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Abstract. We propose a novel direct visual odometry algorithm for
micro-lens-array-based light field cameras. The algorithm calculates a
detailed, semi-dense 3D point cloud of its environment. This is achieved
by establishing probabilistic depth hypotheses based on stereo obser-
vations between the micro images of different recordings. Tracking is
performed in a coarse-to-fine process, working directly on the recorded
raw images. The tracking accounts for changing lighting conditions and
utilizes a linear motion model to be more robust. A novel scale optimiza-
tion framework is proposed. It estimates the scene scale, on the basis
of keyframes, and optimizes the scale of the entire trajectory by filter-
ing over multiple estimates. The method is tested based on a versatile
dataset consisting of challenging indoor and outdoor sequences and is
compared to state-of-the-art monocular and stereo approaches. The al-
gorithm shows the ability to recover the absolute scale of the scene and
significantly outperforms state-of-the-art monocular algorithms with re-
spect to scale drifts.
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1 Introduction

Over the last years, significant improvements in monocular visual odometry (VO)
as well as simultaneous localization and mapping (SLAM) were achieved. Tradi-
tionally, the task of tracking a single camera was solved by indirect approaches
[1]. These approaches extract a set of geometric interest points from the recorded
images and estimate the underlying model parameters (3D point coordinates and
camera orientation) based on these points. Recently, it was shown that so-called
direct approaches, which work directly on pixel intensities, significantly outper-
form indirect methods [2]. These newest monocular VO and SLAM approaches
succeed in versatile and challenging environments. However, a significant draw-
back remains for all monocular algorithms, by nature. This is that a pure monoc-
ular VO system will never be able to recover the scale of the scene.

In contrast, a light field camera (or plenoptic camera) is a single-sensor cam-
era which is able to obtain depth from a single image and therefore, can also
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Fig. 1. Example of a point cloud calculated by the proposed Scale-Optimized Plenoptic
Odometry (SPO) algorithm. Estimated camera trajectory is shown in green.

recover the scale of the scene – at least in theory. Although, the camera still has
a size similar to that of a monocular camera.

In this paper, we present Scale-Optimized Plenoptic Odometry (SPO), a
completely direct VO algorithm. The algorithm works directly on the raw images
recorded by a focused plenoptic camera. It reliably tracks the camera motion and
establishes a probabilistic semi-dense 3D point cloud of the environment. At the
same time it obtains the absolute scale of the camera trajectory and thus, the
scale of the 3D world. Fig. 1 shows, by way of example, a 3D map calculated by
the algorithm.

1.1 Related Work

Monocular Algorithms During the last years several indirect (feature-based)
and direct VO and SLAM algorithms were published. Indirect approaches split
the overall task into two sequential steps. Geometric features are extracted from
the images and afterwards the camera position and scene structure are estimated
solely based on these features [3, 4, 1].

Direct approaches estimate the camera position and scene structure directly
based on pixel intensities [5–8, 2]. This way, all image information can be used for
the estimation, instead of only those regions which conform to a certain feature
descriptor. In [9] a direct tracking front-end in combination with a feature-based
optimization back-end is proposed.

Light Field based Algorithms There exist only few VO methods based on
light field representations [10–12]. While [10] and [11] cannot work directly on
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the raw data of a plenoptic camera, the method presented in [12] performs track-
ing and mapping directly on the recorded micro images of a focused plenoptic
camera.

Other Algorithms There exist various methods based on other sensors. These
include, e.g. stereo cameras [13–16] and RGB-D sensors [17–19, 15]. However,
these are not single sensor systems as the method proposed here.

1.2 Contributions

The proposed Scale-Optimized Plenoptic Odometry (SPO) algorithm adds the
following two main contributions to the state of the art:

– A robust tracking framework, which is able to accurately track the cam-
era in versatile and challenging environments. Tracking is performed in a
coarse-to-fine approach, directly on the recorded micro images. Robustness
is achieved by compensating changes in the lighting conditions and perform-
ing a weighted Gauss-Newton optimization which is constrained by a linear
motion prediction.

– A scale optimization framework, which continuously estimates the ab-
solute scale of the scene based on keyframes. It is filtered over multiple
estimates to obtain a globally optimized scale. The framework allows to re-
cover the absolute scale and simultaneously scale drifts along the trajectory
are significantly reduced.

Furthermore, we evaluated SPO based on a versatile and challenging dataset
[20] and compare it to state-of-the-art monocular and stereo VO algorithms.

2 The Focused Plenoptic Camera

In contrast to a monocular camera, a focused plenoptic camera does not only
capture a 2D image, but the entire light field of the scene as a 4D function. This
is achieved by simply placing a micro lens array (MLA) in front of the image
sensor, as it is visualized in Fig. 2(a). The MLA has the effect that multiple
micro images are formed on the sensor. These micro images encode both spatial
and angular information about the light rays emitted by the scene in front of
the camera.

In this paper we will concentrate on so-called focused plenoptic cameras [21,
22]. For this type of camera, each micro image is a focused image which contains a
small portion of the entire scene. Neighboring micro images show similar portions
from slightly different perspectives (see Fig. 2(b)). Hence, the depth of a certain
object point can be recovered from correspondences in the micro images [23].
Furthermore, using this depth, one is able to synthesize the intensities of the
so-called virtual image (see Fig. 2(a)) which is created by the main lens [22].
This image is called totally focused (or total focus) image (Fig. 2(c)).



4 N. Zeller and F. Quint and U. Stilla

B bL0

fL fL

bL zC

main lenssensor MLA

object
virtual
image

(a) (b) (c)

Fig. 2. Focused plenoptic camera. (a) Cross view: The MLA is placed in front of the
sensor and creates multiple focused micro images of the same point of the virtual main
lens image. (b) Raw image recorded by a focused plenoptic camera. (c) Totally focused
image calculated from the raw image. This image is the virtual image.

3 SPO: Scale-Optimized Plenoptic Odometry

Sec. 3.1 introduces some notations, which will be used in this section. Further-
more, Sec. 3.2 gives an overview of the entire Scale-Optimized Plenoptic Odom-
etry (SPO) algorithm. Afterwards, the main components of the algorithm are
presented in detail.

3.1 Notations

In the following, we denote vectors by bold, lower-case letters ξ and matrices
by bold, upper case letters G. For vectors defining points we do not differenti-
ate between homogeneous and non-homogeneous representations. However, this
should be clear from the context. Frame poses are defined either in G ∈ SE(3)
(3D rigid body transformation) or in S ∈ Sim(3) (3D similarity transformation):

G :=

[
R t

0 1

]
and S :=

[
sR t

0 1

]
with R ∈ SO(3), t ∈ R

3, s ∈ R
+. (1)

These transformations are represented by their corresponding tangent space vec-
tor of the respective Lie-Algebra. Here, the exponential map and its inverse are
denoted as follows:

G = expse(3)(ξ) ξ = logSE(3)(G) with ξ ∈ R
6 and G ∈ SE(3), (2)

S = expsim(3)(ξ) ξ = logSim(3)(S) with ξ ∈ R
7 and S ∈ Sim(3). (3)

3.2 Algorithm Overview

SPO is a direct VO algorithm which uses only the recordings of a focused plenop-
tic camera to estimate the camera motion and a semi-dense 3D map of the envi-
ronment. The entire workflow of the algorithm is visualized in Fig. 3 and consists
of the following main components:
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Fig. 3. Flowchart of the Scale-Optimized Plenoptic Odometry (SPO) algorithm.

– New recorded light field images are tracked continuously. Here, the pose ξ ∈
se(3) of the new image, relative to the current keyframe, is estimated. The
tracking is constrained by a linear motion model and accounts for changing
lighting conditions.

– In addition to its raw light field image, for each keyframe two depth maps (a
micro image depth map (used for mapping) and a virtual image depth map
(used for tracking)) as well as a totally focused intensity image are stored
(see Fig. 5). While depth can be estimated from a single light field image
already, the depth maps are gradually refined based on stereo observations,
which are obtained with respect to the newly tracked images.

– A scale optimization framework estimates the absolute scale for every re-
placed keyframe. By filtering over multiple scale estimates a globally opti-
mized scale is obtained. The poses of past keyframes are stored as 3D sim-
ilarity transformations (ξk ∈ sim(3), k ∈ {0, 1, . . .}). This way, their scales
can simply be updated.

Due to lacking depth information, the initialization is always an issue for
monocular VO. This is not the case for SPO, as depth can be obtained for the
first recorded image already.

3.3 Camera Model and Calibration

In [12], a new model for plenoptic cameras was proposed. This model is visualized
in Fig. 4(a). Here, the plenoptic camera is represented as a virtual array of
cameras with a very narrow field of view, at a distance zC0 to the main lens:

zC0 =
fL · bL0

fL − bL0
. (4)
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Fig. 4. Plenoptic camera model used in SPO. (a) The model of a focused plenoptic
camera proposed in [12]. As shown in the figure, a plenoptic camera forms, in fact, the
equivalent to a virtual array of cameras with a very narrow field of view. (b) Squinting
micro lenses in a plenoptic camera. It is very often claimed that micro image centers cI
which can be estimated from a white image recorded by the plenoptic camera would be
equivalent to the centers cML of the micro lenses in the MLA. This, in fact, is not the
case as micro lenses distant from the optical axis squint, as it is shown in the figure.

In eq. (4) fL is the focal length of the main lens and bL0 the distance between
main lens and real MLA. As this model forms the equivalent to a standard
camera array, stereo correspondences between light field images from different
perspectives can be found directly in the recorded micro images.

In this model, the relationship between regular 3D camera coordinates xC =
[xC , yC , zC ]

T of an object point and the homogeneous coordinates xp = [xp, yp, 1]
T

of the corresponding 2D point in the image of a virtual camera (or projected
micro lens) is given as follows:

xC := z′C · xp + pML = x′
C + pML. (5)

In eq. (5), pML = [pMLx, pMLy,−zC0]
T is the optical center of a specific virtual

camera. The vector x′
C = [x′

C , y
′
C , z

′
C ]

T represents the so-called effective camera
coordinates of the object point. Effective camera coordinates have their origin
in the respective virtual camera center pML. Below, we will rather use the defi-
nitions cML and xR for the real micro lens centers and raw image coordinates,
respectively, instead of their projected equivalents pML and xp. However, as the
maps from one representation into the other are uniquely defined, we can simply
switch between both representation. The definitions of these maps as well as
further details about the model can be found in [12].

For SPO, this model is extended by some peculiarities of a real plenoptic
camera. As the micro lenses in a real plenoptic camera squint (see Fig. 4(b)),
this effect is considered in the camera model. Hence, the relationship between a
micro image center cI , which can be detected from a recorded white image [24],
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(a) IML(xR) (b) DML(xR) (c) DV (xV ) (d) IV (xV )

Fig. 5. Intensity images and depth maps stored for each keyframe. (a) Recorded light
field image (raw image). (b) Depth map established on raw image coordinates (This
depth map is refined in the mapping process). (c) Depth map on virtual image coordi-
nates (This depth map can be calculated from (b) and is used for tracking). (d) Totally
focused intensity image (represents intensities of the virtual image). In (d), for the red
pixels (black pixels in (c)) no depth value, and therefore no intensity, was calculated.

and the corresponding micro lens center cML is defined as follows:

cML =



cMLx

cMLy

bL0


 = cI

bL0

bL0 +B
=




cIx
cIy

bL0 +B


 bL0

bL0 +B
. (6)

Both, cI and cML are defined as 3D coordinates with their origin in the op-
tical center of the main lens. In addition, we define a standard lens distortion
model [25], considering radial symmetric and tangential distortion, directly in
the recorded raw image (on raw image coordinates xR).

While in this paper the plenoptic camera representation of [12] is used, a
similar representation was described in [26].

3.4 Depth Map Representations in Keyframes

SPO establishes for each keyframe two separate representations: one on raw
image coordinates xR (raw image or micro image representation), and one on
virtual image coordinates xV (virtual image representation).

Raw Image Representation The raw intensity image IML(xR) (Fig. 5(a)) is
the image which is recorded by the plenoptic camera and consists of thousands of
micro images. For each pixel in the image which has a sufficiently high intensity
gradient a depth estimate is established and gradually refined based on stereo
observations between the keyframe and new tracked frames. This is done in a
way similar to [12]. This raw image depth map DML(xR) is shown in Fig. 5(b).

Virtual Image Representation Between the object space and the raw im-
age representation there exists a one-to-many mapping, as one object point is
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mapped to multiple micro images. From the raw image representation a virtual
image representation, consisting of a depth map DV (xV ) in virtual image coor-
dinates (Fig. 5(c)) and the corresponding totally focused intensity image IV (xV )
(Fig. 5(d)) can be calculated. Here, raw image points corresponding the same
object point are combined and hence, a one-to-one mapping between object and
image space is established. The virtual image representation is used to track new
images, as will be described in Sec. 3.7.

Probabilistic Depth Model Rather than representing depths as absolute
values, they are represented as probabilistic hypotheses:

D(x) := N
(
d, σ2

d

)
, (7)

where d defines the inverse effective depth z′−1
C of a point in either of the two

representations. The depth hypotheses are established in a way similar to [12],
where the variance σ2

d is calculated based on a disparity error model, which takes
multiple error sources into account.

3.5 Final Map Representation

The final 3D map is a collection of virtual image representations as well as the
respective keyframe poses combined to a global map. The keyframe poses are a
concatenation of 3D similarity transformations ξk ∈ sim(3), where the respective
scale is optimized by the scale optimization framework (Sec. 3.8).

3.6 Selecting Keyframes

When a tracked image is selected to become a new keyframe, depth estimation
is performed in the new image. Afterwards, the raw image depth map of the
current keyframe is propagated to the new one and the depth hypotheses are
merged.

3.7 Tracking New Light Field Images

For a new recorded frame (index j), its pose ξkj ∈ se(3), relative to the current
keyframe (index k), is estimated by direct image alignment. The problem is
solved in a coarse-to-fine approach to increase the region of convergence.

We build pyramid levels of the new recorded raw image IMLj(xR) and of
the virtual image representation {IV k(xV ), DV k(xV )} of the current keyframe,
by simply binning pixels. As long as the size of a raw image pixel, on a certain
pyramid level, is smaller than a micro image, the image of reduced resolution
still is a valid light field image. At coarse levels, where the pixel size exceeds
the size of a micro image, the raw image turns into a (slightly blurred) central
perspective image.
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(a) first iteration (b) 4th iteration (c) 6th iteration (d) 9th iteration

Fig. 6. Tracking residual after various numbers of iterations. The figure shows residuals
in virtual image coordinates of the tracking reference. The gray value represents the
value of the tracking residual. Black signifies a negative residual with high absolute
values and white signifies a positive residual with high absolute value. Red regions are
invalid depth pixels and therefore have no residual.

At each of the pyramid levels, a energy function is defined, and optimized
with respect to ξkj ∈ se(3):

E(ξkj) =
∑

i

∑

l

∥∥∥∥∥

(
r(i,l)

σ
(i,l)
r

)2
∥∥∥∥∥
δ

+ τ · Emotion(ξkj), (8)

r(i,l) := IV k

(
x
(i)
V

)
− IMLj

(
πML

(
G(ξkj)π

−1
V (x

(i)
V ), c

(l)
ML

))
, (9)

(
σ(i,l)
r

)2

:= σ2
n

(
1

Nk

+ 1

)
+

∣∣∣∣
∂r(xV , ξkj)

∂d(xV )

∣∣∣∣
2

σ2
d(x

(i)
V ). (10)

Here, πML(xC , cML) defines the projection from camera coordinates xC to raw
image coordinates xR through a certain micro lens cML, and π−1

V (xV ) the inverse
projection from virtual image coordinates xV to camera coordinates xC . To
calculate xC out of xV one needed the corresponding depth value DV (xV ).
A detailed definition of this projection can be found in [27, eq. (3)–(6)]. The
expression ‖ · ‖δ is the robust Huber norm [28]. In eq. (8), the second summand
denotes a motion prior term, as it will be defined in eq. (12). The parameter τ
weights the motion prior with respect to the photometric error (first summand).
In eq. (10), the first summand defines the photometric noise on the residual,
while the second summand is the geometric noise component, resulting from
noise in the depth estimates.

An intensity value IV k(xV ) (eq. (9)) in the virtual image of the keyframe is
calculated as the average of multiple (Nk) micro image intensities. Considering
the noise in the different micro images to be uncorrelated, the variance of the
noise is Nk times smaller than for an intensity value IMLj(xR) in the new raw
images. The variance of the sensor noise σ2

n is constant over the entire raw image.

Only for the final (finest) pyramid level, a single reference point x
(i)
V is pro-

jected to all micro images in the new frame which actually see this point. This
is modeled by the sum over l in eq. (8). This way we are able to implicitly incor-
porate the parallaxes in the micro images of the new light field image into the
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optimization. For all other levels the sum over l is omitted and x
(i)
V is projected

only through the closest micro lens c
(0)
ML. Fig. 6 shows the tracking residual for

different iterations in the optimization on a coarse pyramid level.

Motion Prior A motion prior, based on a linear motion model, is used to
constrain the optimization. This way, the region of convergence is shifted to an
area where the optimal solution is more likely located.

A linear prediction ξ̃kj ∈ se(3) of ξkj is obtained from the pose ξk(j−1) of
the previous image as follows:

ξ̃kj = logSE(3)

(
expse(3)(ξ̇j−1) · expse(3)(ξk(j−1))

)
. (11)

In eq. (11) ξ̇j−1 ∈ se(3) is the motion vector at the previous image.

Using the pose prediction ξ̃kj , we define the motion term Emotion(ξkj) to
constrain the tracking:

Emotion(ξkj) = (δξ)T δξ, with

δξ = logSE(3)

(
expse(3)(ξkj) · expse(3)(ξ̃kj)

−1
)
. (12)

For coarse pyramid levels we are very uncertain about the correct frame pose
and therefore a high weight τ is chosen in eq. (8). This weight is decreased as
the optimization moves down in the pyramid. On the final level, the weight is
set to τ = 0. This way, an error in the motion prediction does not influence the
final estimate.

Lighting Compensation To compensate for changing lighting conditions be-
tween the current keyframe and the new image, the residual term defined in
eq. (9) is extended by an affine transformation of the reference intensities IV k(xV ):

r(i,l) := IV k

(
x
(i)
V

)
· a+ b− IMLj

(
πML

(
G(ξkj)π

−1
V (x

(i)
V ), c

(l)
ML

))
. (13)

The parameters a and b must also be estimated in the optimization process. We
initialize the parameters based on first- and second-order statistics calculated
from the intensity images IV k(xV ) and IMLj(xR) as follows:

ainit := σIMLj
/σIV k

and binit := IMLj − IV k. (14)

In eq. (14) IMLj and IV k are the average intensity values over the entire images
respectively, while σIMLj

and σIV k
are the empirical standard deviations.

3.8 Optimizing the Global Scale

Scale Estimation in Finalized Keyframes Scale estimation can be viewed
as tracking a light field frame based on its own virtual image depth mapDV (xV ).
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However, instead of optimizing all pose parameters, a logarithmized scale
(log-scale) parameter ρ is optimized. We work on the log-scale ρ to transform the
scale s = eρ, which is applied on 3D camera coordinates xC , into a Euclidean
space.

As for the tracking approach (Sec. 3.7), an energy function E(ρ) is defined:

E(ρ) =
∑

i

∑

l 6=0

∥∥∥∥∥

(
r(i,l)

σ
(i,l)
r

)2
∥∥∥∥∥
δ

, (15)

r(i,l) := IMLk

(
πML

(
π−1
V (x

(i)
V ) · eρ, c

(0)
ML

))

− IMLk

(
πML

(
π−1
V (x

(i)
V ) · eρ, c

(l)
ML

))
, (16)

(
σ(i,l)
r

)2

:= 2σ2
n +

∣∣∣∣∣
∂r(i,l)(x

(i)
V , ρ)

∂σd(x
(i)
V )

∣∣∣∣∣

2

σ2
d(x

(i)
V ). (17)

Instead of defining the photometric residual r with respect to the intensities of
the totally focused image, the residuals are defined between the centered micro
image and all surrounding micro images, which still see the virtual image point

x
(i)
V . This way, a wrong initial scale, which affects the intensities in the totally

focused image, can not negatively affect the optimization.
In conjunction to the log-scale estimate ρ, its variance σ2

ρ is calculated:

σ2
ρ =

N
∑N−1

i=0 σ−2
ρi

with σ2
ρi =

∣∣∣∣∣
∂ρ

∂d(x
(i)
V )

∣∣∣∣∣

2

· σd(x
(i)
V )2. (18)

Far points do not contribute to a reliable scale estimate because for these points
the ratio between the micro lens stereo baseline and the effective object distance
z′C = d−1 becomes negligibly small. Hence, the N points used to define the scale
variance are only the closest N points or, in other words, the points with the
highest inverse effective depth d.

Scale Optimization Since refined depth maps are propagated from keyframe
to keyframe, the scales of subsequent keyframes are highly correlated and scale
drifts between them are marginal. Hence, the estimated log-scale ρ can be filtered
over multiple keyframes.

We formulate the following estimator which calculates the filtered log-scale
value ρ̂(l) for a certain keyframe with time index l based on a neighborhood of
keyframes:

ρ̂(l) =




M∑

m=−M

ρ(m+l) ·
c|m|

(
σ
(m+l)
ρ

)2


 ·




M∑

m=−M

c|m|

(
σ
(m+l)
ρ

)2




−1

. (19)

In eq. (19), the variablem is the discrete time index in keyframes. The parameter
c (0 ≤ c ≤ 1) defines the correlation between subsequent keyframes. Since we
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Fig. 7. Cumulative error plots obtained based on the synchronized stereo and plenoptic
VO dataset [20]. d′s and e

′

s are multiplicative error, while ealign is given in percentages
of the sequence length. By nature, no absolute scale error is obtained for the monocular
approaches.

consider a high correlation, c will be close to one. While each log-scale estimate
ρ(i) (i ∈ {0, 1, . . . , k}) is weighted by its inverse variance, estimates of keyframes
which are farther from the keyframe of interest (index l) are down weighted by
the respective power of c. The parameter M defines the influence length of the
filter.

Due to the linearity of the filter, it can be solved recursively, in a way similar
to a Kalman filter.

4 Results

Aside from the proposed SPO, there are no light field camera based VO algo-
rithms available which succeed in challenging environments. Same holds true for
datasets to evaluate such algorithms. Hence, we compare our method to state-
of-the-art monocular and stereo VO approaches based on a new dataset [20].

The dataset presented in [20] contains various synchronized sequences re-
corded by a plenoptic camera and a stereo camera system, both mounted on a
single hand-held platform. The dataset consists of 11 sequences, all recorded at
a frame rate of 30 fps. Similar as for the dataset presented in [29], all sequences
end in a very large loop, where start and end of the sequence capture the same
scene (see Fig. 8). Hence, the accuracies of a VO algorithm can be measured by
the accumulated drift over the entire sequence.

SPO is compared to the state-of-the-art in monocular and stereo VO, namely
to DSO [2] and ORB-SLAM2 (monocular and stereo version of it) [1, 15]. For
ORB-SLAM2, we disabled relocalization and the detection of loop closures to be
able to measure the accumulated drift of the algorithm. Fig. 7 shows the results
with respect to the dataset [20] as cumulative error plots. That is, the ordinate
counts the number of sequences for which an algorithm performed better than a
value x on the axis of abscissa. The figure shows the absolute scale error d′s, the
scale drift e′s, and the alignment error ealign. All error metrics where calculates
as defined in [20].
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(a) path length = 25m; d′s = 1.02; e′s = 1.04; ealign = 1.75%

(b) path length = 117m; d′s = 1.01; e′s = 1.05; ealign = 1.2%

Fig. 8. Point clouds and trajectories calculated by SPO. Left: Entire point cloud and
trajectory. Right: Subsection showing beginning and end of the trajectory. In the point
clouds on the right the accumulated drift from beginning to end is clearly visible. The
estimated camera trajectory is shown in green.

In comparison to SPO, the stereo algorithm has a much lower absolute scale
error. However, the stereo system does also benefit from a much larger stereo
baseline. Furthermore, the ground truth scale is obtained on the basis of the
stereo data. Hence, the absolute scale error of the stereo system is rather reflect-
ing the accuracy of the ground truth data. SPO is able to estimate the absolute
scale with accuracy of 10%, and better, for most of the sequences. The algorithm
performs significantly better with scale optimization than without. Regarding
the scale drift over the entire sequence, SPO significantly outperforms existing
monocular approaches. Regarding the alignment error SPO seems to perform
equally well or only sightly worse than DSO [2]. However, the plenoptic images
have a field of view which is much smaller than the one of the regular cameras
(see [20]). Fig. 8 shows, by way of example, two complete trajectories estimated
by SPO. Here, the accumulated drift from start to end is clearly visible.

A major drawback in comparison to monocular approaches is that the focal
length of the plenoptic camera can not be chosen freely, but instead directly
affects the depth range of the camera. Hence, the plenoptic camera will have a
field of view which is always smaller than that of a monocular camera. While
this makes tracking more challenging, on the other side it implicates a smaller
ground sampling distance for the plenoptic camera than for the monocular one.
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(a) SPO (b) LSD-SLAM [8]

Fig. 9. Point clouds of the same scene: (a) calculated by SPO and (b) calculated by
LSD-SLAM. Because of its narrow field of view, the plenoptic camera has much smaller
ground sampling distance, which, in turn, results in more detailed 3D map than for
the monocular camera. However, as a result the reconstructed map is less complete.

Fig. 10. Examples of point clouds calculated by SPO in various environments. Green
line is the estimated camera trajectory.

Therefore, SPO generally results in point clouds which are more detailed than
their monocular (or stereo camera based) equivalent. This can be seen from
Fig. 9. Fig. 10 shows further results of SPO, demonstrating the quality and
versatility of the algorithm.

5 Conclusions

In this paper we presented Scale-Optimized Plenoptic Odometry (SPO), which
is a direct and semi-dense VO algorithms working on the recordings of a focused
plenoptic camera. In contrast to previous algorithms based on plenoptic cameras
and other light field representation [10–12], SPO is able to succeed in challenging
real-life scenarios. It was shown that SPO is able to recover the absolute scale of a
scene with an accuracy of 10% and better for most of the tested sequences. SPO
significantly outperforms state-of-the-art monocular algorithms with respect to
scale drifts, while showing similar overall tracking accuracies. In our opinion
SPO represents a promising alternative to existing VO and SLAM systems.
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