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Abstract. We propose a neural approach for fusing an arbitrary-length
burst of photographs suffering from severe camera shake and noise into
a sharp and noise-free image. Our novel convolutional architecture has a
simultaneous view of all frames in the burst, and by construction treats
them in an order-independent manner. This enables it to effectively de-
tect and leverage subtle cues scattered across different frames, while en-
suring that each frame gets a full and equal consideration regardless
of its position in the sequence. We train the network with richly varied
synthetic data consisting of camera shake, realistic noise, and other com-
mon imaging defects. The method demonstrates consistent state of the
art burst image restoration performance for highly degraded sequences
of real-world images, and extracts accurate detail that is not discernible
from any of the individual frames in isolation.
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1 Introduction

Motion blur and noise remain a significant problem in photography despite ad-
vances in light efficiency of digital imaging devices. Mobile phone cameras are
particularly suspect to handshake and noise due to the small optics and the typ-
ical unsupported free-hand shooting position. Shortcomings of optical systems
can be in part ameliorated by computational procedures such as denoising and
sharpening. One line of work that has recently had significant impact relies on
burst imaging. A notable example is the imaging pipeline supplied in Android
mobile phones: transparently to the user, the camera shoots a sequence of low-
quality frames and fuses them computationally into a higher-quality photograph
than could be achieved with a conventional exposure in same time [12].

We address the problem of burst deblurring, where one is presented with a set
of images depicting the same target, each suffering from a different realization of
camera shake. While each frame might be hopelessly blurred in isolation, they
still retain pieces of partial information about the underlying sharp image. The
aim is to recover it by fusing whatever information is available.

Convolutional neural networks (CNN’s) have led to breakthroughs in a wide
range of image processing tasks, and have also been applied to burst deblurring
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[34, 33]. Observing that bursts can have arbitrarily varying lengths, the recent
work of Wieschollek et al. [33] maintains an estimate of the sharp image, and up-
dates it in a recurrent manner by feeding in the frames one at a time. While this
is shown to produce good results, it is well known that recurrent architectures
struggle with learning to fuse information they receive over a number of steps
– even a task as simple as summing together a set of numbers can be difficult
[36]. Indeed, our evaluation shows that the architecture of Wieschollek et al. [33]
fails to e.g. fully use a lucky sharp image present in a burst (see Figure 7). This
suggests that it generally does not make full use of the information available.

The problem, we argue, is that a recurrent architecture puts the different
frames into a highly asymmetric position. The first and the most recently seen
frames can have a disproportionate influence on the solution, and complemen-
tary cues about individual image details are difficult to combine if they appear
multiple frames apart.

We propose a fundamentally different architecture, which considers all of
the frames simultaneously as an unordered set of arbitrary size. The key idea
is to enforce permutation invariance by construction: when the ordering of the
frames cannot affect the output, no frame is in a special position in relation to
others, and consequently each one receives the same consideration. Any piece of
useful information can directly influence the solution, and subtle cues scattered
around in the burst can be combined effectively. The approach is similar in spirit
to classical maximum likelihood or Bayesian inference, where contributions from
each observation are symmetrically accumulated onto a likelihood function, from
which the desired estimate is then derived.

We achieve this by extending recent ideas on permutation invariance in neu-
ral networks [36, 24] to a convolutional image translation context. Our proposed
network is a U-Net-inspired [25] CNN architecture that maps an unordered set of
images into a single output image in a perfectly permutation-invariant manner,
and facilitates repeated back-and-forth exchanges of feature information between
the frames during the network evaluation. Besides deblurring, we believe that
this general-purpose architecture has potential applications to a variety of prob-
lems involving loosely structured sets of image-valued observations.

We train our network with synthetically degraded bursts consisting of a range
of severe image defects beyond just blur. The presence of noise changes the char-
acter of the deblurring problem, and in practice many deblurring algorithms
struggle with the high noise levels in full-resolution low-light photographs, and
images from low-end cameras. Of course, these are exactly the scenarios where
deblurring would be most needed. Our training data simulates the noise charac-
teristics of real-world cameras, and also considers some often overlooked details
such as unknown gamma correction, and high dynamic range effects.

Figure 1 demonstrates the effectiveness of our approach compared to the state
of the art recurrent architecture of Wieschollek et al. [33] on a challenging real-
world burst involving significant image degradations: our method successfully
recovers image content that appears to be all but lost in the individual frames
of the burst, and markedly improves the overall image quality.
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Fig. 1. Given a burst of full-resolution mobile phone camera images suffering from
significant camera shake and noise (top rows), our method recovers a sharp estimate of
the underlying image (middle rows). The horizontal sequence shows our solution for a
growing number of input frames; the rightmost result uses all eight images. The bottom
row shows the same progression for the state of the art neural burst deblurring method
of Wieschollek et al. [33] (computed using their software implementation). Note how
our method has resolved details that are difficult or impossible to reliably discern by eye
in any of the inputs: for example the numbers 023-002 at the right edge (shown in blow-
up) appear in the solution somewhere around the fourth frame, and become gradually
sharper as images are added. These are the actual numbers on the subject (see the
supplemental material for a verification photo). Note also the substantial reduction in
noise. Images in this paper are best viewed digitally.
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2 Related work

2.1 Image restoration

Deblurring Restoring sharp images from blurred observations is a long-standing
research topic. Wang and Tao [32] present a recent survey of approaches to this
problem. Deconvolution algorithms seek to stably invert the linear convolution
operation when the blur kernel is known. Blind deconvolution concerns the more
challenging case when the kernel is unknown [10, 20, 2].

Various methods use neural networks to estimate blur kernels from images
and apply classical non-blind deconvolution algorithms to perform the actual
deblurring, either as a separate step or as an integrated part of the network
[31, 28, 4, 35]. Other approaches sidestep the classical deconvolution, and train a
CNN to output a sharp image directly. Nah et al. [22] and Noroozi et al. [23]
deblur single images using multi-scale end-to-end convolutional architectures.

Nah et al. [22] and Kupyn et al. [19] use a discriminator-based loss, which
encourages the network to produce realistic-looking content in the deblurred
image. The downside is that the network may in principle need to invent fictional
detail in order to achieve an appearance of realism. We view this direction as
largely orthogonal to ours, and focus on extracting the maximum amount of real
information from the input burst.

Multi-frame methods A variety of deblurring methods consider combining
information from multiple blurred frames [3, 29, 38, 37, 39]. Delbracio et al. [7]
showed that for static scenes, the typical difficulties with multi-frame blind de-
convolution can be sidestepped by combining the well-preserved parts of the
power spectra of each frame in the Fourier domain. Wieschollek et al. [34] ex-
tend this by determining the deconvolution filters and the spectral averaging
weights using a neural network. Recently Wieschollek et al. [33] proposed a neu-
ral method for directly predicting a sharp image from an arbitrary-length burst
of blurred images, by using a recurrent neural architecture that updates the es-
timate when fed with new frames. Our method targets the same problem with
a fundamentally different network architecture that instead considers all images
simultaneously as a set of arbitrary size.

Some methods also aim to remove local blur caused by movement of individ-
ual objects in videos [30, 33, 15, 5]. Our method focuses on blur caused by camera
shake, where the correlations between frames are weak and the frame ordering
carries a minor significance. We nonetheless demonstrate that in practice our
approach is applicable to flow-aligned general motion data of Su et al. [30].

Multi-frame burst ideas have recently also been applied to denoising [12, 11,
21]. While our main concern is deblurring, we train our model with heavily noisy
images to promote robustness against real-world imaging defects. Consequently,
our method also learns to denoise the bursts to a significant degree.
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2.2 Permutation invariance

A wide range of inference problems concern unordered sets of input data. For
example, point clouds in Euclidian space have no natural ordering, and conse-
quently any global properties we compute from them should not depend on what
order the points are provided in. The same holds for inferences made from i.i.d.
(or more generally, exchangeable) realizations of random variables, as is the case
for example in maximum likelihood and Bayesian estimation.

For neural networks, switching the places of a pair of inputs generally changes
the output, and for a good reason: the particular arrangement of the pixels in
an image is strongly indicative of the subject depicted, and the meaning of a
sentence depends on the order of the words. This is, however, problematic with
set-valued data, because one cannot opt out of assigning an ordering. This is
counterproductive, as the network will attempt to attribute some meaning to
the order. A common argument is that in practice the network should learn that
the input order is irrelevant, but this claim is both theoretically unsatisfying
and empirically dubious. It is possible that permutation invariance is not eas-
ily learnable, and a significant amount of network capacity must be allocated
towards achieving an approximation of it.

A variety of recent works have recognized this shortcoming and proposed
architectures that handle unordered inputs in a principled way. Zaheer et al.
[36] analyze the general characteristics of set-valued functions, and present a
framework for constructing permutation invariant neural networks by the use
of symmetric pooling layers. Ruizhongtai et al. [24] propose a similar pooling
architecture on point cloud data. Edwards and Storkey [8] use symmetric pooling
for the purpose of learning to extract meaningful statistics out of datasets. Herzig
et al. [13] apply similar ideas to achieve permutation invariance in structured
scene graphs describing hierarchical relations of objects in an image. Korshunova
et al. [18] address learning to generalize from a set of observations via a provably
permutation invariant recurrent architecture. We discuss these ideas in detail in
Section 3.1 and extend them to image translation CNN’s.

3 Method

Our method consists of a convolutional neural network, which outputs a restored
image when fed with a set of blurry and noisy images that have been approx-
imately pre-aligned using homographies. We describe the network architecture
in Section 3.1, and the synthetic data generation pipeline we use for training it
in Section 3.2.

3.1 Network architecture

Zaheer et al. [36] and Ruizhongtai et al. [24] show that any function that maps
an unordered set into a regular vector (or an image) can be approximated by a
neural network as follows. The individual members of the set are first processed
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Fig. 2. Overview of our network architecture. Each input frame is processed by a copy
of the same U-Net [25] with tied weights, but information is repeatedly exchanged
between the copies. This is achieved by computing the maximum value of each acti-
vation between all the tracks, and concatenating these “global features” back into the
per-frame local features. After the encoder-decoder cycle, the tracks are collapsed by a
final max-pooling and processed into a joint estimate of the clean image. Observe that
permuting the ordering of the inputs cannot change the output, and that their number
can be arbitrary. See Figure 3 for a detailed view of the layers.

separately by identical neural networks with tied weights, yielding a vector (or an
image) of features for each of them. The features are then pooled by a symmetric
operation, by evaluating either the mean or maximum value of each feature
across the members. That is, if the i’th output feature for the k’th member
in the set is denoted as xk

i
, then a max-pooling operation returns the features

x
pooled
i

= maxk x
k

i
. The individual members are then forgotten, and the pooled

features are processed by further neural network layers in the regular fashion.
The key idea is that through end-to-end training, the per-member network will
learn to output features for which the pooling is meaningful; intuitively, the
pooling acts as a “vote” over the joint consensus on the global features. The
remaining layers then extract the desired output from this consensus. Note that
the symmetry of the pooling makes this scheme perfectly permutation invariant,
and indifferent to the cardinality of the input set.

In our context, this scheme gives the individual frames in the burst a prin-
cipled mechanism for contributing their local findings about the likely content
of the sharp image. We apply it on a U-Net-style architecture [25], which is
a proven general-purpose model for transforming images [14]. The U-Net is a
hourglass-shaped network consisting of an “encoder” that sequentially reduces
the image to a low resolution, and a “decoder” that expands it back into a full
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Fig. 3. A zoomed-in view of a single encoder downsampling unit (left) and a corre-
sponding decoder upsampling unit (right) for a U-Net in Figure 2, connected by a skip
connection. The green-colored nodes indicate the layers we introduce. The max-pool
layers transmit information to and from other tracks; notice that without them the
architecture reduces to a regular U-Net. We use the exponential linear unit nonlinear-
ity [6] in all layers except the final one.

image. Skip connections are used between correspondingly sized layers in the
encoder and decoder to aid reconstruction of details at different scales.

Our high-level architecture is illustrated in Figure 2: as discussed above,
each of the inputs is processed by a tied copy of the same U-Net, and the results
are max-pooled towards the end and further processed into an estimate of the
sharp image. We additionally introduce intermediate pooling layers followed by
concatenation of the pooled “global state” back into the local features. This
enables repeated back-and-forth information exchanges between the members of
the set in a permutation equivariant manner. This is achieved at a relatively
low additional computational cost by fusing the global features into the local
features with a 1 × 1 convolution after each pooling. See Figure 3 for a more
detailed illustration of the layer connections in individual units of the U-Net.
The exact details are available in the supplemental appendix and the associated
code release. We also experimented with mean-pooling in place of max-pooling,
and found the performance of this variant to be similar.

Note that by omitting the final pooling one ends up instead with a method for
translating image sets to image sets in a permutation equivariant manner. While
we don’t make use of this variant, it may have applicability to other problems.

3.2 Training data

We train our method with bursts of synthetically degraded crops of photographs
from the Imagenet [26] dataset. The degradations are generated on the fly in
TensorFlow [1]. Severity and intra-burst variation of the effects is randomized,
so as to encourage the network to robustly take advantage of different cues. We
also consider noise with inter-pixel correlations, unknown gamma correction, and
streaks caused by blurring of overexposed image regions.

We generate training pairs of resolution 160 × 160, where the input is a
degraded burst, and the target is a corresponding clean image. The length of
the burst is randomized between 1 and 8 for each minibatch. Figure 4 shows
examples of individual kernels and noises, as well as full degraded bursts from
our pipeline. We give an overview of each component below.
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a)

b)

c)

d)

e)

Result GT

Fig. 4. (a): Blur kernels and noises generated by our synthetic training data gener-
ation pipeline. Notice that many of the kernels span several dozen pixels. (b)–(e):
Synthetically degraded bursts from a held-out validation set, along with our network’s
prediction and the ground truth target. Notice the varying difficulty of the bursts, and
the streaks from our dynamic range expansion scheme on the saturated skylight (e).

Kernel generation We simulate camera shake by convolving the clean pho-
tographs with random kernels. Each kernel is generated as a random walk of 128
steps by first drawing 2D acceleration vectors from unit normal distribution, and
integrating them into velocities and positions by a pair of (damped) cumulative
sums, taking care to choose the initial velocity from the stationary distribution.

We then center each kernel at the origin to avoid random misalignment be-
tween the frames and the training target, and standardize them to a unit vari-
ance. We apply a random scale to the entire burst’s kernels, and then scale
individual kernels in the burst randomly. The individual variations are random-
ized so that some bursts have uniformly sized kernels and others are mixtures
of small and large ones. To encourage modest defocus deblurring, we perturb
the points with small random offsets. Finally, the random walk positions are
accumulated into bitmaps of size 51 × 51 by an additive scattering operation,
yielding the desired convolution kernels.

Noise generation Various factors introduce pixel correlations in imaging noise
and give it a characteristic “chunky” appearance: Bayer interpolation, camera
software’s internal denoising, smearing between pixels as they are alignined, com-
pression, and so on. We simulate these effects with a heuristic noise-generation
pipeline that mimics the visual appearance of typical camera noise. To this end,
we feed an i.i.d. Gaussian noise image through a combination of random convo-
lutions, ReLU nonlinearities and random up- and downsamplings, and apply it
in random proportions additively and multiplicatively.
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Other imaging effects We target our method for real-world images that have
gone through unknown gamma correction and color processing. Because motion
blur occurs in linear space, we linearize the synthetic images prior to blurring,
and re-apply the gamma correction afterwards. As we do not know the true
gamma value for each Imagenet image, we simply pick a random value between
1.5 and 2.5. This procedure introduces the correct kind of post-blur nonlinearity,
and encourages robustness against a variety of unknown nonlinearities the input
image may have suffered. At test time, we perform no gamma-related processing.

Visible light sources and bright highlight regions often appear as elongated
streaks when blurred (see e.g. Figure 10c). This effect is not reproduced in syn-
thetically blurred low dynamic range images, as their pixel intensities are sat-
urated at a relatively low value. We reintroduce fictional high dynamic range
content prior to blurring by adding intensity-boosted image data onto saturated
regions from other images in the same minibatch. After blurring, we clip the
image values again. The effect is often surprisingly convincing (see Figure 4e).

3.3 Technical details

We use the loss function L(a, b) = 1
10 ||a − b||1 + ||∇a − ∇b||1, where ∇ com-

putes the (unnormalized) horizontal and vertical direction finite differences. This
weighting assigns extra importance on reconstructing image edges.

We use weight normalization [27] and the associated data-dependent initial-
ization scheme on all layers to stabilize the training.

The method is implemented in TensorFlow [1]. We train the model using the
Adam [16] optimization algorithm with a learning rate of 0.003 and per-iteration
decay of 0.999997. We train for 400 000 iterations with minibatch size of 8 split
across two NVIDIA GTX 1080 Ti GPU’s. This takes roughly 55 hours.

For large images, we apply the network in overlapping sliding windows, with
smooth blending across the overlap. The downscaling cycle of the U-Net gives
the network a moderately wide receptive field. The method naturally handles
inputs for which the kernel slowly varies across the image.

The runtime depends roughly linearly on both the number of input images as
well as their pixel count. For a 12-megapixel 8-frame burst, the evaluation takes
1.5 minutes on a single GPU. The model has approximately 40M parameters.

The burst frames are pre-aligned with homographies using dense correspon-
dences with the ECC algorithm [9]. This takes around 18 seconds per 12-megapixel
frame. Pixel-perfect alignment does not appear to be critical; a small amount of
parallax can be seen in many of our evaluation datasets.

4 Results

Figures 1 and 5 illustrate a selection of results from our method for a variety
of challenging bursts shot under low light conditions with a shaky hand. The
bursts were shot with the back camera of an iPhone SE. We use the raw format
to bypass the (for us) counterproductive denoising of the camera software. We
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Fig. 5. A selection of results for challenging bursts from a mobile phone camera in
full resolution. The full lengths of these bursts are 12, 5 and 10 frames, respectively.
We show the first four and the last input, as well as the full-resolution output for
the entire burst, and crops of intermediate and full burst outputs. Please refer to the
supplemental material for full-size images, as well as results from recurrent neural
model of Wieschollek et al. [33] on these images.
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a)

b)

c)

Representative input Delbracio et al. [7] Wieschollek et al. [33] Ours

Fig. 6. Representative results on the dataset of Delbracio et al. [7], for methods of
Delbracio et al. [7] (FBA), Wieschollek et al. [33] (RDN), and our method. Overall,
our result is sharper and suffers from fewer artifacts such as oversharpening. Notice in
particular the clean detail resolved in the license plate, the properly removed streaks in
specular highlights on the car paint, and the artifact-free grid on the balcony railing.
For (c), the ground truth is available: SSIM values achieved are 0.9456, 0.8764 and
0.9578 for FBA, RDN and our method, respectively.

believe that this dataset is significantly more challenging than the existing ones
in literature. The photographs are in their original resolution, which means that
the shake kernels are relatively large and the noise has not been averaged down.
We avoided including significantly lucky images, which might lead to overly
optimistic results.

Overall, our method recovers significantly sharper images than any of those
in the input burst. The results are largely free of high-frequency noise, and do not
exhibit systematic artifacts besides blurriness in ambiguous regions for low frame
counts. The method often extracts information that is collectively preserved by
the full burst, but arguably not recoverable from any of the individual frames –
see for example the text highlighted in Figure 1, or try to count the number of
cars on the sidewalk in Figure 5 (top).

4.1 Comparisons and experiments

Burst deblurring We compare our method to the state of the art neural burst
deblurring method of Wieschollek et al. [33] in Figures 1, 6 and 7. In Figure 6 we
use result images provided by the authors, and elsewhere we used their publicly
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Fig. 7. When interpreted as a burst (and aligned by homographies), the standard
deconvolution benchmark dataset of Köhler et al. [17] contains a “lucky” sharp frame
in the third position. Our method successfully picks it up, and produces a consistently
sharp estimate once it gets included in the burst. The poor-quality frames towards the
end are also successfully ignored. In contrast, the RDN method of Wieschollek et al.
[33] fails to take the lucky frame into account, and focuses on gradually improving the
initial estimate. This suggests that a recurrent architecture struggles to give a uniform
consideration to all frames it is presented with.

available software implementation. Please refer to the supplemental material for
further results on their and other methods [7, 34, 29, 38].

Figure 6 shows comparison results on the dataset of Delbracio et al. [7], which
contains various real-world bursts shot with different cameras (we also include
their results). While all of the methods provide good results on this dataset,
our method consistently reveals more detail, while producing fewer artifacts and
exhibiting lower levels of noise. Many of these bursts contain lucky sharp frames
and only modest blur and noise. In the more challenging dataset we captured,
the method of Wieschollek et al. [33] does not reach a comparable quality, as
shown in Figure 1.

Figure 7 shows a result on the dataset of Köhler et al. [17], which contains a
mixture of sharp and extremely blurry frames. Our method successfully picks up
the lucky frame in the sequence, while the recurrent architecture of Wieschollek
et al. [33] fails to properly integrate it into its running estimate. This behavior is
confirmed by numerical comparisons to the ground thuth; see the supplemental
appendix document for these results and further numerical experiments.

Video deblurring While we consider general object motion deblurring to be
out of our scope, our method is in principle compatible with the flow-based
frame registration scheme of Deep Video Deblurring method of Su et al. [30], as
demonstrated in Figure 8. The input is a sequence of five frames where moving
objects have been deformed by optical flow to match the center frame (i.e. the
third). Our network is not trained to handle the deformation artifacts, and fails
to clean them up, but aside from this our result is sharper. Conversely, when
applied to a five-frame sequence from Figure 1 (centered around the sharpest
frame), the result from Su et al. [30] is noisier and blurrier than ours.
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Middle frame Su et al. [30] Ours Su et al. [30]
(see Fig 1)

Fig. 8. Our method applied on flow-aligned five-frame video segments with moving
objects from Su et al. [30]. Our result shows artifacts on the car hood, as it has not
been trained to handle the distortions in the input data, but is otherwise sharper (note
the tires and the text on the signs). Applied to our data from Figure 1, Su et al. [30]
do not reach the same quality (right).

Single-image blind deconvolution To verify that considering the entire burst
using our method provides a benefit over simply deblurring the sharpest individ-
ual frame, we tested state of the art blind single-image deconvolution methods
[19, 22] on our data. Figure 9 shows that considering the entire burst with our
method results in a significantly better image. As a curiousity, we also tried train-
ing our method on solely single-image “bursts”; we reach a comparable or better
performance than these dedicated single-image methods on our noisy data, but
fall somewhat short in less noisy ones.

Significance of noise and dynamic range in training data While we
have emphasized the importance of noise modeling, the main benefit of our
method is still derived from the permutation invariant architecture. To test this,
we trained our method with a naive noise model, simply adding independent
normally distributed noise of standard deviation 0.02 on every training input.
Figure 10 shows the result: while the output is much noisier, it is still state of the
art in terms of detail resolved. Also shown is the effect of omitting the dynamic
range expansion scheme.

5 Conclusions

We have presented a method for restoring sharp and noise-free images from
bursts of photographs suffering from severe hand tremor and noise. The method
reveals accurate image detail and produces pleasing image quality in challenging
but realistic datasets that state of the art methods struggle with.

We attribute the success of our method largely to the network architecture
that facilitates uniform order-independent handling of the input data, and hope
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Input Kupyn et al. [19] Nah et al. [22] Ours Ours

(single-image) (single-image) (single-image) (full burst)

Fig. 9. Using our method on the full burst produces a significantly better result than
deblurring the sharpest frame (left) with state of the art single-image deblurring meth-
ods [19, 22]. This is to be expected, as the burst contains more information as a whole.
When trained exclusively for single-image deblurring, our method also provides com-
parable or better single-image performance when the input suffers from heavy noise.

a) b) c) d) e)

Fig. 10. Impact of noise and dynamic range expansion during training. (a) Our result
for dataset of Figure 1 when trained with our full noise model. (b) When trained with
a simple non-correlated noise model, the method still exhibits state of the art burst
deblurring performance, but leaves in more mid-frequency noise. (c) Representative
frame from an extremely degraded burst. (d) Result from our full model. (e) Trained
with a simple noise model and no dynamic range expansion, the method underestimates
the intensity of noisy dark regions, and fails to concentrate the streaks into a point.

that these ideas will find more widespread use with neural networks. A wide
array of interesting problems have the character of fusing together evidence that
is scattered in a loosely structured set of observations; one need only think of
countless problems that are classically approached by stacking together likeli-
hood terms corresponding to measurement data. Our results also indicate that
image restoration methods targeting low-end imaging devices or low-light pho-
tography can benefit from considering more complex noise and image degrada-
tion models.

Acknowledgements. This work was supported by Toyota Research Institute.
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