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Abstract. We introduce a family of novel approaches to single-image
blind deconvolution, i.e., the problem of recovering a sharp image and a
blur kernel from a single blurry input. This problem is highly ill-posed,
because infinite (image, blur) pairs produce the same blurry image. Most
research effort has been devoted to the design of priors for natural images
and blur kernels, which can drastically prune the set of possible solutions.
Unfortunately, these priors are usually not sufficient to favor the sharp
solution. In this paper we address this issue by looking at a much less
studied aspect: the relative scale ambiguity between the sharp image
and the blur. Most prior work eliminates this ambiguity by fixing the L1

norm of the blur kernel. In principle, however, this choice is arbitrary.
We show that a careful design of the blur normalization yields a blind
deconvolution formulation with remarkable accuracy and robustness to
noise. Specifically, we show that using the Frobenius norm to fix the
scale ambiguity enables convex image priors, such as the total variation,
to achieve state-of-the-art results on both synthetic and real datasets.

1 Introduction

The removal of blur in images has seen substantial progress in the past few
decades with a wealth of efficient algorithms available today [7, 24, 36]. Advances
have been made by exploring different energy formulations [5, 24, 44] as well as
image priors [28, 39, 43, 45, 52] in both Bayesian [2, 9, 23, 47] and deterministic
frameworks [7, 30, 31]. Advanced image formation models [14, 40, 48] allow going
beyond stationary blur, and, recently, a variety of deep learning approaches [4,
15, 16, 25, 26, 35, 38, 41] have been proposed.

In its simplest form, blind deconvolution describes a blurry image y as the
convolution between a latent blur k and a latent sharp image x. Because of the
convolutional image formation model, there is an inherent scale ambiguity be-
tween these two unknowns. That is, one could multiply the blur k by a scale
factor s > 0 and the image x by the reciprocal factor 1/s to obtain the same
blurry image y. To remove this ambiguity, it is common to impose that |k|1 = 1.
However, since the scale is arbitrary, so is this choice of normalization.3 Indeed,

3 Blind deconvolution is a mathematical problem with a corresponding physical prob-
lem (image deblurring). From the mathematical point of view, there is an ambiguous



2 Meiguang Jin, Stefan Roth, and Paolo Favaro

we could use any other norm in principle, such as the L2 or Frobenius norm,
and require |k|2 = 1. More generally, we could apply an arbitrary p-norm and
constrain |k|p = 1, where | · |p denotes the Lp norm. To the best of our knowl-
edge, very little attention has been paid to the scale ambiguity between blur and
image. We show that this choice matters much more than has been apparent, as
it can significantly affect the performance of blind deconvolution algorithms. As
we demonstrate later on, a more appropriate normalization can enable simple,
convex image priors, such as total variation, reach state-of-the-art (SotA) im-
age quality, which was previously possible only with more complex, non-convex
priors [29, 46]. Moreover, our scheme provably allows avoiding many difficulties
that have hampered the practical implementation of SotA methods. This in-
cludes hand-tuned schedules for varying the amount of regularization across the
iterations, approximating operators [29], or gradient steps.

Contributions: We would like to emphasize that we neither propose a novel
image prior nor a novel blur prior. Rather, we (1) introduce a formulation of blind
deconvolution with a novel, general constraint to fix the scale ambiguity; (2)
provide a mathematical proof that shows for the first time a condition under
which the sharp image is preferred over the blurry input image even with
classic convex image priors;4 (3) show that the proposed scale constraint
automatically changes the amount of image regularization across iterations,
avoiding custom-designed tuning typically used in most algorithms; (4) introduce
two new algorithms that achieve SotA in terms of both accuracy and robustness.

2 Prior Work

Although blind deconvolution has been studied for more than two decades, it still
remains a challenging task due to its ill-posed nature. Therefore, most methods
for solving this problem differ in their regularization technique.

A common practice is to employ a regularization term for the sharp image x
that encourages the sparsity of its gradients. This follows from the study of nat-
ural image statistics [37]. As a convex sparsity-inducing prior, the total variation
(TV), introduced by Rudin, Osher, and Fatemi [32] for denoising, has emerged as
an effective choice also in blind deconvolution [5]. Despite the success of the TV
prior in practice, Levin et al. [22] show that it favors blurry solutions. Perrone

scale between the blur kernel and the sharp image, and L1 normalization, as with
any other arbitrary norm, is one possible choice to fix the scale of the blur kernel.
However, as a model of a physical system, the blur kernel corresponds to the point
spread function (PSF) of the camera lens(es), and in this case physics indicates that
normalization is through the L1 norm [3]. Therefore, we first solve the mathematical
problem with an arbitrary norm, and then we map the final solution to a phys-
ically valid PSF by normalizing it in terms of L1. This way we benefit from the
mathematical freedom while ensuring physical validity in the end.

4 Please note that prior work showed how convex image priors together with an L1

constraint on the kernel do not favor the sharp image as a solution [22, 30].
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and Favaro [30] find that post normalization in the alternating minimization al-
gorithm is responsible for the empirical success. Cho and Lee [8] show that under
certain conditions, the MAP energy function can favor the correct solution. Be-
yond convex image priors, a wide variety of effective, non-convex methods has
been proposed [7, 36, 44]. Wipf and Zhang [42] re-examine the common belief
that the regularization term should encourage natural image statistics. They ar-
gue, instead, that the image prior should simply focus on discriminating between
sharp and blurry images. Ideally this would be achieved with an L0 regularizer,
but the resulting objective is NP-hard. As a substitute, they suggest a loga-
rithmic prior, which Babacan et al. [2] adopt with success. Different L0 norm
approximations have also been proposed [20, 28, 45]. Patch-based methods [24,
39] sidestep classical regularizers and have shown impressive performance. How-
ever, they are usually computationally demanding due to searching for similar
patches across scales [24] or finding sharp patches in an external dictionary [39].

Recently, due to the astounding success of deep learning, neural network-
based motion deblurring approaches have been proposed [4, 35]. [4] estimates
Fourier coefficients of a deconvolutional filter to be applied to an input patch
and shows remarkable reconstruction quality and speed. The main limitation of
current learning-based approaches is that they do not generalize well to large
blurs. Conventional approaches have remained superior in this regard. In this
paper we also provide a theoretical result, hence focus on the simplest formu-
lation of blind deblurring, where a blurry image is the result of a convolution.
While already allowing practical applications, real blur can be much more com-
plex. Great progress has been made on handling real blur, such as for camera
shake [9, 13, 38, 40], dynamic scenes [16–18, 25, 26], or object motion [11, 27, 34].

So far most approaches have focused on the design of image priors. Still,
a variety of methods have also considered blur priors based on an L1 or L2

penalty [4, 6, 7, 20, 24, 39, 44, 45] to either encourage the estimated blur kernel to
be sparse or to discourage the trivial solution (i.e., the estimated sharp image
equals the blurry input). The recent work of Zhang et al. [49] is most closely
related to ours. They also impose a unit Frobenius norm constraint on the blur
kernel. Their analysis requires an explicit solution of the latent image given the
blur kernel, which is challenging to obtain and requires approximations (e.g.,
blur sparsity). In contrast, our analysis does not require an explicit solution; we
present a novel proof for the TV prior that considers a family of normalizations,
and we include a positivity constraint on the blur. Finally, we show that the scale
ambiguity can be fixed so that even simple and efficient convex image priors yield
SotA results outperforming [49], while provably avoiding the trivial solution.

3 Blind Deconvolution

A classic way to cast blind deconvolution [5] is to optimize

mink,x |y − k ∗ x|22 + λ|∇x|2 subject to |k|1 = 1, k ≥ 0, (1)

where λ > 0 is a regularization parameter, k ≥ 0 enforces element-wise non-
negativity, and |∇x|2 ,

∑

i,j |∇xij |2 denotes the discretized TV [32]. This for-
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mulation appeared with different modifications in several works [5, 30, 44]. One
of its favorable properties is that the problem is convex in the blur k when the
sharp image x is fixed and, vice versa, it is convex in x when fixing k. To see
this, note that the constraints |k|1 = 1 and k ≥ 0 are equivalent to

∑

i ki = 1
and k ≥ 0. Thus, convergence analysis and several computationally efficient
algorithms, such as alternating minimization, are available for this family of
problems [12]. Unfortunately, solving the above formulation globally is known
not to work [22, 30], i.e., it fails at recovering a sharp image. Specifically, the
degenerate solution (k=δ, x=y) yields a smaller energy than the true solution.

We now show that introducing a different scale normalization constraint al-
lows transforming such a formulation into one that succeeds in recovering a sharp
latent image. We then introduce two algorithms: one is used to study different
scale normalizations, while the other is computationally efficient. Both achieve
SotA results on standard synthetic and real datasets.

3.1 L
p scale normalization constraint

As noted above, fixing the scale constraint via |k|1 = 1 is an arbitrary choice
due to the inherent scale ambiguity of the blind deblurring problem. Thus, let
us consider the more general scale normalization |k|p = 1, where | · |p denotes
the Lp norm. Our formulation with the Lp constraint then becomes

minw,z |y − w ∗ z|22 + λ|∇z|2 subject to |w|p = 1, w ≥ 0, (2)

where for notational distinction from Problem (1), we have used w and z to
denote the blur kernel and latent image, respectively. This formulation is not
desirable as is, because it is not convex when solving for the blur kernel w due to
the Lp constraint. However, we now show how to transform this formulation so
that all alternating minimization steps involve convex optimization. First, let us
relate the pair (k, x) to (w, z) via k , w/|w|1 and x , |w|1z. Thus, w∗z = k∗x and
|k|p = |w|p/|w|1. With the constraints on w in Problem (2) we have |k|p = 1/|w|1.
The above definitions plus constraints on w in Problem (2) are then equivalent
to the new constraints k ≥ 0, |k|1 = 1, w = k/|k|p, z = |k|px. Since the relations
between k and w and between x and z are 1-to-1, we obtain

mink,x |y − k ∗ x|22 + λ|k|p|∇x|2 subject to |k|1 = 1, k ≥ 0, (3)

which is now convex in k for p ≥ 1 and a fixed x.

Remark 1. Problem (3) is almost identical to the classic formulation of Prob-
lem (1), except for the modified regularization term λ|k|p|∇x|2. The weight
λ is now scaled by the Lp norm of the blur k. When the blur k is close to a
Dirac δ, the regularization will be the highest, and when the blur k is close to
uniform, the regularization will be the lowest. It is thus clear that the proposed
normalization is not equivalent to the classic L1 case when p > 1.

Remark 2. We have transformed Problem (2) with the mappings |k|p = |w|p/|w|1

and x , |w|1z into Problem (3). Thus, the latent blur k in Problem (3) is always
estimated as a valid PSF as in Problem (1).



Normalized Blind Deconvolution 5

The first question is then whether a choice of p > 1 brings any improvements
to the set of solutions in the blind deconvolution formulation above. In the
following proposition we show that this is indeed the case for p ≥ 2.

Proposition 1. Assume the gradients of the true sharp image x to be i.i.d. zero-
mean Gaussian and the true blur kernel k to have finite support. Given a blurry
image y = k∗x with the true blur k, Problem (3) then favors with high probability
the true blur/image pair (k, x) over the trivial no-blur pair (δ, y) for p ≥ 2.

Proof. Both solutions make the data term |y − k ∗ x|22 = 0 and satisfy the con-
straints. The only term left in the objective function is therefore the joint prior
|k|p|∇x|2 (note that the regularization parameter λ > 0 can be ignored). There-
fore, we need to show that |δ|p|∇y|2 ≥ |k|p|∇x|2. Blur term |k|p: This term
can be left as is. Blur term |δ|p: We have that |δ|p = 1, ∀p ∈ Z. Sharp im-
age prior |∇x|2: Let us define ∇xij

.
= [uij vij ]

⊤. Because of the assumptions
on the gradient of a sharp image, we have that uij ,vij ∼ N (0, σ2). Then, we

obtain |∇xij |2 =
√
u2
ij + v2

ij ∼ X2, where X2 denotes the Chi-squared distribu-

tion with two degrees of freedom. Its mean is µX =
√

π/2σ and its variance
σ2
X = (2−π/2)σ2. Note that, because there are only two degrees of freedom and

the Gaussian variables have zero mean, this is also equivalent to the Rayleigh
distribution. Since we need to evaluate |∇x|2 .

=
∑N

i=1

∑M
j=1 |∇xij |2, we then

need to compute the sum of MN independent Chi-squared (or Rayleigh) ran-
dom variables. By using Chebyshev’s inequality, we can write for any ξ > 0
P (|1/MN|∇x|2 − µX | < ξ) ≥ 1−σ2

X/MNξ2. Therefore, for a sufficiently large MN
the approximation

|∇x|2 ≃ MN
√

π
2σ (4)

will hold with very high probability.

Blurry image prior |∇y|2: Let us define |∇yij |2 .
=

√

(k ∗ u)2i,j + (k ∗ v)2i,j so
that |∇y|2 =

∑

i,j |∇yij |2. One can see that each (k ∗ u)i,j
.
=

∑

m,n km,nui−m,j−n

is a zero-mean Gaussian with variance σ2|k|22. Thus, we also obtain that |∇yij |2
is a Chi-squared distributed random variable, but with mean µ̂ =

√

π/2σ|k|2
and variance σ̂2 = (2 − π/2)σ2|k|22. The sum over the pixels (i, j) now needs
additional care, because neighboring terms may not be independent. We use
the assumption of a finite W × H support of k. Thus, we know that |∇yij |2
is independent from |∇yi+|Ω|,j |2. This suggests that we split the sum so that
∑

i,j |∇yij |2 =
∑W

p=1

∑H
q=1

∑

i,j |∇yp+Wi,q+Hj |2. Then, by using the approx-

imation of Eq. (4) we have
∑

i,j |∇yp+Wi,q+Hj |2 ≃ MN
WH

√

π
2σ|k|2 and finally

|∇y|2 ≃ ∑W
p=1

∑H
q=1

MN
WH

√

π
2σ|k|2 = MN

√

π
2σ|k|2. By putting all together, we

have that |δ|p|∇y|2 ≃ MN
√

π
2σ|k|2 ≥ MN

√

π
2σ|k|p ≃ |k|p|∇x|2.This boils

down to |k|2 ≥ |k|p, which is true for p ≥ 2. We can therefore conclude that
|∇y|2 ≥ |k|2|∇x|2 ≥ |k|p|∇x|2 for any p ≥ 2 with high probability when MN is
large enough. ⊓⊔
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This result shows that by changing the scale normalization constraint, we
have transformed Problem (1) with a trivial global solution into Problem (3),
where the trivial solution is no longer preferred over the true one. Note that the
optimal solution will be given as a trade-off between data term and image prior.
To fully assess the impact of our scale normalization constraint, we propose two
algorithms to minimize Problem (3) and test them on standard datasets.

3.2 Frank-Wolfe (FW) algorithm

Because of Proposition 1, we can now attempt to solve Problem (3) globally.
We propose to use an alternating minimization method and run each alternating
step until convergence. By denoting the iteration index as t ≥ 0, we first update
the latent image via

xt = argminx |y − kt ∗ x|22 + λ|kt|p|∇x|2 (5)

with the L-BFGS-B algorithm [50] with box constraints (imposing x ≥ 0 and
x≤1 at every pixel). Then, we solve

kt+1 = argmink |y − k ∗ xt|22 + λ|k|p|∇xt|2 subject to |k|1 = 1, k ≥ 0 (6)

with the Frank-Wolfe algorithm (FW) [10]. The algorithm is initialized with k0=δ.
We are not aware of any prior blind deconvolution method that solves each step
of the alternating minimization problem above, particularly Eq. (6), without
approximations. Note that in the FW algorithm we do not adapt the regular-
ization weight λ with the iteration index t. We have not found prior methods
capable of converging to the correct kernel when the latent blur is initialized with
the Dirac δ and the regularization parameter is fixed. This is indeed not possible
if the global minimum of the objective is the degenerate solution (k = δ, x = y).
Note that changing the regularization during the iterations in a heuristic way
means changing the original cost function that one intends to minimize.

3.3 Post-normalization (PN) algorithm

As we will see in the experiments, the FW algorithm tends to converge slowly
(although still faster than many other SotA methods). As a more efficient im-
plementation, we consider the method of Chan and Wong [5, 30]. We thus derive
an alternating gradient descent method. We minimize

E[x, k] , |y − k ∗ x|22 + λ|k|p|∇x|2 (7)

with respect to x and k by alternating between

xt = xt−1 − ǫx∇xE[xt−1, kt−1] (8)

and

k̂t = kt−1 − ǫk∇kE[xt, kt−1], k̃t = max{0, k̂t} and kt = k̃t
/|k̃t|1 (9)
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with step sizes ǫx, ǫk > 0. This method, termed PN, is an approximate solver
since the sequential updates of the blur do not correspond to an alternating
minimization [30]. Nonetheless, when applied to Problem (1), it has been shown
to perform well (albeit not with SotA results). In our experiments we show
that the new L2 blur normalization of Problem (3) can boost its performance
dramatically. As with the FW algorithm, we initialize the blur with k0 = δ.

Remark 3. The prior λ|k|p|∇x|2 in Problem (3) has a very important role during
sharp image estimation. Since the blur is fixed during the estimation of x, we can
consider λ|k|p as a regularization weight. This weight changes as k is updated,
in turn affecting the amount of regularization of the sharp image. Because we
initialize the blur with a Dirac δ, the initial regularization is the highest possi-
ble. Then, as the blur gradually moves away from the Dirac δ, the amount of
regularization decreases. This annealing of the regularization weight is similar to
the heuristic schedule used in other methods [2, 23, 30, 31]. However, note that in
our case we obtain this desirable effect in a rigorous fashion from the objective
(and by defining the blur initialization). Also note that our scale constraint is
different from adding an L2 penalty on the blur as used in prior work
[6, 7, 24, 39, 44]. In our case the blur update is affected by the TV regularizer,
thus adjusting the amount of blur regularization across iterations.

Remark 4. FW vs PN. FW and PN are both blind deconvolution algorithms. FW is an
exact optimization in the sense that it optimizes exactly the original objective.
PN instead uses an approximate algorithm to minimize the original objective.
Hence, in the following section we use FW to demonstrate the theory and the
accuracy. In the experimental section, we mainly use PN as it converges about 3
times faster than FW without losing much accuracy.

4 Scale Normalization Analysis

Our first experiment is to validate Proposition 1 empirically when gradient statis-
tics are non-Gaussian. We use the whole BSDS dataset [1] (500 images) and ran-
domly generate 100 different blurs as in [4] to yield triplets (blurry image y, sharp
image x, blur kernel k). We do not add any noise such that every triplet satisfies

exactly the convolutional model. We then compute the prior ratio
|δ|p|∇y|2
|k|p|∇x|2

to

analyze how often the prior favors the true sharp image (i.e., the ratio is above
1). Fig. 1a shows the mean and standard deviation of the prior ratio as well as its
minimum value (i.e., the worst case) over the whole BSDS dataset for different
values of p. We observe that for p ≥ 2 the prior always favors the estimation
of the sharp image (on all samples, and in particular, also in the worst case) as
indicated by Proposition 1 for Gaussian image statistics.

Next, we explore different choices of p (between 1 and 4) for both the FW

and PN algorithms. We randomly pick 12 images from the BSDS dataset [1],
and combine them with 6 blurs from [33] to generate synthetic blurry images.
We compute the Sum of Squared Difference (SSD) ratio on the estimated latent
sharp image as proposed by [23]. We set ǫx=0.005 and ǫk=0.001. λ is tuned for
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Fig. 1: (a) Evaluation of image prior ratios |δ|p|∇y|2/|k|p|∇x|2 over triplets (blurry image
y, sharp image x, blur kernel k) on the BSDS dataset [1]. The plot shows the mean,
standard deviation, and the minimum value of the prior ratio for different values of p.
The image prior favors sharp images when the computed prior ratio is above 1. This
is always the case with p ≥ 2. (b) Evaluation of different scale normalizations on 12
BSDS images [1] for 6 blurs [33]. We plot the mean and standard deviation of the SSD
error ratio of the FW and PN methods for different values of p. The smallest SSD error
ratio is achieved by p = 2. (c) Evaluation of the blur bias due to the p-norm. For
different values of p, we plot the weight α ∈ [0, 1] (i.e., the coefficient of the convex
combination kα = αk∗ + (1 − α)kunif, see text) for which kα has minimal MSE. As p
increases beyond 2, α decreases and the estimated blur moves towards being uniform.
This shows a clear bias that tends to smooth the blur kernel and therefore results in
oversharpened image reconstructions.

each p-norm to obtain the best performance; the blur is initialized as a Dirac
δ. We omit the results for the FW method with p=1, since it gets stuck at the
trivial solution. Note that the FW method converges more slowly than PN. The
results of both algorithms are shown in Fig. 1b. We observe that p=2 performs
best among the different Lp norms.

Our last evaluation is to show that large p values tend to introduce a bias
towards uniform blur. To that end, we combine an image from the BSDS dataset
with a blur k∗, and then solve the blind deconvolution problem to estimate a
blur kernel k for different p values. After obtaining results for different p values,
we first spatially align the estimated blurs to the ground truth k∗, and then
find the best match within a set of example kernels. To measure the bias, we
generate the example set from convex combinations of the true blur k∗ and the
uniform blur kunif, i.e., kα = αk∗ + (1 − α)kunif for a few α ∈ [0, 1] values. We
then search for the optimal α for each p, such that kα has the minimum mean
square error (MSE) compared to the corresponding estimated blur. We repeat
this experiment on 56 different image/blur pairs and plot the mean and standard
deviation of different α weights for different p values in Fig. 1c. We observe that
the estimated blur moves increasingly towards the uniform blur as p increases
beyond 2, thus showing the unwanted bias. Looking at the resulting images,
this bias initially results in an oversharpened latent image and then in artifacts
when p is sufficiently large. For p < 2 we also observe more bias, stemming from
instabilities of algorithm for such p-norms, as they do not consistently favor the
true solution over the trivial one (Fig. 1a).
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(a) Input (b) [24] (c) PN (d) Input (e) [31] (f) PN

(g) Input (h) [39] (i) PN (j) Input (k) [44] (l) PN

(m) Input (n) [4] (o) PN (p) Input (q) [29] (r) PN

Fig. 2: Visual comparison of the results obtained from the top performers on the
SUN dataset [39]. We pick the worst-case result for each top performer and show the
corresponding output of our PN method. Our worst-case result is shown in (f).

(a) Input (b) [44] (c) [4] (d) [39]

(e) [24] (f) [29] (g) [31] (h) FW

Fig. 3: One example image from the BSDS dataset [1] tested on different methods.

Considering that a larger p yields more bias (Fig. 1c) and that p = 2 is the
smallest value for which the prior consistently favors the true solution (Fig. 1a)
may explain why the best performing choice in practice is p = 2 (see Fig. 1b).

5 Experiments

We test our algorithms on the standard SUN deblurring dataset [39], containing
80 images of average size 1024×768 pixels, which have been synthetically blurred
with the 8 blurs from [22] with 1% white Gaussian noise added. The evaluation
uses the Sum of Squared Difference (SSD) ratio of [23]. We estimate kernels
with various approaches, including ours, and use EPLL [51] to obtain final latent
sharp images. Michaeli & Irani [24] pointed out that results with an error ratio
below 5 can be considered visually pleasing. We follow this principle, consider
an error ratio above 5 as a failure case, and count the number of failure cases
for each method to quantify its robustness. In all our evaluations we achieve
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Fig. 4: Left: Cumulative distribution of the SSD error ratios on the whole SUN dataset
[39]. Middle: Cumulative distribution of the SSD error ratios on the small BSDS dataset
[1]. Right: Quantitative results on the Köhler et al. [19] dataset.

Table 1: Quantitative comparison on the entire SUN dataset [39] (640 blurry images).

Method mean error ratio maximum error ratio failure cases

Cho & Lee [7] 9.198 113.491 224
Krishnan et al. [20] 12.015 142.668 475
Levin et al. [23] 6.695 44.171 357
Sun et al. [39] 2.581 35.765 44
Xu & Jia [44] 3.817 75.036 98
Perrone & Favaro [31] 2.114 8.517 7
Chakrabarti [4] 3.062 11.576 64
Michaeli & Irani [24] 2.617 9.185 30
Pan et al. [29] 1.914 23.279 11
PN 2.299 6.764 8
FW 2.195 6.213 8

SotA performance in terms of accuracy, worst case errors, and robustness to
noise, except for one case where we achieve second place. This highlights the
importance of normalization in blind deconvolution.

Fig. 2 shows some visual comparisons between our proposed PN method and
other top-performing algorithms on the SUN dataset [39]. Results for other meth-
ods are collected from the corresponding authors’ web page. We pick the worst
input image for each algorithm and show the corresponding result obtained with
our PN algorithm. It can be seen that the proposed algorithm succeeds in most
cases. The worst input image for our algorithm is the same as for [31] (Fig. 2f).
While the SSD ratio is above 5 in this case, our result is still visually pleasant.

Robustness. To better understand the robustness properties of our algorithm,
we show the cumulative distribution of SSD error ratios across the whole SUN
dataset [39] in Fig. 4 (left). We observe that our algorithm is on par with other
SotA methods. More importantly, we see that our algorithm saturates to 100%
faster than the other methods, since our algorithm’s worst SSD error ratio is
smaller than the others’. Moreover, most of our failure cases have an SSD error
ratio below 6. There is only one failure case above 6, shown visually in Fig. 2f.
Additionally, in Table 1 we show the mean error ratio, maximum error ratio, and
number of failure cases for all methods on the SUN dataset [39]. Our proposed
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Table 2: Quantitative comparison on the small BSDS dataset [1] (72 blurry images).

Method mean error ratio maximum error ratio failure cases

Sun et al. [39] 2.648 15.152 12
Xu & Jia [44] 3.645 22.272 13
Perrone & Favaro [31] 2.093 7.493 4
Chakrabarti [4] 3.768 11.809 9
Michaeli & Irani [24] 3.458 23.001 14
Pan et al. [29] 2.058 13.516 3
Yan et al. [46] 2.022 12.237 3

L1 normalization 2.211 7.821 3
weight decay (heuristic) 2.591 8.762 2
L2 blur prior (classic) 2.487 7.953 4

PN 2.011 4.676 0
FW 1.983 4.387 0

Quantitative comparison on the full BSDS dataset [1] (3000 blurry images)

Pan et al. [29] 2.956 68.976 325
PN 2.067 24.091 94

methods take second and third place in terms of mean error ratio and number
of failure cases, but are at the first and second place for maximum error ratio,
which highlights their robustness. Moreover, our methods require very few tuning
parameters (and no adjustment of the regularization weight λ across iterations).
Challenging blurs. Although the 8 blurs from [22] look realistic, the blur sizes
only range from 13 × 13 to 27 × 27, which is limited. Hence, to additionally
evaluate the robustness for all algorithms, we create a small dataset composed
of 12 images randomly picked from the BSDS dataset [1]. We collect 6 blurs
from [33], which are also recorded realistically. Blur sizes range from 21× 21 to
41 × 41. Hence, our dataset contains 72 blurry images to which we have added
1% zero-mean white Gaussian noise as in the SUN dataset [39]. We estimate blur
kernels by running each algorithm and then use EPLL [51] to obtain the final
latent sharp image. Fig. 3 shows one visual comparison between all methods. We
observe that due to the lack of strong edges, many methods fail to estimate the
correct blur. Nonetheless, the PN algorithm is robust enough to provide a good
blur estimate and then to restore a pleasant latent sharp image. Quantitative
results are given in Table 2 and show that our approach consistently outperforms
all previous methods in all three metrics (mean error ratio, maximum error ratio,
and the number of failure cases). Our FW and PN algorithms succeed on all 72
images. Fig. 4 (middle) shows the cumulative distributions of the SSD error
ratio for all competitors. We observe that the FW and PN algorithms perform
very well. In 90% of all cases, our FW and PN algorithms obtain an error ratio
below 3. We also evaluated only the PN method and the SotA method [29] on
the full BSDS dataset (3000 blurry images from 500 sharp images with 6 blur
kernels). Table 2 shows that the benefit of our approach on the full BSDS is even
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Table 3: Quantitative comparison (normalized L2 error) of SotA approaches on Levin’s
dataset [22] (32 blurry images) with additive noise (original means no noise is added).

Method original 1% 2% 3% 4% 5%

Xu & Jia [44] 3.959 4.132 4.920 5.232 5.623 5.785
Pan et al. [29] 3.795 4.008 4.658 4.958 5.325 5.368
Yan et al. [46] 3.790 3.901 4.562 4.946 5.278 5.342
PN 3.788 3.815 3.911 4.098 4.188 4.202

Table 4: Quantitative comparison (PSNR) of SotA approaches on Köhler’s dataset
[19] (48 blurry images) under additive noise (original means no noise is added).

Method original 1% 2% 3% 4% 5%

Xu & Jia [44] 29.475 26.602 25.202 21.523 18.785 17.239
Pan et al. [29] 29.551 27.883 26.812 22.116 19.152 18.021
Yan et al. [46] 29.595 27.921 26.855 22.143 19.166 18.100
PN 29.613 29.113 27.890 25.156 22.892 21.544

more pronounced than on the smaller subset. For both datasets, we consistently
use the same parameter λ = 0.016 and apply a multi-scale pyramid scheme [24,
29, 31, 39, 46] to speed up convergence of both our PN and FW algorithms. We run
500 and 80 iterations at each scale for the PN and the FW algorithms, respectively.
L

2 vs L
1 blur normalization. To see the effectiveness of L2 normalization,

we compare the proposed Problem (3) with the classic Problem (1) on the BSDS
test set. For Problem (1) we employ the same regularization weight scheme used
in prior work [29, 31, 46]. By starting with a strong regularization, these methods
avoid the trivial solution (k = δ). Nonetheless, we observe that Problem (1) has
an SSD ratio of 2.21 (0.2 worse than our PN) and three failure examples, which
are shown in the second block of Table 2. Therefore, our L2 blur normalization
scheme outperforms the standard L1 normalization.
Principled vs heuristic weight decay. As an additional test, we modify the
L1 model to more closely mimic the regularization of Problem (2). Specifically,
we artificially scale the regularization weight λ with the L2 norm of the blur
kernel. However, in this modification the blur estimation is carried as usual with
Problem (1) (with post normalization). The SSD ratio of this modified algorithm
on the BSDS dataset is 2.59, which is almost 0.6 worse than that of Problem (2).
Additionally, it has 2 failure cases as shown in the second block of Table 2. This
demonstrates empirically that our exact formulation in Problem (2) is better
than a heuristic weight decay rule.
Comparison to additive L

2 norm blur prior. We add an explicit L2 blur
regularization term to the objective function in Problem (1) as in SotA ap-
proaches [24, 29, 39, 44, 46]. This modification has an SSD error ratio of 2.48 and
4 failure examples, which we report in the second block of Table 2.
Köhler’s dataset (real data). We also evaluate our methods on the full
dataset of Köhler et al. [19]. Quantitative results and one visual example are



Normalized Blind Deconvolution 13

(a) Blurry input (b) Xu & Jia [44] (c) Pan et al. [29] (d) PN

Fig. 5: Visual comparison of results from [44, 29] compared to the PN method on two
real images from [19] and [21]. The first two rows show the deblurred results of an
original image from [19] and its version with 2% added noise, respectively.

shown in Fig. 4 (right) and Fig. 6. Although this dataset contains blur from
camera shake, the FW and PN algorithms yield visually pleasant estimates. Note
that both algorithms were not explicitly designed for such non-uniform blur.

Noise sensitivity. Our numerical analysis in Sec. 4 is based on noise-free im-
ages as in [29]. It is important to note that all experiments shown in Sec. 5
are conducted on datasets (SUN and BSDS) in which 1% zero-mean Gaussian
noise was added (Table 1 and 2). To quantitatively evaluate the noise sensitiv-
ity of our method, we modify Levin’s [22] and Köhler’s [19] datasets by adding
1%, 2%, 3%, 4%, and 5% white Gaussian noise. Quantitative comparisons are
shown in Table 3 and 4. Blur kernel estimation errors are measured as the aver-
age of the normalized L2 error |k̂−k|2/|k|2, where k̂ is the estimate and k is the
ground truth. Notice that a quantitative comparison on the original dataset (no
added noise) is also shown in Fig. 4 (right). Additionally, two visual comparisons
on the original and 1% noise level images are shown in the 1st and 2nd rows of
Fig. 5. One visual comparison on a real noisy image is shown on the third row
of Fig. 5. We observe that our approach performs better than the SotA methods
[29, 44, 46] and is overall also less sensitive to noise.

Comparison to [49]. Finally, we compare to the recent L2 blur normalization
approach of Zhang et al. [49]. Specifically, we compare on the dataset of Levin
et al. [22], containing 32 real blurry images, for which the authors of [49] have
supplied results. We find that the average of the normalized L2 error of our
kernel estimates is significantly better than in [49] (3.788 vs 5.452). In fact, our
results consistently outperform [49] on each of the 32 estimates.
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Fig. 6: Worst-case failure examples of our PN method on real images with camera shake
from [19]. Top: blurry inputs. Middle: Results from [29]. Bottom: Results with PN.

Limitations. One current limitation of the proposed approach is speed. To
process a 400 × 400 blurry image with kernel size 41 × 41, our unoptimized
Matlab code on our setup (Intel Core i7-3635QM, 16G RAM) for the PN and FW

algorithms estimates the blur kernels in around 2 minutes and 6 minutes, respec-
tively, whereas C++ implemented methods [44] only take less than 10 seconds.
Still, ours are approximately 3× and 10× faster than other recent competitive
methods [29, 31]. Moreover, due to the convexity of each alternating iteration, we
believe that the computational performance can be further improved. In Fig. 6
we show some of our worst failure cases on real images and compare our results
with those of the SotA approach from [29]. The first two rows show results in the
case of large blur and saturation. In these cases, our results are not as accurate
as those of [29]. Nonetheless, the reconstruction artifacts of our PN algorithm are
still acceptable, which demonstrates its robustness to noise and saturation.

6 Conclusion

We have introduced a novel scale normalization technique for blind deblurring
based on Lp norms and shown both analytically and numerically that the choice
p=2 avoids trivial solutions that have challenged prior work. We demonstrated
that our scale normalization can be interpreted as a rescaled classical objective in
which the regularizer is adaptively weighted by the norm of the blur kernel. The
resulting method is conceptually simple, obviates common heuristic adaptations
of the regularization, and experiments on different datasets show SotA image
reconstruction accuracy and a very high degree of robustness.
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