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Abstract. Learning long-term spatial-temporal features are critical for
many video analysis tasks. However, existing video segmentation meth-
ods predominantly rely on static image segmentation techniques, and
methods capturing temporal dependency for segmentation have to de-
pend on pretrained optical flow models, leading to suboptimal solu-
tions for the problem. End-to-end sequential learning to explore spatial-
temporal features for video segmentation is largely limited by the scale
of available video segmentation datasets, i.e., even the largest video
segmentation dataset only contains 90 short video clips. To solve this
problem, we build a new large-scale video object segmentation dataset
called YouTube Video Object Segmentation dataset (YouTube-VOS).
Our dataset contains 3,252 YouTube video clips and 78 categories in-
cluding common objects and human activities4. This is by far the largest
video object segmentation dataset to our knowledge and we have released
it at https://youtube-vos.org. Based on this dataset, we propose a novel
sequence-to-sequence network to fully exploit long-term spatial-temporal
information in videos for segmentation. We demonstrate that our method
is able to achieve the best results on our YouTube-VOS test set and com-
parable results on DAVIS 2016 compared to the current state-of-the-art
methods. Experiments show that the large scale dataset is indeed a key
factor to the success of our model.

Keywords: Video Object Segmentation, Large-scale Dataset, Spatial-
Temporal Information.

1 Introduction

Learning effective spatial-temporal features has been demonstrated to be very
important for many video analysis tasks. For example, Donahue et al . [10] pro-
pose long-term recurrent convolution network for activity recognition and video

4 This is the statistics when we submit this paper, see updated statistics on our web-
site.

https://youtube-vos.org
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captioning. Srivastava et al . [38] propose unsupervised learning of video rep-
resentation with a LSTM autoencoder. Tran et al . [42] develop a 3D convolu-
tional network to extract spatial and temporal information jointly from a video.
Other works include learning spatial-temporal information for precipitation pre-
diction [46], physical interaction [14], and autonomous driving [47].

Video segmentation plays an important role in video understanding, which
fosters many applications, such as accurate object segmentation and tracking, in-
teractive video editing and augmented reality. Video object segmentation, which
targets at segmenting a particular object instance throughout the entire video
sequence given only the object mask on the first frame, has attracted much
attention from the vision community recently [6,32,50,8,11,22,41,19,44]. How-
ever, existing state-of-the-art video object segmentation approaches primarily
rely on single image segmentation frameworks [6,32,50,44]. For example, Caelles
et al . [6] propose to train an object segmentation network on static images and
then fine-tune the model on the first frame of a test video over hundreds of it-
erations, so that it remembers the object appearance. The fine-tuned model is
then applied to all following individual frames to segment the object without
using any temporal information. Even though simple, such an online learning or
one-shot learning scheme achieves top performance on video object segmenta-
tion benchmarks [33,21]. Although some recent approaches [11,8,41] have been
proposed to leverage temporal consistency, they depend on models pretrained on
other tasks such as optical flow [20,35] or motion segmentation [40], to extract
temporal information. These pretrained models are learned from separate tasks,
and therefore are suboptimal for the video segmentation problem.

Learning long-term spatial-temporal features directly for video object seg-
mentation task is, however, largely limited by the scale of existing video object
segmentation datasets. For example, the popular benchmark dataset DAVIS [34]
has only 90 short video clips, which is barely sufficient to learn an end-to-end
model from scratch like other video analysis tasks. Even if we combine all the
videos from available datasets [21,13,26,4,30,15], its scale is still far smaller than
other video analysis datasets such as YouTube-8M [1] and ActivityNet [17]. To
solve this problem, we present the first large-scale video object segmentation
dataset called YouTube-VOS (YouTube Video Object Segmentation dataset) in
this work. Our dataset contains 3,252 YouTube video clips featuring 78 cat-
egories covering common animals, vehicles, accessories and human activities.
Each video clip is about 3∼6 seconds long and often contains multiple objects,
which are manually segmented by professional annotators. Compared to exist-
ing datasets, our dataset contains a lot more videos, object categories, object
instances and annotations, and a much longer duration of total annotated videos.
Table 1 provides quantitative scale comparisons of our new dataset against ex-
isting datasets. We retrain existing algorithms on YouTube-VOS and benchmark
their performance on our test set which contains 322 videos. In addition, our test
set contains 10 categories unseen in the training set and are used to evaluate the
generalization ability of existing approaches.
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Table 1: Scale comparison between YouTube-VOS and existing datasets. “An-
notations” denotes the total number of object annotations. “Duration” denotes
the total duration (in minutes) of the annotated videos.

Scale
JC
[13]

ST
[26]

YTO
[21]

FBMS
[30]

DAVIS
[33] [34]

YouTube-VOS
(Ours)

Videos 22 14 96 59 50 90 3,252

Categories 14 11 10 16 - - 78

Objects 22 24 96 139 50 205 6,048

Annotations 6,331 1,475 1,692 1,465 3,440 13,543 133,886

Duration 3.52 0.59 9.01 7.70 2.88 5.17 217.21

Based on Youtube-VOS, we propose a new sequence-to-sequence learning
algorithm to explore spatial-temporal modeling for video object segmentation.
We utilize a convolutional LSTM [46] to learn long-term spatial-temporal infor-
mation for segmentation. At each time step, the convolutional LSTM accepts
last hidden states and an encoded image frame, it then outputs encoded spatial-
temporal features which are decoded into a segmentation mask. Our algorithm is
different from existing approaches in that it fully exploits the long-term spatial-
temporal information in an end-to-end manner and does not depend on exist-
ing optical flow or motion segmentation models. We evaluate our algorithm on
both YouTube-VOS and DAVIS 2016 and it achieves better or comparable re-
sults compared to the current state of the arts.

The rest of our paper is organized as follows. In Section 2 we briefly introduce
the related works. In Section 3 and 4 we describe our YouTube-VOS dataset and
the proposed algorithm in detail. Experimental results are presented in Section 5.
Finally we conclude the paper in Section 6.

2 Related work

In the past decades, several datasets [21,13,26,4,30,15] have been created for
video object segmentation. All of them are in small scales which usually con-
tain only dozens of videos. In addition, their video content is relatively simple
(e.g . no heavy occlusion, camera motion or illumination change) and sometimes
the video resolution is low. Recently, a new dataset called DAVIS [33,34] was
published and has become the benchmark dataset in this area. Its 2016 version
contains 50 videos with a single foreground object per video while the 2017 ver-
sion has 90 videos with multiple objects per video. In comparison to previous
datasets [21,13,26,4,30,15], DAVIS has both higher-quality of video resolutions
and annotations. In addition, their video content is more complicated with multi-
object interactions, camera motion, and occlusions.

Early methods [21,28,12,31,5] for video object segmentation often solve some
spatial-temporal graph structures with hand-crafted energy terms, which are
usually associated with features including appearance, boundary, motion and
optical flows. Recently, deep-learning based methods were proposed due to its
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great success in image segmentation tasks [36,7,49,48]. Most of these meth-
ods [6,32,8,11,50,44] build their model based on an image segmentation net-
work and do not involve sequential modeling. Online learning [6] is commonly
used to improve their performance. To make the model temporally consistent,
the predicted mask of the previous frame is used as a guidance in [32,50,19].
Other methods have been proposed to leverage spatial-temporal information.
Jampani et al . [22] use spatial-temporal consistency to propagate object masks
over time. Tokmakov et al . [41] use a two-stream network to model objects’ ap-
pearance and motion and use a recurrent layer to capture the evolution. However,
due to the lack of training videos, they use a pretrained motion segmentation
model [40] and optical-flow model [20], which leads to suboptimal results since
the model is not trained end-to-end to best capture spatial-temporal features.

3 YouTube-VOS

To create our dataset, we first carefully select a set of object categories including
animals (e.g . ant, eagle, goldfish, person), vehicles (e.g . airplane, bicycle, boat,
sedan), accessories (e.g . eyeglass, hat, bag), common objects (e.g . potted plant,

knife, sign, umbrella), and humans in various activities (e.g . tennis, skateboard-
ing, motorcycling, surfing). The videos containing human activities have diversi-
fied appearance and motion, so instead of treating human videos as one class, we
divide different activities into different categories. Most of these videos contain
interactions between a person and a corresponding object, such as tennis racket,
skateboard, motorcycle, etc. The entire category set includes 78 categories that
covers diverse objects and motions, and should be representative for everyday
scenarios.

We then collect many high-resolution videos with the selected category labels
from the large-scale video classification dataset YouTube-8M [1]. This dataset
consists of millions of YouTube videos associated with more than 4,700 visual
entities. We utilize its category annotations to retrieve candidate videos that
we are interested in. Specifically, up to 100 videos are retrieved for each cate-
gory in our segmentation category set. There are several advantages to using
YouTube videos to create our segmentation dataset. First, YouTube videos have
very diverse object appearances and motions. Challenging cases for video object
segmentation, such as occlusions, fast object motions and change of appearances,
commonly exist in YouTube videos. Second, YouTube videos are taken by both
professionals and amateurs and thus different levels of camera motions are shown
in the crawled videos. Algorithms trained on such data could potentially handle
camera motion better and thus are more practical. Last but not the least, many
YouTube videos are taken by today’s smart phone devices and there are de-
manding needs to segment objects in those videos for applications such as video
editing and augmented reality.

Since the retrieved videos are usually long (several minutes) and have shot
transitions, we use an off-the-shelf video shot detection algorithm 5 to automat-

5 http://johmathe.name/shotdetect.html
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Fig. 1: The ground truth annotations of sample video clips in our dataset. Dif-
ferent objects are highlighted with different colors.

ically partition each video into multiple video clips. We first remove the clips
from the first and last 10% of the video, since these clips have a high chance
of containing introductory subtitles and credits lists. We then sample up to five
clips with appropriate lengths (3∼6 seconds) per video and manually verify that
these clips contain the correct object categories and are useful for our task (e.g .
no scene transition, not too dark, shaky, or blurry). After the video clips are col-
lected, we ask human annotators to select up to five objects of proper sizes and
categories per video clip and carefully annotate them (by tracing their bound-
aries instead of rough polygons) every five frames in a 30fps frame rate, which
results in a 6fps sampling rate. Given a video and its category, annotators are
first required to annotate objects belonging to that category. If the video con-
tains other objects that belong to our 78 categories, we ask the annotators to
label them as well, so that each video has multiple objects annotated. In human
activity videos, both the human subject and the object he/she interacts with are
labeled, e.g ., both the person and the skateboard are required to be labeled in a
“skateboarding” video. Some annotation examples are shown in Figure 1. Unlike
dense per-frame annotation in previous datasets [13,33,34], we believe that the
temporal correlation between five consecutive frames is sufficiently strong that
annotations can be omitted for intermediate frames to reduce the annotation
efforts. Such a skip-frame annotation strategy allows us to scale up the number
of videos and objects under the same annotation budget, which are important
factors for better performance. We find empirically that our dataset is effective
in training different segmentation algorithm.

As a result, our dataset YouTube-VOS consists of 3,252 YouTube video clips
and 133,886 object annotations, 33 and 10 times more than the best of the ex-
isting video object segmentation datasets, respectively (See Table 1). YouTube-
VOS is the largest dataset for video object segmentation to date.

4 Sequence-to-Sequence Video Object Segmentation

Based on our new dataset, we propose a new sequence-to-sequence video object
segmentation algorithm. Different from existing approaches, our algorithm learns
long-term spatial-temporal features directly from training data in an end-to-end
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manner, and the offline trained model is capable of propagating an initial object
segmentation mask accurately by memorizing and updating the object charac-
tersitics, including appearance, location and scale, and temporal movements,
automatically over the entire video sequence.

4.1 Problem formulation

Let us denote a video sequence with T frames as {xt|t ∈ [0, T − 1]} where xt ∈
R

H×W×3 is the RGB frame at time step t, and denote an initial binary object
mask at time step 0 as y0 ∈ R

H×W . The target of video object segmentation
is to predict the object mask automatically for the remaining frames from time
step 1 to T − 1, i.e. {ŷt|t ∈ [1, T − 1]}.

To obtain a predicted mask ŷt for xt, many existing deep learning meth-
ods only leverage information at time step 0 (e.g . online learning or one-shot
learning [6]) or time step t − 1 (e.g . optical flow [32]) while the long-term his-
tory information is totally dismissed. Their frameworks can be formulated as
ŷt = argmax∀ȳt

P(ȳt|x0,y0,xt) or ŷt = argmax∀ȳt
P(ȳt|x0,y0,xt,xt−1). They

are effective when the object appearance is similar between time 0 and time t or
when the object motion from time t− 1 to t can be accurately measured. How-
ever, these assumptions will be violated when the object has drastic appearance
variation and rapid motion, which is often case in many real-world videos. In
such cases, the history information of the object in all previous frames becomes
critical and should be leveraged in an effective way. Therefore, we propose to
solve a different objective function, i.e. ŷt = argmax∀ȳt

P(ȳt|x0,x1, ...,xt,y0),
which can be transformed into a sequence-to-sequence learning problem.

4.2 Our Algorithm

Recurrent Neural Networks (RNN) has been adopted by many sequence-to-
sequence learning problems because it is capable to learn long-term dependency
from sequential data. LSTM [18] as a special RNN structure solves vanishing or
exploding gradients issue [3]. A convolutional variant of LSTM (convolutional
LSTM) [46] is later proposed to preserve the spatial information of the data in
the hidden states of the model.

Our algorithm is inspired by the convolutional encoder-decoder LSTM struc-
ture [9,39] which has achieved much success in machine translation, where an
input sentence in language A is first encoded by a encoder LSTM and its outputs
are fed into a decoder LSTM which can generate the desired output sentence
in language B. In video object segmentation, it is essential to capture the ob-
ject characteristics over time. To generate the initial states for our convolutional
LSTM (ConvLSTM ), we use a feed-forward neural network to encode both the
first image frame and the segmentation mask. Specifically, we concatenate the
initial frame x0 and segmentation mask y0 and feed it into a trainable network,
denoted as Initializer, which outputs the initial memory state c0 and hidden
state h0. These initial states capture object appearance, object location and
scale. And they are are feed into ConvLSTM for sequence learning.
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Fig. 2: The framework of our algorithm. The initial information at time 0 is
encoded byInitializer to initialize ConvLSTM. The new frame at each time step
is processed byEncoder and the segmentation result is decoded byDecoder.
ConvLSTM is automatically updated over the entire video sequence.

At time step t, frame x t is �rst processed by a convolutional encoder, de-
noted as Encoder, to extract feature maps ~x t . Then ~x t is sent as the inputs of
ConvLSTM. The internal states ct and h t are automatically updated given the
new observation ~x t , which capture the new characteristics of the object. The
output h t is passed into a convolutional decoder, denoted asDecoder, to get the
full-resolution segmentation resultsŷ t . Binary cross-entropy loss is computed be-
tweenŷ t and y t during training process. The entire model is trained end-to-end
using back-propagation to learn parameters for theInitializer network, the En-
coder and Decoder networks, and ConvLSTM network. Figure 2 illustrates our
sequence learning algorithm for video object segmentation. The learning process
can be formulated as follows:

c0; h0 = Initializer (x0; y0) (1)

~x t = Encoder(x t ) (2)

ct ; h t = ConvLST M (~x t ; ct � 1; h t � 1); (3)

ŷ t = Decoder(h t ) (4)

L = � (y t log(ŷ t )) + ((1 � y t ) log(1 � ŷ t )) (5)

4.3 Implementation Details

Model structures Both our Initializer and Encoder use VGG-16 [37] network
structures. In particular, all the convolution layers and the �rst f ully connected
layer of VGG-16 are used as backbone for the two networks. The fully connected
layer is transformed to a 1� 1 convolution layer to make our model fully con-
volutional. On top of it, Initializer has two additional convolution layers with
ReLU [29] activation to produce c0 and h0 respectively. Each convolution layer
has 512 1� 1 �lters. The Encoder has one additional convolution layer with
ReLU activation which has 512 1� 1 �lters. The VGG-16 layers of the Initializer






















