement learning to account for
appearance variations.
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Table 2: The comparisons of different ablation variants of DRL-IS over the dis-
tance precision and overlap success plots on the OTB-2015 dataset

Variants Shift (22 fps) Shift+IS (15 fps) DRL-IS (10.2 fps)

Prec.(20px) 0.822 0.887 0.909

IOU(AUC) 0.593 0.651 0.671

Ablation Study of Different Components: To show the impacts of d-
ifferent components of our tracker, we developed three variants of our tracker
by integrating the prediction network with different types of policies combina-
tion and evaluated them using OTB-2015. These three variants are: 1) “Shift”
is a baseline tracker which contains only one module based on the pre-trained
prediction network; 2) “Shift + IS” is a pre-trained prediction model which was
guided with only two action types: continue and stop & update; and 3) “DRL-IS”
is our final model which was guided with full action types: continue, restart,
stop & ignore and stop & update. Table 2 shows the distance precision and
overlap success plots of these variations on the OTB-2015 dataset. The “Shift”
tracker can only obtain the one-step shift based on deep convolutional features,
which dose not perform well because the model is not updated during tracking
and may fail when the target object changes fast. The “Shift + IS” tracker en-
ables iterative shift and updates the model according to the policy learned by
the actor network, which outperforms the baseline tracker by 6.5% and 5.7%
in terms of the precision and overlap success, respectively. Moreover, “DRL-IS”
incorporates all actions with the prediction network and achieves 8.7% and 2.2%
performance gains of in terms of the precision over the “Shift” and “Shift + IS”
variations, respectively.

5 Conclusion

In this paper, we have proposed a DRL-IS method for visual tracking, which
has demonstrated reinforcement learning is an effective way to model the tough
decision making process for tracking, i.e., performing motion estimation and
changing tracking status at the same time. The new iterative shift by deep
nets locates targets efficiently than online classification and copes well with the
cases that deformation or motion blur present in video. Extensive experiments
on 3 public datasets have validated the advantages on tracking robustness and
efficiency of the proposed method.

Acknowledgements

This work was supported in part by the National Key Research and Development
Program of China under Grant 2017YFA0700802, in part by the National Natu-
ral Science Foundation of China under Grant 61672306, Grant U1713214, Grant
61572271, and in part by the Shenzhen Fundamental Research Fund (Subject
Arrangement) under Grant JCYJ20170412170602564.



DRL-IS for Visual Tracking 15

References

1. Ali, N.H., Hassan, G.M.: Kalman filter tracking. IJCA (9) (2014)
2. Ammar, H.B., Eaton, E., Ruvolo, P., Taylor, M.: Online multi-task learning for

policy gradient methods. In: ICML. pp. 1206–1214 (2014)
3. Babenko, B., Yang, M.H., Belongie, S.: Visual tracking with online multiple in-

stance learning. In: CVPR. pp. 983–990 (2009)
4. Bao, C., Wu, Y., Ling, H., Ji, H.: Real time robust l1 tracker using accelerated

proximal gradient approach. In: CVPR. pp. 1830–1837 (2012)
5. Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using

adaptive correlation filters. In: CVPR. pp. 2544–2550 (2010)
6. Caicedo, J.C., Lazebnik, S.: Active object localization with deep reinforcement

learning. In: ICCV. pp. 2488–2496 (2015)
7. Cao, Q., Lin, L., Shi, Y., Liang, X., Li, G.: Attention-aware face hallucination via

deep reinforcement learning. In: CVPR. pp. 690–698 (2017)
8. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the

details: Delving deep into convolutional nets. arXiv (2014)
9. Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using

mean shift. In: CVPR. pp. 142–149 (2000)
10. Cui, Z., Xiao, S., Feng, J., Yan, S.: Recurrently target-attending tracking. In:

CVPR. pp. 1449–1458 (2016)
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