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Abstract. We introduce a new method for interpreting computer vi-
sion models: visually perceptible, decision-boundary crossing transfor-
mations. Our goal is to answer a simple question: why did a model clas-
sify an image as being of class A instead of class B? Existing approaches
to model interpretation, including saliency and explanation-by-nearest
neighbor, fail to visually illustrate examples of transformations required
for a specific input to alter a model’s prediction. On the other hand, al-
gorithms for creating decision-boundary crossing transformations (e.g.,
adversarial examples) produce differences that are visually impercepti-
ble and do not enable insightful explanation. To address this we intro-
duce ExplainGAN, a generative model that produces visually perceptible
decision-boundary crossing transformations. These transformations pro-
vide high-level conceptual insights which illustrate how a model makes
decisions. We validate our model using both traditional quantitative in-
terpretation metrics and introduce a new validation scheme for our ap-
proach and generative models more generally.

Keywords: Neural Networks, Model Interpretation

1 Introduction

Given a classifier, one may ask: What high-level, semantic features of an input is
the model using to discriminate between specific classes? Being able to reliably
answer this question amounts to an understanding of the classifier’s decision
boundary at the level of concepts or attributes, rather than pixel-level statistics.

The ability to produce a conceptual understanding of a model’s decision
boundary would be extremely powerful. It would enable researchers to ensure
that a model is extracting relevant, high-level concepts, rather than picking up
on spurious features of a dataset. For example, criminal justice systems could
determine whether their ethical standards were consistent with that of a model
[8]. Additionally, it would provide some measure of validation to consumers (e.g.,
medical applications, self-driving cars) that a model is making decisions that are
difficult to formalize and automatically verify.
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Unfortunately, directly visualizing or interpreting decision boundaries in high
dimensions is effectively impossible and existing post-hoc interpretation meth-
ods fall short of adequately solving this problem. Dimensionality reduction ap-
proaches, such as T-SNE [15], are often highly sensitive to their hyper-parameters
whose values may drastically alter the visualization [27]. Saliency maps are typi-
cally designed to highlight the set of pixels that contributed highly to a particular
classification. While they can be useful for explaining factors that are present;
they cannot adequately describe predictions made due to objects that are missing
from the input. Explanation-by-Nearest-Neighbor-Example can indeed demon-
strate similar images to a particular query, but there is no guarantee that similar
enough images exist to be useful and similarity itself is often ill-defined.

To overcome these limitations, we introduce a novel technique for post-hoc
model explanation. Our approach visually explains a model’s decisions by pro-
ducing images on either side of its decision boundary whose differences are per-
ceptually clear. Such an approach makes it possible for a practitioner to concep-
tualize how a model is making its decisions at the level of semantics or concepts,
rather than vectors or pixels.

Our algorithm is motivated by recent successes in both pixel-wise domain
adaptation [2,12,30] and style transfer [9] in which generative models are used to
transform images from one domain to another. Given a pre-trained classifier, we
introduce a second, post-hoc explaining network called ExplainGAN, that takes
a query image that falls on one side of the decision boundary and produces a
transformed version of this image that falls on the other. ExplainGAN exhibits
three important properties that make it ideal for post-hoc model interpretation:

Easily Visualizable Differences: Adversarial example [26] algorithms pro-
duce decision boundary crossing images whose differences from the originals are
not perceptible, by design. In contrast, our model transforms the input image in
a manner that is clearly detectable by the human eye.

Localized Differences: Style transfer [5] and domain adaptation approaches
typically produce low-level, global changes. If every pixel in the image changes,
even slightly, it is not clear which of those changes actually influenced the classi-
fier to produce a different prediction. In contrast, our model yields changes that
are spatially localized. Such sparse changes are more easily interpretable by a
viewer as fewer elements change.

Semantically Consistent: Our model must be consistent with the behavior
of the pre-trained classifier to be useful: the class predicted for a transformed
image must not match with the predicted class of the original image.

We evaluate our model using standard approaches as well as a new metric
for evaluating this new style of model interpretation by visualizing boundary-
crossing transformations. We also utilize a new medical images dataset where
the concept of objectness is not well defined, making it less amenable to do-
main adaptation approaches that hinge on identifying an object and altering /
removing it. Furthermore, this dataset represents a clear and practical use-case
for model explanation. To summarize, our work makes several contributions:
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1. A new approach to model interpretation: visualizing human-interpretable,
decision-boundary crossing images.

2. A new model, ExplainGAN, that produces post-hoc model-explanations via
such decision-boundary crossing images.

3. A new metric for evaluating the amount of information retained in decision-
boundary crossing transformations.

4. A new and challenging medical image dataset.

2 Related work

Post-Hoc Model Interpretationmethods typically seek to provide some kind
of visualization of why a model has made a particular decision in terms of the
saliency of local regions of an input image. These approaches broadly fall into
two main categories: perturbation-based methods and gradient-based methods.

Perturbation-based methods [29,3], perturb the input image and evaluate
the consequent change in the output of the classifier. Such perturbations re-
move information from specific regions of the input by applying blur or noise,
among other pixel manipulations. Perturbation-based methods require multiple
iterations and are computationally more costly than activation-based methods.

The perturbation of finer regions also makes these methods vulnerable to the
artifacts of the classifier, potentially resulting in the assignment of high saliency
to arbitrary, uninterpretable image regions. In order to combat these artifacts,
current methods such as [3] are forced to perturb larger, less precise regions of
the input.

Gradient-based methods such as [23,25,21,22,24] backpropagate the gradient
for a given class label to the input image and estimate how moving along the
gradient affects the output. Although these methods are computationally more
efficient compared to perturbation-based methods, they rely on heuristics for
backpropagation and may not support different network architectures.

A subset of gradient-based methods, which we call activation-based meth-
ods, also incorporate neuron activations into their explanations. Methods such
as Gradient-weighted Class Activation Mapping Grad-CAM [20], layer-wise Rel-
evance Propagation (LRP) [1] and Deep Taylor Decomposition (DTD) [16] can
be considered as activation-based methods. Grad-CAM visualizes the linear com-
bination of (typically) the last convolution layer and class specific gradients. LRP
and DTD decompose the activations of each neuron in terms of contributions
(i.e. relevances) from its input.

All these explanation methods are based on identifying pixels which con-
tribute the most to the model output. In other words, these methods explain a
model’s decision by illustrating which pixels most affect a classifier’s prediction.
This takes the form of an attribution map, a heat map of the same size as the
input image, in which each element of the attribution map indicates the degree
to which its associated pixel contributed to the model output. In contrast, our
model takes a different approach by generating a similar image on the other side
of the model’s decision boundary.
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Adversarial Examples [26,7] are created by performing minute pertur-
bations to image pixels to produce decision-boundary crossing transformations
which are visually imperceptible to human observers. Such approaches are ex-
tremely useful for exploring ways in which a classifier might be attacked. They
do not, however, provide any high-level intuition for why a model is making a
particular decision.

Image-to-Image Transformation approaches, such as those used in do-
main adaptation [2,13,4] have shown increased success in transforming an image
in one domain to appear as if drawn from another domain, such as synthetic-to-
real or winter-to-summer. These approaches are clearly the most similar to our
own in that we seek to transform images predicted as one class to appear to a
pre-trained classifier as those from another. These approaches do not, however,
constrain the types of transformations allowed and we demonstrate (Section 5.3)
that significant constraints must be applied (Section 4) to ensure that the trans-
formations produced are easily interpretable. Other image-to-image techniques
such as Style Transfer [30,5,6] typically produce very low-level and comprehen-
sive transformations to every pixel. In contrast, our own approach seeks highly
localized and high-level, semantic changes.

3 Model

The goal of our model is to take a pre-trained binary classifier and a query
image and generate both a new, transformed image and a binary mask. The
transformed image should be similar to the query image, excepting a visually
perceptible difference, such that the pre-trained classifier assigns different labels
to the query and transformed image. The binary mask indicates which pixels
from the query image where changed in order to produce the transformed image.
In this way, our model is able to produce a decision-boundary crossing transfor-
mation of the query image and illustrate both where, via the binary mask, and
how, via the transformed image, the transformation occurs.

More formally, given a binary classifier F(x) ∈ {0, 1} operating on an image
x, we seek to learn a function which predicts a transformed image t and a mask
m such that:

F(x) 6= F(t) (1)

x⊙m 6= t⊙m (2)

x⊙ ¬m = t⊙ ¬m (3)

where Eq. (1) indicates that the model believes x and t to be of different
classes, Eq. (2) indicates that the query and transformed image differ in pixels
whose mask values are 1 and Eq. (3) indicates that the query and transformed
image match in pixels where mask values are 0.
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Fig. 1. Model architecture of ExplainGAN. Inference (in blue frame) consists of pass-
ing an image x of class j into the appropriate encoder Ej to produce a hidden vector
zj . The hidden vector is decoded to simultaneously create its reconstruction Gj(zj),
a transformed image of the opposite class G1−j(zj) and a mask showing where the
changes were made Gm(zj). Composite images C0 and C1 merge the reconstruction
and transformation with the original image x.

3.1 Prerequisites

Given a dataset of images S = {xi|i ∈ 1 . . . N}, our pre-trained classifier pro-
duces a set of predictions {ȳi|i ∈ 1 . . . N}. Given these predictions, we now can
split the dataset into two groups S0 = {xi|ȳi = 0} and S1 = {xi|ȳi = 1}.

3.2 Inference

Given a query image and a predicted label for that image, our model maps
to a reconstructed version of that image, an image of the opposite class and a
mask that indicates which pixels it changed. Formally, our model is composed of
several components. First, our model uses two class-specific encoders to produce
hidden codes:

zj = Ej(x) j ∈ {0, 1}, x ∈ Sj (4)

Next, a decoder G maps the hidden representation zj to a reconstructed
image Gj(zj), a transformed image of the opposite class G1−j(zj) and a mask
indicating which pixels changed Gm(zj). In this manner, images of either class
can be transformed into similar looking images of the opposite class with a
visually interpretable change.

We also define the concept of a composite image Cj(x) of class j:

Cj(x1−j) = x1−j ⊙ (1−Gm(z1−j)) + Gj(z1−j)⊙Gm(z1−j) (5)
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where z1−j is the code produced by encoding x1−j . The composite image
uses the mask to blend the original image x with either the reconstruction or
the transformed image.

3.3 Training

To train the model, several auxiliary components of the network are required.
First, two discriminators Dj(x) → {real, fake}, j ∈ {0, 1} are trained to evaluate
between real and fake images of class j.

To train the model we optimize the following objective:

min
G,E0,E1

max
D0,D1

LGAN + Lclassifier + Lrecon + Lprior (6)

where LGAN is a typical GAN loss, Lclassifier is a loss that encourages the
generated and composite images to be likely according to the classifier, Lrecon

ensures that the reconstructions are accurate, and Lprior encodes our prior for
the types of transformations we want to encourage. LGAN is a combination of
the GAN losses for each class:

LGAN = LGAN:0 + LGAN:1 (7)

LGAN:j for class j discriminates between images x originally classified as class
j and reconstructions of x, transformations from x and composites from x. It is
defined as:

LGAN :j = Ex∼Sj
log(Dj(x)) (8)

+ Ex∼Sj
[log(1−Dj(Gj(Ej(x))]

+ Ex∼S1−j
[log(1−Dj(Gj(E1−j(x))]

+ Ex∼S1−j
[log(1−Dj(Cj(E1−j(x))]

Note that this formulation, in which the reconstructions of x are also penal-
ized are part of ensuring that the auto-encoded images are accurate [10] and are
included here, rather than as part of Lrecon out of convenience.

Next, we encourage the composite images to produce images that the classi-
fier correctly predicts:

Lclassifier = Ex∈S0
− log(F(C1(x))) (9)

+ Ex∈S1
− log(1− F(C0(x)) (10)

Finally, we have an auto-encoding loss for the reconstruction:

Lrecon =
∑

j∈0,1

Ex∈Sj
‖Gj(Ej(x))− x‖2 (11)

The mask priors are discussed in the following section.
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4 Priors for Interpretable Image Transformations

There are many image transformations that will transform an image of one class
to appear like an image from another class. Not all of these transformations,
however, are equally useful for interpreting a model’s behavior at a concep-
tual level. Adversarial example transformations will change the label but are
not perceptible. Style transfer transformations make low-level but not semantic
changes. Domain Adaptation approaches may change every pixel in the image
which makes it difficult to determine which of these changes actually influenced
the classifier. We want to craft set of priors that encourage transformations that
are local to a particular part of the image and visually perceptible. To this end,
we define our prior loss term as:

Lprior = Lconst + Lcount + Lsmoothness + Lentropy (12)

The consistency loss Lconst ensures that if a pixel is not masked, then the
transformed image hasn’t altered it.

Lconst =
∑

j∈0,1

Ex∈Sj
[‖(1−Gm(zj))⊙ xj − (1−Gm(zj))⊙G1−j(zj)‖

2] (13)

where zj = Ej(x). The count loss Lcount allows us to encode prior informa-
tion regarding a coarse estimate of the number of pixels we anticipate changing.
We approximate the l0 norm via an l1 norm:

Lcount =
∑

j∈0,1

Ex∈Sj
[max(

1

n
|Gm(zj)|, κ)] (14)

where κ is a constant that corresponds to the ratio of number of changed
pixels to the total number of the pixels. The smoothness loss encourages masks
that are localized by penalizing transitions via a total variation [18] penalty:

Lsmoothness =
∑

j∈0,1

Ex∈Sj
|∇Gm(zj)| (15)

Finally, we want to encourage the mask to be as binary as possible:

Lentropy =
∑

j∈0,1

Ex∈Sj
[‖ min

elementwise
(Gm(zj), 1−Gm(zj))‖] (16)

5 Experiments

Our goal is to provide model explainability via visualization of samples on either
side of a model’s decision boundary. This is an entirely new way of performing
model explanation and requires a unique approach to evaluation.
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Fig. 2. An example of Ultrasound images from our Medical Ultrasound dataset. (a)
A canonical Apical 2 Chamber view. (b) A canonical Apical 4 Chamber view. (c) A
difficult Apical 2 Chamber view that is easily confused for a 4 Chamber view. (d) A
difficult Apical 4 Chamber view that is easily confused for a 2 Chamber view.

To this end, we first demonstrate qualitative results of our approach and
compare to related approaches (Section 5.3). Next, we evaluate our model using
traditional criteria by demonstrating that our model’s inferred masks are highly
competitive as saliency maps when compared to state-of-the-art attribution ap-
proaches (Section 5.4). Next, we introduce two new metrics for evaluating the
explainability of decision-boundary crossing examples (Section 5.5) and evaluate
how our model performs using these quantitative methods.

5.1 Datasets

We used four datasets as part of our evaluation: MNIST [11], Fashion-MNIST
[28], CelebA [14] and a new Medical Ultrasound dataset that will be released with
the publication of this work. For each dataset, 4 splits were used: A classifier-
training set used to train the black-box classifier, a training set used to train
ExplainGAN, a validation set used to tune hyperparameters and a test set.

MNIST, Fashion-MNIST: We use the standard train/test splits in the
following manner: The 60k training set is first split into 3 components: a 2k
classifier-training set, a 50k training set and an 8k validation set. We used the
standard test set. For MNIST, we used binary class pairs (3, 8), (4, 9) and (5, 6).
For Fashion-MNIST, we used binary class pairs (coat, shirt), (pullover, shirt)
and (coat, pullover).

CelebA: We use the standard train/validation/test splits in the following
manner: 2k images were used from the original validation set as the classifier-
training set, all 160k images were used to train ExplainGAN, the remaining 14k
validation images were used for validation. We used the standard test set. We
used binary class pairs (glasses, no glasses) and (mustache, no mustache).

Medical Ultrasound: Our new medical ultrasound dataset is a collection
of 72k cardiac images taken from 5 different views of the heart. Each image
was labeled by several cardiac sonographers to determine the correct labels.
An example of images from the dataset can be found in Fig. 2. As the Figure
illustrates, the dataset is very challenging and is not as amenable to certain senses
of ’objectness’ found in most standard vision datasets. Of the 72k images, 2k



ExplainGAN: Model Explanation via Transformations 9

were used as the classifier-training set, 60k were used for training ExplainGAN,
4k were used for validation and 6k were used for testing. We used the binary
class pair (Apical 2-Chamber, Apical 4-Chamber).

5.2 Implementation

The model architecture implementation for E, G and D is quite similar to the
DCGAN architecture [17]. We share the last few layers of E0 and E1 and the last
few layers of D0 and D1. Each loss term in our objective is scaled by a coefficient
whose values were obtained via cross-validation. In practice, the coefficients were
quite stable across datasets (we use the same set), other than the κ hyperpa-
rameter which controls the effect of the count loss and the scaling coefficient for
Lsmoothness, the smoothness loss.

5.3 Explanation by Qualitative Evaluation

We evaluated our model qualitatively on a number of datasets. We show results
on both the Medical Ultrasound dataset and CelebA dataset in Fig. 3. The use of
CelebA and a medical image dataset provides a useful contrast between images
whose relationships should be quite familiar to the average reader (glasses vs
no-glasses) and relationships that are likely to be foreign to the average reader
(apical 2 chamber views versus apical 4 chamber views).

In each block, the ”input” column represents images x ∈ S0, the ”trans-
formed” column represents ExplainGAN’s transformation, G1(z0), to the oppo-
site class. The ”mask” column illustrates the model’s changes, Gm(z0), and the
”composite” column shows the composite images, C1(z0).

The CelebA (top) results in Fig. 3 illustrates that the model’s transforma-
tions for both ”glasses vs no-glasses” and ”mustache vs no-mustache” perform
highly localized changes and the corresponding mask effectively produces a seg-
mentation of the only visual feature being altered. Furthermore, the model is
able to make quite minimal but perceptible changes. For example, in the first
row of the ”glasses vs no-glasses” task, the mask has preserved the hair over the
eyeglasses.

The Ultrasound (bottom) results in Fig. 3 illustrates that the model has both
learned to model the anatomy of the heart and is able to transform from one
view of the heart to the other with minimal changes. The transformations and
masks clearly illustrate that the model is cuing predominantly on the presence
of the right ventricle, but interestingly not the right atrium, and the shape of
the pericardium.

5.4 Explanation via Pixel-Wise Attribution

Many post-hoc explanation methods that use attribution or saliency rely on
visual, qualitative comparisons of attribution maps. Recently, [19] introduced
a quantitative approach for comparing attribution maps in which pixels are
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Fig. 3. Qualitative visualization of the ExplainGAN model on two datasets: CelebA
and our Medical Ultrasound dataset. The ”input” column represents images x ∈ S0,
the ”transformed” column represents ExplainGAN’s transformation, G1(z0), to the
opposite class. The ”mask” column illustrates the model’s changes, Gm(z0), and the
”composite” column shows the composite images, C1(z0). The results indicate that in
the case of object-related transformations, such as glasses or mustaches, ExplainGAN
effectively performs a weakly supervised segmentation of the object. In the ultrasound
case, ExplainGAN illustrates which anatomical areas the model is cuing on: the right
ventricle and pericardium.

progressively perturbed in the order of predicted saliency. Performance is judged
by evaluating which methods require fewer perturbations to affect the classifier’s
prediction.

Our model is not designed for attribution / saliency as it produces a binary,
rather than continuous mask, which is also paired to a particular transformation
image. However, it is possible to loosely interpret our masks as an attribution
map in which pixel priority for all pixels in the mask is not known.
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While the work of [19] perturbed individual pixels, we wanted to avoid a
comparison in which individual pixel changes, which are neither themselves in-
terpretable, nor plausible as images, might alter the classification results. Con-
sequently, we adapt the approach of [19] by perturbing the image by segments,
rather than pixels. To choose the order of perturbation, we normalize the maps
to the range [0, 1], threshold them with t ∈ [0.5, 0.7, 0.9] and segment the result-
ing binary maps. We then rank the segments based on the average map value
within each segment3. For perturbation, we replace each pixel in each segment
with uniform random noise in the range of the pixel values.

More concretely, we denote the image with k segments perturbed by x
(k)
SP .

We compute the area over the segment perturbation curve (AOSPC) as follows:

AOSPC =
1

K + 1

〈

K
∑

k=0

f(x
(0)
SP)− f(x

(k)
SP )

〉

px

, (17)

where K is the number of steps, 〈.〉px
denotes the average over all the images,

and f : Rd → R is the classification function.
We report AOSPC after 10 steps for the explanation methods of Section 2

in Section 5.4. We choose the methods to cover the 3 main groups of methods
(i.e. perturbation-based, gradient-based and activation-based). A larger AOSPC
means that the sensitivity of the segments that are perturbed in 10 steps is
higher. To avoid cases where the segmentation assigns all or more than half
of the pixels to one segment we choose our threshold from ≥ 0.5 values. Our
results demonstrate that, despite not being explicitly optimized for finding the
most informative pixels, ExplainGAN performs on par with other explanation
methods for classifiers. For qualitative comparison of these methods see Fig. 4.

Table 1. AOSPC value (higher is better, see Eq. (17)) after 10 steps for different seg-
mentation thresholds. Although, ExplainGAN is not directly optimized for this metric,
its performance is comparable to reasonable baselines for explanation in classifiers. A
larger AOSPC means that the sensitivity of the segments that are perturbed in 10
steps is higher.

Dataset MNIST Ultrasound

Threshold 0.5 0.7 0.9 0.5 0.7 0.9

Grad [22] 1474 1563 240 712 291 81

Grad-CAM [20] 17.2 8 − − 70 432

Saliency [23] 817 718 126 30 63 298

Occlusion [29] 2099 1946 1486 1215 539 142

LRP [1] 1736 1478 244 700 511 71

ExplainGAN 2622 2083 1474 1167 542 374

3 For ExplainGAN we take the average of the sigmoid outputs over all pixels in a
segment.
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Fig. 4. Comparison of different methods for explaining the model’s decision.Fashion-
MNIST: transforming from pullover to shirt, Ultrasound: transforming from A2C
to A4C (see Fig. 2 for examples of A2C and A4C views), CelebA: transforming from
faces without eyeglasses to faces with eyeglasses, MNIST: transforming from 4 to 9.

5.5 Quantitative Assessment of Explainability

Given two similar images on either side of a model’s decision boundary, how can
we determine quantitatively whether they provide a conceptual explanation of
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Table 2. Quantitative substitutability experiments across datasets. Class 0 and
Class 1 are the classes that the given classifier is trained to identify. Trans-
formed/Composite 0/1 column shows the accuracy of the classifiers when just trans-
formations/compositions of the images used at training time. Ceiling represents the
accuracy of the base classifier on the same test set.

Dataset Class 0 Class 1 Transformed 0 Transformed 1 Composite 0 Composite 1 Ceiling

Ultrasound A2C A4C 95.5 94.2 91.4 95.6 99.6

CelebA W/O Eyeglasses W/ Eyeglasses 93.6 96.2 96.05 96.2 96.5

CelebA W/O Mustache W/ Mustache 76.65 75.2 74.05 71.4 83.9

CelebA W/O Black hair W/ Blackhair 75.65 74.8 79.05 77.4 84.3

FMNIST Coat Pullover 75.8 73.7 84.8 69.1 94.1

FMNIST Coat Shirt 79.7 78.5 71.8 77.2 91.7

MNIST Three Eight 99.6 99.1 99.3 98.9 99.9

MNIST Four Nine 98.6 99.0 98.6 98.5 99.0

MNIST Three Five 98.5 99.3 98.2 98.2 99.2

why a model discriminates between them? There are several high-level criteria
that must be met in order for people to find such explanatory images useful.

Fig. 5. Boundary-crossing images have varying explanatory power: images carry more
explanatory power if they are (1) Substitutable: they can be used as substitutes in the
original dataset without affecting the classifier and (2) Localized: they are different
from a query image in small and easily localized ways.

Localized but not minimal: In order for the boundary-crossing image to
clear demonstrate what pixels caused a label-changing event, it must deviate
from the original image in a way that is localized to a clear sub-component of
the image, as opposed to every pixel changing or only one or two pixels changing.

Substitutable: If we are explaining a model by comparing an original image
from class A, and a boundary-crossing image is produced to appear like it came
from class B, then we define substitutability to be the property that we can
substitute our boundary-crossing image for one of the original images labeled as
class B without affecting our classifier’s performance.

To this end, we propose two metrics aimed at quantifying such an explana-
tions utility. First, the degree to which changes to a query image are localized
can be represented by the number of non-zero elements of the mask. Note that
while other measures of locality can be used (cohesiveness, connected compo-
nents), we make no such assumption as we found empirically that often such
specific measures do not correlate well with conveying the set of items changing.
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Second, we define the substitutability metric as follows: Let an original train-
ing set Dtrain = {(xi, yi|i = 1..N}, a test set Dtest, and a classifier F(x) → y

whose empirical performance on the test set is some score S. Given a new set
of model-generated boundary-crossing images Dtrans = {(x′

i, y
′

i|i = 1..N} we say
that this set is R%−substitutable if our classifier can be retrained using Dtrans

to achieve performance that is R% of S. For example, if our original dataset
and classifier yield 90% performance, and we substitute a generated dataset for
our original dataset and a re-trained classifier yields 45%, we would say the new
dataset is 50% substitutable.

Table 2 illustrates the substitutability performance of our model on various
datasets. These results illustrate that our model produces images that are nearly
perfectly substitutable on MNIST, the Ultrasound dataset, and CelebaA for
the Eyeglasses attribute. That being said, despite compelling qualitative results
(Figure 4), there is still much room for improvement in terms of substitutability
for the other CelebA attributes.

Table 3. Substitutability on Ultrasound Dataset. Transformed/Composite 0/1 shows
the accuracy of a classifier on test set when the original samples are replaced
with Transformed/Composite 0/1 at training phase. Both Transformed/Composite
shows the accuracy of the classifier when all of the images are replaced with Trans-
formed/Composite. Note that PixelDA is a oneway transformer.

Transformed 0 Transformed 1 Both Transformed Composite 0 Composite 1 Both composite

PixelDA 87.6 N/A N/A N/A N/A N/A

CycleGAN 94 64 84.1 N/A N/A N/A

ExplainGAN-norec 94.5 83.9 96.1 N/A N/A N/A

ExplainGAN-nomask 93.9 97.3 95.1 N/A N/A N/A

ExplainGAN-full 95.5 94.2 97.3 91.4 95.6 91.4

Ceiling 99.7 99.7 99.7 99.7 99.7 99.7

6 Conclusion

We introduced ExplainGAN to interpret black box classifiers by visualizing
boundary-crossing transformations. These transformations are designed to be in-
terpretable by humans and provide a high-level, conceptual intuition underlying
a classifier’s decisions. This style of visualization is able to overcome limitations
of attribution and example-by-nearest-neighbor methods by making spatially lo-
calized changes along with visual examples. While not explicitly trained to act
as a saliency map, ExplainGAN’s maps are very competitive at demonstrat-
ing saliency. We also introduced a new metric, Substitutability, that evaluates
how much label-capturing information is retained when performing boundary-
crossing image transformations. While our method exhibits a good substitutabil-
ity score, it is not perfect and we anticipate this metric being used for furthering
research in this area.
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