
Compound Memory Networks for

Few-shot Video Classification

Linchao Zhu and Yi Yang

CAI, University of Technology Sydney, NSW
Linchao.Zhu@student.uts.edu.au; Yi.Yang@uts.edu.au

Abstract. In this paper, we propose a new memory network structure
for few-shot video classification by making the following contributions.
First, we propose a compound memory network (CMN) structure un-
der the key-value memory network paradigm, in which each key memory
involves multiple constituent keys. These constituent keys work collabo-
ratively for training, which enables the CMN to obtain an optimal video
representation in a larger space. Second, we introduce a multi-saliency
embedding algorithm which encodes a variable-length video sequence
into a fixed-size matrix representation by discovering multiple saliencies
of interest. For example, given a video of car auction, some people are
interested in the car, while others are interested in the auction activities.
Third, we design an abstract memory on top of the constituent keys. The
abstract memory and constituent keys form a layered structure, which
makes the CMN more efficient and capable of being scaled, while also
retaining the representation capability of the multiple keys. We compare
CMN with several state-of-the-art baselines on a new few-shot video
classification dataset and show the effectiveness of our approach.

Keywords: Few-Shot Video Learning · Video Classification · Memory-
augmented Neural Networks · Compound Memory Networks

1 Introduction

Deep learning models have been successfully applied to many tasks, e.g., image
classification [16, 25, 29, 8], image detection [22], video classification [12, 24] and
machine translation [28, 36]. Convolutional Neural Networks (ConvNets) and
Recurrent Neural Networks (RNNs) have become built-in modules in various
fields. However, large amounts of labeled training data are required to train a
deep neural network. To adapt an existing model to recognize a new category
which was unseen during training, it may be necessary to manually collect hun-
dreds of new training samples. Such a procedure is rather tedious and labor
intensive, especially when there are many new categories. There is an increasing
need to learn a classification model from a few examples in a life-long manner,
which is also known as the few-shot learning task [23, 32].

In a few-shot recognition setting, the network needs to effectively learn clas-
sifiers for novel concepts from only a few examples. Unlike traditional models



2 L. Zhu and Y. Yang

Training episode	1

Making	a	cakeTraining	example	1

AuctioningTraining	example	2

Making	a	cakeTesting	example

UnboxingTraining	example	3

Support	set

Query

Testing episode	1

Playing	basketballTraining	example	1

Playing	drumsTraining	example	2

Playing	basketballTesting	example

WeldingTraining	example	3

Training episode	2

KissingTraining	example	1

Walking	the	dogTraining	example	2

Golf	chippingTesting	example

Golf	chippingTraining	example	3

Meta-training	set Meta-testing	set

… …

Support	set

Query Query

Support	set

Fig. 1. The setting of the few-shot video classification. There are two non-overlapping
datasets in this figure, i.e., meta-training and meta-testing. The meta-training set is for
meta-learning and the meta-testing set is for evaluating the generalization performance
on novel categories. The network is trained in an episodic way and each episode has a
support set and a query example.

trained on many data samples, the model in a few-shot setting is trained to
generalize across different episodes. In contrast to training new classifiers by
fine-tuning, we propose a learning to learn approach under the meta learning
paradigm [23]. We aim to enable a system to learn how to classify video data
into a new category by exploiting a meta-training set. As shown in Figure 1,
the meta-training set consists of a number of episodes which mimic the few-shot
learning task. In this example, there is only one positive exemplar per class in
each episode, indicated by a red rectangle. There is no overlapping category
between the training phase and testing phase. During the training phase, the
system learns an optimal mechanism that best recognizes queries in all training
episodes. When testing, the system directly adopts the learned optimal mecha-
nism to classify each query in testing episodes.

In this paper, we focus on few-shot video representation learning. Videos have
more complex structures than images, involving temporal information and more
noise, e.g., camera motion, object scales, viewpoints. It is a more challenging
task than few-shot image classification. Many videos usually contain hundreds
of frames containing various scene dynamics. It could be difficult to understand
the concept in a video when only few examples are provided.

We thus propose a compound memory network (CMN) structure for few-
shot video classification. Our CMN structure is designed on top of the key-value
memory networks [35] for the following two reasons. First, new information can
be readily written to memory, which provides our model with better ‘memo-
rization’ capability. In other words, MANNs are able to store and memorize an
example long-term, even though the example has been seen only once. Second,



Compound Memory Networks for Few-shot Video Classification 3

information stored in the memory module can be memorized for a longer pe-
riod and can be easily accessed. During training, information in each training
episode is gradually accumulated into CMN, which is then used as the learned
few-shot video classification mechanism for testing. It is worthwhile highlighting
the following aspects of our CMN model.

First, we propose a new notion of compound memory networks with a much
stronger representation capability by extending the key memory elements from
a 1D vector to a 2D matrix. Standard key-value memory networks use a single
vector as the key in each memory slot [19]. Videos are more complex in structure
than images and have richer semantic information. Accordingly, we propose to
use multiple vectors to enhance the video representation, with each vector being a
constituent key. The constituent key are stacked to a matrix to generate the video
representation in CMN. These stacked constituent keys work collaboratively in
the training phase, providing a larger search space from which to obtain an
optimal video representation.

Second, we introduce a series of hidden saliency descriptors as constituent
keys in the memory slots of CMN. In many cases, user may be interested in
different salient parts of a video. For example, given a video of a birthday party,
some users may be more interested in the dancing scene, while others focus on
the food and drinks. We propose a multi-saliency embedding algorithm which
automatically detects multiple saliencies of interest in any given video. We extend
the self-attention mechanism [18, 31] by integrating a newly designed learnable
variable to adaptively detect hidden salient genres within a video. The multi-
saliency embedding algorithm learns a hidden saliency descriptor for each genre,
which is then stacked as a video representation in CMN.

Third, we design a layered memory structure, which vastly improves effi-
ciency while retaining the strong representation capability of CMN. The first
layer stores the stacked constituent keys. We design an abstract memory on top
of the first layer, which is equipped with reading and writing operations for re-
trieving and updating the constituent keys. The abstract memory compresses the
stacked constituent keys into a vector and vastly improves training and testing
efficiency. At the same time, the communication between the two layers ensures
that abstract memory is able to retain the information from all constituent keys.

2 Related Work

Few-shot Classification. Early works from Miller et al. [20], Fei-Fei et al. [4]
and Lake et al. [17] utilized generative models for one-shot learning. Koch [15]
attempted to train a Siamese network in a supervised way. Santoro et al. [23] was
the first work to successfully bridge memory-augmented neural works and one-
shot learning. They took training examples in an episode as sequential inputs
and trained the network to predict the label given previous examples. Vinyals et
al. [32] used metric learning for few-shot recognition and utilized the attention
kernel to measure the distance. Given a query, the network is trained to “point”
to the nearest instance in the support set and the corresponding label is re-



4 L. Zhu and Y. Yang

trieved as the prediction. Ravi and Larochelle [21] trained a meta-learner based
on Long Short-Term Memory (LSTM) [10] to generate updates for the classifier
rather than using gradients. The meta-learner also learns a task-common weight
initialization which captures shared knowledge across tasks. Finn et al. [5] used
stochastic gradient descent as a meta-learner to update the parameters of the
learner, which only learns the weight initialization. Snell et al. [26] applied a
similar model to Vinyals [32], but they used Euclidean distance with their em-
bedding function. Hariharan and Girshick [7] proposed the generation of images
at testing time to improve few-shot recognition performance. Xu et al. [37] pre-
sented a key-value memory network to facilitate few-shot learning by extracting
knowledge from external knowledge bases, e.g., noisy web images. However, their
setting is not the meta-learning paradigm. These works focus on image few-shot
recognition, whereas we aim to learn a few-shot video model, which requires
modeling complex video data.

Video Classification. Video classification methods have evolved from using
hand-crafted features, e.g., improved dense trajectories [33], to deep models, e.g.,
two-stream Convolutional Neural Networks (ConvNets) [24, 34], 3D ConvNets [30],
two-stream 3D ConvNets [3]. Recurrent Neural Networks have also been utilized
to model video sequences [38, 39]. Many efforts have been made to train a video
classification model using large amounts of video data, however, it would be
expensive to collect large datasets and retrain the classifier for all novel cat-
egories. The few-shot video classification task is more realistic in a real-world
scenario, where the model will encounter novel categories that are never seen
during training. The networks should be trained to adapt to new tasks.

Memory-Augmented Neural Networks. Memory-Augmented neural net-
works have gained increasing interest with the success of attention mechanism [2],
Neural Turing Machine [6], and Memory Networks [35]. In RNNs, the states
transferred between the steps can be interpreted as internal memory represen-
tations for the inputs. The state vector of the last step is usually used as the
final representation for the whole input sequence. The fixed-size vector represen-
tation cannot encode long sequences in an effective way. Instead, the attention
mechanism retains a sequence vectors as contexts for content-based addressing.
The states in RNNs can change quickly over a few steps, while an external mem-
ory can retain information over the long term. Neural Turning Machine [6] is
a computer-like network augmented with an external memory that can be ad-
dressed via content and location. The reading and writing operations are fully
differentiable and weight updates through backpropagation are applied to every
memory slot. Memory networks [35] and the improved end-to-end memory net-
works [27] have a large memory component for fact search and retrieval through
content-based addressing. Key-value memory networks [19] decompose the mem-
ory into key and value parts, introducing a structural memory component to
store question-answer pairs in a flexible way. Soft addressing is used in all these
works, which is computationally expensive with growth of the memory size.
Kaiser et al. [11] recently proposed a key-value memory module which performs
hard updating to the memory, and a ranking loss is used to train the model to



Compound Memory Networks for Few-shot Video Classification 5

make accurate predictions. However, the memory stores only a fixed-size vector
for an input, which is not suitable when the input is a long sequence, e.g., video
data. We thus propose our compound memory network, in which each slot stores
a series of vectors that are stacked as a matrix representation.

3 Few-shot Video Classification Setup

In the few-shot video classification setting, we aim to train a network that can
generalize to new episodes over novel classes. Each episode in a mini-batch mim-
ics a few-shot classification task, which consists of a support set and a query set.
The support set contains training videos and labels, while the query set is for
evaluating the generalization performance. In an n-way, k-shot problem, the goal
of each episode is to classify query videos into n classes with only a small number
of support examples per class (k). Videos and labels in an episode are sampled
from a meta set. The meta set has N classes (N > n), and each class has K

examples (K > k). In our setup, there are three meta sets, i.e., meta-training set,
meta-validation set and meta-testing set with Ntraining, Nvalidation and Ntesting

classes, respectively. The meta-training set is for meta-learning which minimizes
the loss over training episodes. The meta-validation set is for hyper-parameter
tuning. We report the accuracy on the meta-testing set. The three meta sets
do not have overlapping categories. Following [23, 32], we construct an episode
by randomly choosing n classes from N categories in the meta set. For each
class, k videos are selected from K examples. The label indices for n classes
are randomly shuffled across different episodes, which prevents the model from
memorizing the association between the input and the label.

In a standard video classification problem, there is a single training dataset
Dsingle with fixed categories. Given an input/output pair (x, y) sampled from
Dsingle, the goal is to minimize the estimated loss over all training examples, i.e.,

min
θ

E(x,y)∼Dsingle
[L(x, y)], (1)

where θ represents the trainable parameters in a model.
In the few-shot video classification problem, training is conducted over a

number of different episodes. An episode Ti sampled from meta-set T involves
an episode length l, inputs xt, outputs yt and a loss function L(xt, yt), where
t = {1, 2, . . . , l}. During meta-training, the network is trained to predict the label
of xt at each step given previous input pairs {(x1, y1), (x2, y2), . . . , (xt−1, yt−1)}.
The objective is to minimize the expected loss over mini-batches of episodes, i.e.,
minθ ETi∼T [

∑l

t=1 Li(xt, yt)].

4 Compound Memory Network

We first illustrate the multi-saliency embedding function that learns a fixed-
size matrix representation for a variable-length video sequence. We then show
the detailed structure of our Compound Memory Network, and introduce the



6 L. Zhu and Y. Yang

Inputs . . .

Hidden	saliency	variables

. . . Multi-saliency	descriptor

Query

vector

. . .

a a aa a

p1 p2 pm
0p3 h1 h2 hm

q1 q2 qm

. . .

`2 -normalization

Flatten

Fully-Connected

`2 -normalization

pm
0
−1

Fig. 2. Illustration of the input embedding model. The embedding function generates
the multi-saliency descriptor Q, which is flattened and normalized to a query vector.

novel components, i.e., the constituent keys, abstract memory, together with the
accessing and updating operations.

4.1 Multi-saliency Embedding Function

Videos have variable lengths and should be encoded into a fixed-size matrix
before being stored in memory. Given a query video P = {p1,p2, . . . ,pm′},
where m′ is the number of video frames and pi is a frame-level representation
extracted by a ConvNet, videoP should be aggregated into a fixed-size matrixQ.
The representation Q consists of m stacked hidden descriptors {q1,q2, . . . ,qm},
and the size of each hidden descriptor is hiden-size. Note that the number of
video frames m′ varies across different videos, but m is a fixed number.

We design the multi-saliency embedding function (MEF) by introducing a
hidden variable H with m components {h1,h2, . . . ,hm}. Each component hj is
used to detect one saliency in a video. For each input pi, a soft weight aij over
hj will be calculated which measures the relevance between the input and the
component. The hidden descriptor qj will be the weighted sum over the residual
between P and hj . Thus, the MEF function can be formulated by

ai = softmax(
piH

T

√
dhidden-size

), qj =

m∑

i=1

aij(pi − hj), (2)

where softmax is defined as, softmax(e) = exp(ei)∑
i
exp(ei)

.

To calculate the relevance score between pi and hj , we simply use dot-
product but include a scaled factor 1√

dhidden-size
[31] followed by a softmax func-

tion. The original sequenceP is mapped to our multi-saliency descriptorQ, i.e.,Q =



Compound Memory Networks for Few-shot Video Classification 7

ConvNet

ConvNet

ConvNet

ConvNet

ConvNet

Constituent	key

memory

Abstract

memory

Value

memory

MEF

Normalize
Making	a	cake

Flattened	vector

Query

Frame-level	

representation

Multi-saliency	descriptor

Compound	Memory	Network

Fig. 3. Our CMN structure. A video is first mapped to a matrix representation via
the multi-saliency embedding function. This hidden representation is then vectorized
and normalized as a query vector, which performs a nearest neighbour search over the
abstract memory. The most similar memory slot is retrieved and the label stored in
the value memory will be used as the prediction. The constituent key memory contains
the matrix representations of the inputs, while the abstract memory is constructed on
top of the stacked constituent keys.

MEF(P,H). Q is then flattened and normalized to a vector, which will be dis-
cussed in Section 4 (Figure 2). [18, 31] introduced multi-hops attention to calcu-
late multiple weighted sums over the inputs. In contrast, we introduce a hidden
variable H to explicitly model the relation between the input and each hidden
vector, which learns multiple descriptors for different salient parts in a video.

4.2 Compound Memory Structure

Our Compound Memory Network is a variant of the Key-Value Memory Net-
works, which has the key memory (K) and the value memory (V). Visual in-
formation is stored in the key part, while the label information is stored in the
value part. Our key memory is a layered structure in which the first layer stores
the constituent keys (C) and the second layer is the abstract memory (A). We
also track the usage of each slot with an age memory (U). Thus, the compound
memory module (M) can be represented by the following tuple,

M = ((Cns×nc×cs, Ans×as),Vns, Uns), (3)

where ns is the memory size, nc is the number of constituent keys, cs is the key
size and as is the abstract memory size.

Two-layer Key Memory In the constituent key memory, we use multiple
stacked constituent keys, which have stronger capability than a single vector,
as the visual representation. In CMN, each constituent key is represented by a
multi-saliency descriptor.

Note that Q is a matrix with shape (m, hidden-size) and there are nc keys
in each slot of the constituent key memory. We let m be equal to nc, thus each
descriptor in Q can be directly saved in the constituent key memory.



8 L. Zhu and Y. Yang

To enable fast nearest neighbour query, we introduce an abstract memory on
top of the constituent key memory. The stacked keys are compressed to a vector
and it is cached in the abstract memory. The abstract memory can be seen as
a snapshot of the constituent key memory. The two sub-memory modules have
the same number of slots, but they represent information at different levels.

We denote the stacked matrix representation in C as C, and each constituent
key is ci, i ∈ {1, . . . , nc}. We first normalize each constituent key with ℓ2 nor-
malization, i.e., ∥ci∥ = 1. We then flatten the normalized C′ to a vector followed
by a Fully-Connected (FC) layer, which is then ℓ2-normalized to a compressed
representation. We denote the procedure as the normalize function,

ci
′ =

ci

∥ci∥
, d′ = FC(flatten(C′)), d =

d′

∥d′∥ , (4)

where a FC layer is simply a linear transformation layer, i.e., FC(x) = wx+b. The
compressed representation d is stored in the abstract memory, which will only
be updated when the value in constituent key memory changes. The abstract
memory keeps a one-to-one mapping to the constituent key memory, which will
accelerate the query process.

Reading Given a query vector z = normalize(Q), nearest neighbour search is
conducted over the abstract memory. We select the memory slot that is closest
to the query z by, NN(z, A) = argmaxi z · A[i]. k-nearest slots (ordered by
decreasing similarity) can be returned by,

(n1, . . . , nk) = NNk(z, A), (5)

where n1 is the memory slot that is most similar to the query. At the inference
phase, V[n1] will be our prediction for query z.

Writing The new information should be recorded in the memory to reflect
the relation of new query z and the corresponding label y. The memory will
not be updated via backpropagation which may catastrophically modify the
information, but it will be refreshed with the following rule. Note that n1 is the
index of the nearest memory slot, and if the memory already returns the correct
label, i.e., V[n1] = y, we only update the n1 memory slot. A[n1], U [n1] and C[n1]
will be updated, and leave V[n1] unchanged.

C[n1][i]← qi + C[n1][i], for i = 1, . . . nc,

A[n1]← normalize(C[n1]), U [n1]← 0.
(6)

The constituent key memory is updated by averaging the constituent keys C[n1]
and the multi-saliency descriptors Q. The abstract memory A[n1] is updated
correspondingly. We also set U [n1] to 0, which shows that slot n1 has just been
updated.



Compound Memory Networks for Few-shot Video Classification 9

n
0

Insert when

n1

y = V[n1]

n1

… …

+++

C[n1] ← Q+ C[n1]A[n1] ← normalize(C[n1]) V[n1]

y 6= V [n1]

n
0

n
0

Update when

V[n1]

n1

V[n0] ← yA[n0] ← normalize(C[n0]) C[n0] ← Q

…

… … …

Q

z

A C Vy

Fig. 4. Illustration of the update rule for CMN.

When V[n1] ̸= y, the (Q, y) pair is stored in another memory slot to record
the information. We choose the oldest memory slot n′ that has not been updated
for a long time,

n′ = argmax
i

(U [i] + ri), (7)

where ri is a random number to introduce randomness during slot selection. The
memory will be updated by,

C[n′][i]← qi, for i = 1, . . . , nc,

A[n′]← normalize(C[n′]), V[n′]← y, U [n′]← 0.
(8)

In this case, V[n′] is also updated with the new label y. We illustrate the proce-
dure in Figure. 4.

4.3 Training

Given a query z and a corresponding ground-truth label y, we retrieve top-k key-
value pairs on memory indices (n1, . . . , nk) by Eq. 5. Let i-pos be the smallest
index that V[ni-pos] = y and i-neg be the smallest index that V[ni-neg] ̸= y. We
train the query vector z to be more similar to A[ni-pos] than A[ni-neg] with the
following ranking loss,

L(z, y,A) = max(α− z · A[ni-pos] + z · A[ni-neg], 0). (9)



10 L. Zhu and Y. Yang

The similarity between the query and the positive key should be larger than the
similarity between the query and the negative key by margin α. The loss will be
0 when the difference between the two similarities is beyond margin α.

The memory in each episode is cleared before operations are conducted. The
clear operation simply initializes all memory variables to 0. During mini-batch
training, information from multiple episodes are stored in the global memory. To
avoid confliction in the label space, label ids across episodes should be different.
The global label id can be calculated by,

global-label-id = label-id + index× k, (10)

where k is the number of classes, label-id is the shuffled label id in an episode
and index is the index of the episode in the mini-batch. At the inference phase,
the weights of the network are fixed except for the memory module, which will
be updated with the support set examples.

5 Experiments

5.1 Datasets

There are no existing datasets for few-shot video classification, thus we collected
the first dataset for few-shot video classification evaluation, which we will re-
lease for future research. We used videos from the recently released Kinetics
dataset [13], which consists of 400 categories and 306,245 videos, covering videos
from a wide range of actions and events, e.g., “dribbling basketball”, “robot
dancing”, “shaking hands”, “playing violin”. We randomly selected 100 classes
from the Kinetics dataset, each of which contains 100 examples. The 100 classes
were split into 64, 12 and 24 non-overlapping classes for use as the meta-training
set, meta-validation set and meta-testing set, respectively.

5.2 Implementation Details

In an n-way, k-shot problem, we randomly sampled n classes and each class has
k examples, while an additional unlabeled example belonging to one of the n

classes is used for testing. Thus each episode has nk+1 examples. We calculated
the mean accuracy by randomly sampling 20,000 episodes in all experiments.

To obtain the frame-level feature representation, we forwarded each frame
to a ResNet-50 [9] network that was pre-trained on ImageNet. We followed the
basic image preprocessing procedure, whereby the image was first rescaled by
resizing the short side to 256 and a 224×224 region was randomly cropped from
the image. We cropped the central region during the inference phase.

We optimized our model with Adam [14] and fixed the learning rate to
1.0×10−4. The margin α was set to 0.5 in all experiments. We tuned the hyper-
parameters on the meta-validation set, and stopped the training process when
the accuracy on the meta-validation set began to decrease. The model was im-
plemented with the TensorFlow framework [1].



Compound Memory Networks for Few-shot Video Classification 11

Table 1. Results of 5-way few-shot video classification on the meta-testing set. The
numbers are reported in percentages. Our CMN achieves state-of-the-art results.

Model 1-shot 2-shot 3-shot 4-shot 5-shot

RGB w/o mem 28.7 36.8 42.6 46.2 48.6

Flow w/o mem 24.4 27.3 29.8 32.0 33.1

LSTM(RGB) w/o mem 28.9 37.5 43.3 47.1 49.0

Nearest-finetune 48.2 55.5 59.1 61.0 62.6

Nearest-pretrain 51.1 60.4 64.8 67.1 68.9

MatchingNet [32] 53.3 64.3 69.2 71.8 74.6

MAML [5] 54.2 65.5 70.0 72.1 75.3

Plain CMN [11] 57.3 67.5 72.5 74.7 76.0

LSTM-emb 57.6 67.9 72.8 74.8 76.2

Ours 60.5 70.0 75.6 77.3 78.9

5.3 Evaluation

We compare our model with several baselines. We report 1-shot, 2-shot, 3-shot,
4-shot and 5-shot results on the 5-way classification task. In the first baseline,
we utilize all the training data to pre-train the ResNet-50 network. At the test-
ing stage, we fine-tune the network for each episode. The network is initialized
with the pre-trained weights up to the last layer. The weights in the last layer is
randomly initialized. We test the performance with different inputs. For “RGB
w/o mem”, we take RGB frames as inputs to train the network. For “Flow w/o
mem”, stack flows images are stacked as inputs to the network. To encode video
with more sophisticated embedding function upon the frame-level features, we
use an LSTM to aggregate temporal dynamics in a video. The LSTM takes
the RGB features as inputs. It is fine-tuned for each episode. We denote this
baseline as “LSTM (RGB) w/o mem”. Another baseline is a nearest neighbour
baseline (“Nearest-finetune”). We first finetune the ResNet-50 network to clas-
sify all classes in the meta-training set. We feed each frame as the input image
and the video-level label is used as the label for each frame. Frames are first pre-
processed with the procedure described above. We initialize the weights of the
ResNet-50 network with the ImageNet pre-trained model. We train the network
via stochastic gradient descent (SGD) with momentum 0.9. We set the initial
learning rate to 0.01. We decrease the learning rate by 0.1 every 10 epochs. The
batch size is 128. During inference, we feed the video frames to the finetuned
ResNet-50 network and extract the activations from the last layer before final
classification. We average the frame-level features and obtain a video-level rep-
resentation of 2,048 dimension. We also apply ℓ2 normalization before nearest
neighbour search.

In the next baseline (“Nearest-pretrain”), we do not finetune the ResNet-
50 network on the meta-training dataset, but directly utilize the pre-trained
weights without modification. We embed the video with the same procedure in
“Nearest-finetune”, and then apply nearest neighbour search.



12 L. Zhu and Y. Yang

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Comparisons	 over	per	class	accuracy	on	the	meta-testing	set

Nearest-pretrain Nearest-finetune MatchingNet Plain	CMN CMN

Fig. 5. Per class accuracy on the 5-way 1-shot setting. We show the accuracies of 24
classes on the meta-testing set.

We also show the result of the Matching Network [32] (“MatchingNet”) on
this dataset, which achieves state-of-the-art performance on the few-shot image
classification task. We implement the Matching Network algorithms ourselves.
We first feed the frames to a ResNet-50 network without fine-tuning. We aver-
age frame-level features to obtain a video-level feature. We then use the fully-
conditional embedding (FCE) function proposed in [32] to embed the training
examples. The FCE uses a bidirectional-LSTM and each training example is a
function of all the other examples. To train MAML [5], we average the frame-level
features and follow the default hyper-parameters in [5].

Another baseline is “Plain CMN” where we remove the constituent key mem-
ory from the model and use a video-level vector as video representation. We
replace our embedding module with an LSTM function, while keeping the other
settings the same. We denote this baseline as “LSTM-emb”. We conduct this
baseline to show the effectiveness of our compound memory network structure.

The results are shown in Table 1. We can see from Table 1 that our CMN
improves the baselines in all shots. We observe that fine-tuning the ResNet-50
network on the meta-training set does not improve the few-shot video classifica-
tion performance, but significantly harms performance. As there are no overlap-
ping classes between the meta-training set and the meta-testing set, it is very
likely that the model will overfit the meta-training set. Our CMN structure also
outperforms the Matching Networks by more than 4% across all shots. Further-
more, our CMN structure outperforms the “Plain CMN”, which demonstrates
the strong representation capability of the constituent key memory. About 10%
improvement is obtained between the 1-shot setting and the 2-shot setting, by
only adding one example per class. The relative improvement decreases when
more examples are added, e.g., the improvement from 3-shot to 4-shot is only



Compound Memory Networks for Few-shot Video Classification 13

1				 2		 3 4		 5 6 7 8	 9	 10 11 12 13 14 15 16

playing	monopoly

blasting	sand

…

tap	dancing

busking

folding	paper

… … … …

… … … … …

… … … … …

…

Class	names

Insert

Blend

Nearest slot

Prediction: buskingTesting query

?

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

K

K

K

K

V

V

V

V

Fig. 6. We illustrate the inference procedure. There are 5 classes and the memory has
16 slots. Two different update rules will be used depending on the query results.

Table 2. Results of different memory sizes.

Model 1-shot 2-shot 3-shot 4-shot 5-shot

Mem-64 52.0 61.9 66.5 69.4 71.2

Mem-128 53.4 63.7 68.9 71.5 73.5

Mem-512 55.1 65.3 70.1 72.0 74.2

Mem-2048 55.0 65.0 69.7 72.4 74.1

1.7%. This shows that one-shot classification is still a difficult problem which
can be further improved in the future.

The 1-shot accuracy for each class is shown in Figure 5. We report the mean
accuracy for class c over all episodes where the query label is c. The “hurling
(sport)” category have the highest accuracy, while “hula hooping” and “stretch-
ing arms” achieve the worst performance with about 30% accuracy.

We illustrate the inference procedure in an episode in Figure 6. In this 5-way
3-shot setting, the support set has 15 examples. Each example is sequentially
fed to the network. This episode is divided into three groups, each of which
has five examples with distinct labels. We arrange the episode in this way for
better illustration. In row 1, all inputs are inserted into the memory. In row 2,
the 7th example is inserted into a new slot in the memory, while other videos
are blended into existing slots of the same category. In row 3, the 13th example
is inserted. For the 11th example, the closest slot is the 15th slot and the two
representations are averaged.



14 L. Zhu and Y. Yang

Table 3. Results of different numbers of
multi-saliency descriptors.

Model 1-shot 2-shot 3-shot 4-shot 5-shot

Desc-1 53.7 63.5 68.3 70.9 73.3

Desc-5 55.1 65.3 70.1 72.0 74.2

Desc-10 53.2 62.9 68.2 70.0 72.3

Table 4. Results of different way few-shot
video classification.

Model 1-shot 2-shot 3-shot 4-shot 5-shot

5-way 55.0 65.0 69.7 72.4 74.1

6-way 51.7 61.8 66.4 69.3 71.2

7-way 49.5 59.6 64.3 67.1 68.9

8-way 46.0 56.1 61.0 64.0 65.8

5.4 Ablation Study

We perform ablation experiments to explain our selections for the final model.
The default setting is the 5-way few-shot classification. We show the performance
of different memory sizes in Table 2, and the results of different numbers of
constituent keys are shown in Table 3. We also report the results of other few-
shot video classification tasks with different numbers of categories. We report the
results on the meta-validation set, and choose only 10 frames during evaluation.
Memory size. The results of different memory sizes are shown in Table 2. When
the memory has a small number of slots, the performance is worse because
some information has to be wiped out when new data arrives. Memory size
of 512 achieves the best results. Increasing the memory size does not improve
performance when the memory is large enough to record all the information.
The number of multi-saliency descriptors. The result is shown in Table 3.
It shows that multi-saliency descriptors with stronger representation capability
obtain better performance than a single descriptor. The performance decreases
when too many descriptors are used, because more parameters are introduced
in the network.
N-way classification. In all previous experiments, evaluations were conducted
on the 5-way classification setting. n-way classification with larger n is a simi-
lar task to 5-way classification, but can be more difficult. As can be seen, the
performance decreases when n increases.

6 Conclusion

In this paper, we have proposed a compound memory network for few-shot video
classification. This module stores matrix representations, which can be easily
retrieved and updated in an efficient way. Our future work is to leverage multiple
memory banks of different modality representations.
Acknowledgment. Our work is partially supported by the Data to Decisions
CRC (D2D CRC) and the Cooperative Research Centres Programme. We grate-
fully acknowledge the support of NVIDIA Corporation with the donation of
the TITAN X (Pascal) GPU. We thank AWS Cloud Credits for Research for
supporting this research.



Compound Memory Networks for Few-shot Video Classification 15

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S.,
Murray, D.G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu,
Y., Zheng, X.: Tensorflow: A system for large-scale machine learning. In: OSDI
(2016)

2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. In: ICLR (2015)

3. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the
kinetics dataset. In: CVPR (2017)

4. Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. TPAMI
28(4), 594–611 (2006)

5. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: ICML (2017)

6. Graves, A., Wayne, G., Danihelka, I.: Neural Turing machines. arXiv preprint
arXiv:1410.5401 (2014)

7. Hariharan, B., Girshick, R.: Low-shot visual recognition by shrinking and halluci-
nating features. In: ICCV (2017)

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016)

9. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks.
In: ECCV (2016)

10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation
9(8), 1735–1780 (1997)

11. Kaiser,  L., Nachum, O., Roy, A., Bengio, S.: Learning to remember rare events.
In: ICLR (2017)

12. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-
scale video classification with convolutional neural networks. In: CVPR (2014)

13. Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijayanarasimhan, S.,
Viola, F., Green, T., Back, T., Natsev, P., et al.: The kinetics human action video
dataset. arXiv preprint arXiv:1705.06950 (2017)

14. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: ICLR (2015)

15. Koch, G.: Siamese Neural Networks for One-Shot Image Recognition. Ph.D. thesis,
University of Toronto (2015)

16. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: NIPS (2012)

17. Lake, B., Salakhutdinov, R., Gross, J., Tenenbaum, J.: One shot learning of simple
visual concepts. In: CogSci (2011)

18. Lin, Z., Feng, M., Santos, C.N.d., Yu, M., Xiang, B., Zhou, B., Bengio, Y.: A
structured self-attentive sentence embedding. In: ICLR (2017)

19. Miller, A., Fisch, A., Dodge, J., Karimi, A.H., Bordes, A., Weston, J.: Key-value
memory networks for directly reading documents. In: EMNLP (2016)

20. Miller, E.G., Matsakis, N.E., Viola, P.A.: Learning from one example through
shared densities on transforms. In: CVPR (2000)

21. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: ICLR
(2017)

22. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object
detection with region proposal networks. In: NIPS (2015)



16 L. Zhu and Y. Yang

23. Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., Lillicrap, T.: Meta-learning
with memory-augmented neural networks. In: ICML (2016)

24. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recog-
nition in videos. In: NIPS (2014)

25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: ICLR (2015)

26. Snell, J., Swersky, K., Zemel, R.S.: Prototypical networks for few-shot learning. In:
NIPS (2017)

27. Sukhbaatar, S., Weston, J., Fergus, R., et al.: End-to-end memory networks. In:
NIPS (2015)

28. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: NIPS (2014)

29. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: CVPR (2016)

30. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotem-
poral features with 3d convolutional networks. In: ICCV (2015)

31. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. In: NIPS (2017)

32. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for
one shot learning. In: NIPS (2016)

33. Wang, H., Schmid, C.: Action recognition with improved trajectories. In: ICCV
(2013)

34. Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X., Van Gool, L.: Temporal
segment networks: Towards good practices for deep action recognition. In: ECCV
(2016)

35. Weston, J., Chopra, S., Bordes, A.: Memory networks. In: ICLR (2015)
36. Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., Krikun,

M., Cao, Y., Gao, Q., Macherey, K., et al.: Google’s neural machine translation
system: Bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144 (2016)

37. Xu, Z., Zhu, L., Yang, Y.: Few-shot object recognition from machine-labeled web
images. In: CVPR (2017)

38. Yue-Hei Ng, J., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R.,
Toderici, G.: Beyond short snippets: Deep networks for video classification. In:
CVPR (2015)

39. Zhu, L., Xu, Z., Yang, Y.: Bidirectional multirate reconstruction for temporal mod-
eling in videos. In: CVPR (2017)


