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Abstract Test datasets should contain many different challenging as-
pects so that the robustness and real-world applicability of algorithms
can be assessed. In this work, we present a new test dataset for semantic
and instance segmentation for the automotive domain. We have conduc-
ted a thorough risk analysis to identify situations and aspects that can
reduce the output performance for these tasks. Based on this analysis
we have designed our new dataset. Meta-information is supplied to mark
which individual visual hazards are present in each test case. Further-
more, a new benchmark evaluation method is presented that uses the
meta-information to calculate the robustness of a given algorithm with
respect to the individual hazards. We show how this new approach al-
lows for a more expressive characterization of algorithm robustness by
comparing three baseline algorithms.

Keywords: Test Data, Autonomous Driving, Validation, Testing, Safety
Analysis, Semantic Segmentation, Instance Segmentation

1 Introduction

Recent advances in machine learning have transformed the way we approach
Computer Vision (CV) tasks. Focus has shifted from algorithm design towards
network architectures and data engineering. This refers in this context to the
creation and selection of suitable datasets for training, validation, and testing.

This work focuses on the creation of validation datasets and their accompa-
nying benchmarks. Our goal is to establish meaningful metrics and evaluations
that reflect real-world robustness of the tested algorithms for the CV tasks of
semantic segmentation and instance segmentation, especially for autonomous
driving (AD). These tasks represent essential steps necessary for scene under-
standing and have recently seen huge improvements thanks to deep learning
approaches. At the same time, they are basic building blocks of vision-based
advanced driver-assistance systems (ADAS) and are therefore employed in high-
risk systems.

Demanding CV tasks are becoming increasingly important in safety-relevant
ADAS applications. This requires solutions that are robust against many perform-
ance-reducing factors (e.g. illumination changes, reflections, distortions, image
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Figure 1. Examples of hazards found in the WildDash dataset. See Table 1 for de-
scriptions.

noise). These factors can be seen as hazards, influences potentially harmful to
algorithm performance. Each hazard poses a potential risk and should be tested
thoroughly to evaluate the robustness and safety of the accompanying system.
Classic risk analysis applied to machine learning systems encompasses an inher-
ent problem: Even if the learning process itself is well-understood, the relation
between cause and effect, and the origin of erroneous behaviors are often hard
to comprehend: if something goes wrong, it can be difficult to trace back the
reason. Incorporating well-categorized test data promises to overcome this is-
sue. Highly expressive meta-information (i.e. describing which aspects and haz-
ards are present in a given test image) allows for reasoning based on empirical
evaluations during the test phase: if a statistically significant amount of tests
containing a specific hazard fails, it can be assumed that the system is not ro-
bust against this hazard. The underlying assumption of this work is: if we use
machine-learning-based mechanisms in systems that represent potential risks to
human life, a systematic approach comprehensible to humans for testing these
components is essential. Only then, sufficient certainty can be obtained regard-
ing the underlying risk and its propagation from one sub-system to others. Data,
metrics, and methodologies presented in this work are designed based on this
assumption.

Another influential factor regarding the quality of a test set is the inherent
dataset bias (see [1]). Most of the publicly available datasets for semantic and
instance segmentation in the ADAS context published in recent years still suffer
from being too focused on a certain geographical region. These datasets have a
strong bias towards Western countries, especially Central Europe. The dataset
presented in this work aims to minimize this shortcoming. It embraces the global
diversity of traffic situations by including test cases from all over the world.
Furthermore, a great variety of different ego vehicles with varying camera setups
extracted from dashcam video material is provided. This ultimately results in a
vivid cross-section of traffic scenarios, hence the title WildDash.

The main contribution of this work is a novel dataset for semantic and in-
stance segmentation, that (i) allows for backtracking of failed tests to visual risk
factors and therefore pinpointing weaknesses, (ii) adds negative test cases to
avoid false positives, and (iii) has low regional bias and low camera setup bias
due to its wide range of sources.
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Figure 2. Example frames of existing datasets. From left to right: CamVid, Cityscapes,
KITTI, Playing for Benchmarks, and Mapillary Vistas.

Section 2 gives a thorough overview of existing datasets for semantic and
instance segmentation focused on ADAS applications. Section 3 summarizes our
process of applying an established risk-analysis method to create a checklist of
critical aspects that should be covered by test data to evaluate algorithm robust-
ness. Section 4 explains how we applied the generated checklist and designed our
new test dataset: WildDash. In Section 5, we demonstrate how the additional
meta-information about included hazards can be used to create new hazard-
aware metrics for performance evaluation. Section 6 describes the training setup
of our baseline models and presents detailed segmentation results on specific
aspects of WildDash. Section 7 gives a short outlook, followed by a summary in
Section 8.

2 Related Work

2.1 Segmentation Datasets

Brostow et al. [2] introduced CamVid, one of the first datasets focusing on se-
mantic segmentation for driving scenarios. It is composed of five video sequences
captured in Cambridge consisting of 701 densely annotated images, distinguish-
ing between 31 semantic classes. In 2013 the 6D Vision group [3] published
the initial version of the Daimler Urban Dataset [4]. It contains 5000 coarsely
labeled images (ground, sky, building, vehicle, pedestrian) extracted from two
videos recorded in Germany.

The release of the Cityscapes Dataset [5] in 2015 marks a breakthrough in
semantic scene understanding. Several video sequences were captured in cities
across Germany and Switzerland and 25000 images labeled (5000 fine/20000
coarse) with 30 different classes. The corresponding benchmark is still the most
commonly used reference, currently listing 106 algorithms for semantic segment-
ation and 29 algorithms for instance segmentation (July 2018). In the year 2017,
the Raincouver dataset [6] contributed additional frames depicting road layouts
and traffic participants under varying weather and lighting conditions. Published
in the same year, Mighty AI Sample Data [7] is composed of dashcam images
representing different driving scenarios in the metropolitan area of Seattle. The
year 2018 marked two more major contributions in terms of quality and data
variability, which represent a further step towards reducing dataset bias. One
of them is Mapillary Vistas Dataset [8] which contains more than 25000 high-
resolution images covering around 64 semantic classes, including varying lighting
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conditions, locations and camera setups. Berkeley Deep Drive [9], on the other
hand, specializes more on challenging weather conditions and different times of
the day. The KITTI Vision Benchmark Suite, first introduced by Geiger et al.
[10] in 2012 and aimed at multiple tasks such as stereo, object detection, and
tracking was updated in 2018 with ground truth for semantic segmentation [11].

In addition to annotations of real images, a number of synthetically gener-
ated datasets emerged in recent years. One of the first contributions to the area
of Urban Scene Understanding was Virtual KITTI by Gaidon et al. [12] in 2016.
It represents a virtual reconstruction of the original KITTI dataset, enhanced
by a higher variety of weather conditions. Published in the same year, SYN-
THIA [13] focuses on multiple scenarios (cities, motorways and green areas) in
diverse illumination, weather conditions, and varying seasons. A recent update
called SYNTHIA-SF [14] furthermore follows the Cityscapes labeling policy. In
the following year, Richter et al. [15] introduced the synthetic benchmark suite
Playing for Benchmarks. It covers multiple vision tasks such as semantic seg-
mentation, optical flow, and object tracking. High-resolution image sequences
for a driving distance of 184 km are provided with corresponding ground-truth
annotations.

2.2 Risk Analysis in Computer Vision

A number of publications regarding risk analysis in CV have been published
during the last years, since the community seemingly gained awareness for the
necessity to train and test for increasingly difficult conditions.

In 2015, Zendel et al. [16] introduced the concept of risk analysis for CV tasks.
In contrast to high-level driving hazards (e.g. car crash, near-miss events as in
the SHRP 2 NDS database [17]), this work focuses on visual hazards (e.g. blur,
glare, and overexposure). They create a checklist of such hazards that can impair
algorithm performance. The list has more than 1000 generic entries which can be
used as seeds for creating specialized entries for individual CV tasks. Such were
presented for stereo vision in 2017 in Analyzing Computer Vision Data [18] where
they strongly emphasize on the underrated aspect of negative test cases. These
are tests where algorithms are expected to fail. Since most of the data is highly
focused on training, many works do not consider the negative test class, neither
in the evaluation metric nor in the data itself. For a safe and robust system it
is important that an algorithm does not ‘overreact’ and knows when it is not
able to provide a reliable result. No indications have been found in any of the
mentioned evaluation frameworks and benchmarks that true negative test cases
are evaluated. Most common is the don’t-care-approach (e.g. in Cityscapes),
where all the regions that are annotated using a negative (=unknown/invalid)
class are not evaluated. This means that an image containing only negative
classes is not evaluated at all.

Both risk analysis publications [16] and [18] include interesting claims and
tools for measuring and improving test data quality. However, the authors only
apply their concepts to existing test datasets and do not create a new dataset
themselves.
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In this work we are trying to build upon their work and actually create a
dataset allowing for hazard-aware evaluation of algorithms. In addition, Wild-

Dash deliberately introduces negative test cases to close this crucial gap.

3 Risk Analysis

The process of collecting a comprehensive list of factors that pose risks to a
system and the overall assessment of these risk factors is called risk analysis. For
the course of the WildDash dataset, we started with the results from a publicly
available generic CV risk analysis called CV-HAZOP [16]. The generic entries
from this list are concretized to create a version specific to the current task at
hand. The first step of conducting the risk analysis is the definition of the CV
task itself that shall be evaluated.

We designed our dataset as an organic extension to existing datasets. Thus,
we chose to use a task definition close to the one used in the popular City-
scapes [5] dataset. It provides a valuable tool solving important tasks for autonom-
ous driving: navigation, scene understanding and collision avoidance. The task
definition categorizes test cases: those which are in-scope as positive test cases
vs. those lying outside the task definition as negative test cases.

3.1 Task Definition: Semantic Segmentation

The algorithm shall assign a single best fitting label to each pixel of a given color
image. The specific labels and semantics for these labels can be found in Cordts
et al. [5] and focus on scene understanding for autonomous driving.

In essence, the task focuses on assigning each pixel in an image to exactly
one of these possible classes: road, sidewalk, parking, rail track, person, rider,
car, truck, bus, on rails, motorcycle, bicycle, caravan, building, wall, fence,
guard rail, bridge, tunnel, pole, traffic sign, traffic light, vegetation, terrain,
sky, ground, dynamic, and static.

All scenes depict frontal vehicle views of traffic scenarios. The camera angle
and orientation should be comparable to a human driver or co-driver. It can be
positioned outside the vehicle or behind the windscreen.

Some of the labels do not affect the results because they are not part of the
evaluation in the Cityscapes benchmark. Other labels cause varying annotations,
as the corresponding concepts are hard to narrow down into a concrete task
description for an annotator. To correct this, we deviate from the original work
of Cordts et al. [5] as follows:
• The trailer label is not used. Trailers are labeled as the vehicle that is
attached to it and parked trailers without an attached vehicle as dynamic.

• The label pole group is not used. These parts are labeled as pole.
• Areas within large gaps in an instance label are annotated by the con-
tent visible in that hole, in contrast to being filled with the enclosing label
(original Cityscapes). Whenever content is clearly visible through the hole
consisting of more than just a few pixels, it is annotated accordingly.
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The original Cityscapes labels are focusing on German cities. We are refining
and augmenting some of the definitions to clarify their meaning within a broader
worldwide context:
• Construction work vehicles and agriculture vehicles are labeled as truck.
• Overhead bridges and their support pillars/beams are labeled as bridge.
Roads/sidewalks/etc. on bridges still keep their respective labels.

• Two/Three/Four-wheeled muscle-powered vehicles are labeled as bicycle.
• Three-wheeled motorized vehicles are labeled as motorcycle (e.g. auto rick-
shaws, tuk-tuk, taxi rickshaws) with the exception of vehicles that are in-
tended primarily for transport purposes which get the truck label.

3.2 Task Definition: Instance Segmentation

Instance segmentation starts with the same task description as semantic seg-
mentation but enforces unique instance labels for individual objects (separate
labels even for adjoint instances). To keep this benchmark compatible with City-
scapes, we also limit instance segmentation to these classes: person, rider, car,
truck, bus, on rails, motorcycle, bicycle, caravan.

3.3 Concretization of the CV-HAZOP List

The concretization process as described in Analyzing Computer Vision Data [18]
starts from the generic CV-HAZOP list. Using the task definitions (3.1 and 3.2),
the relevant hazards are filtered. In our case, we filtered out most temporal effects
(as the task description requires a working algorithm from just one image without
other sequence information). The remaining entries of the list were reviewed and
each fitting entry was reformulated to clearly state the hazard for the given task
definition.

3.4 Clustering of Hazards

Getting a specific evaluation for each identified hazard would be the ideal out-
come of a hazard-aware dataset. However, real-world data sources do not always
yield enough test cases to conclusively evaluate each risk by itself. Furthermore,
the effects seen within an image often cannot be attributed to a single specific
cause (e.g. blur could either be the result of motion or a defocused camera).
Thus multiple risks with common effects on output quality were clustered into
groups. The concretized entries have been clustered into these ten risk clusters:
blur, coverage, distortion, hood, occlusion, overexposure, particles, underexpos-
ure, variations, and windscreen. See Table 1 for an explanation of each risk
cluster and Figure 1 for example images containing these hazards.

4 WildDash Setup

4.1 Dataset collection

Gathering a lot of challenging data without strong content bias is a hard task.
Therefore, the input images of our dataset are collected from contributions of



WildDash - Creating Hazard-Aware Benchmarks 7

Table 1. Risk clusters for WildDash. Figure 1 contains examples in the same order

Risk Cluster Hazard Examples

blur Effects of motion blur, camera focus blur, and compression artifacts
coverage Numerous types of road coverage and changes to road appearance
distortion Lens distortion effects (e.g. wide angle)
hood Ego-vehicle’s engine cover (bonnet) is visible
occlusion Occlusion by another object or the image border
overexposure Overexposed areas, glare and halo effects
particles Particles reducing visibility (e.g. mist, fog, rain, snow)
underexposure Underexposed areas, twilight, night shots
variations Intra-class variations, uncommon object representations
windscreen Windscreen smudges, raindrops and reflections of the interior

Figure 3. Positive test cases from wd val 01 (cn0000, si0005, us0006, and zm0001)
together with a visualization of the respective semantic segmentation and color legend.

many ‘YouTube’ authors who either released their content under CC-BY license
or individually agreed to let us extract sample frames from their videos. Potential
online material is considered of interest with regard to the task descriptions (3.1
and 3.2) if it met the following requirements: (i) data was recorded using a
dashcam, (ii) front driving direction, (iii) at least one hazard situation arises,
(iv) some frames before and after the hazard situation exist. This allows for a
later expansion of our dataset towards semantic flow algorithms. All such videos
are marked as a potential candidate for WildDash. From the set of candidate
sequences, individual interesting frames were selected with the specific hazards
in mind. Additionally, the content bias was reduced by trying to create a mixture
of different countries, road geometries, driving situations, and seasons.

This selection resulted in a subset of about 1800 frames. A meta-analysis was
conducted for each frame to select the final list of frames for the public validation
and the private benchmarking dataset.
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4.2 Meta-data analysis

In order to calculate hazard-aware metrics the presence of hazards in each frame
needs to be identified. Another design goal of WildDash is limited redundancy
and maximal variability in domain-related aspects. Therefore, (i) domain-related
and (ii) hazard-related meta-data is added to each frame. The following pre-
defined values (denoted as set {.}) are possible:
• Domain-related: environment {‘city’, ‘highway’, ‘off-road’, ‘overland’, ‘sub-
urban’, ‘tunnel’, ‘other’} and road-geometry {‘straight’, ‘curve’, ‘round-
about’, ‘intersection’, ‘other’}.

• Hazards-related: One severity value {‘none’, ‘low’, ‘high’} for each of the
ten risk clusters from Table 1.

The severity for a given risk is set to ‘high’ if large parts of the image are clearly
affected or the appearance of humans/vehicles is affected. All other occurrences
of the risk are represented by ‘low’ severity or if not present by ‘none’.

4.3 Positive test cases

Based on the meta list, a diverse set of test frames covering each of the haz-
ards has been selected and separated into a public validation set (wd val 01, GT
is published) of 70 test cases and a hidden benchmark set (wd bench 01, GT
is withheld) of 141 test cases. The GT has been generated using a dedicated
annotation service and many additional hours by the authors to ensure consist-
ent quality. Figure 3 shows a few examples taken from the WildDash public
validation set.

4.4 Negative test cases

One of the central requirements presented by Zendel et al. [18] is the inclusion
of negative test cases: tests that are expected to fail. The point of having these
images in the dataset is to see how the system behaves when it is operating
outside its specifications. A robust solution will recognize that it cannot operate
in the given situation and reduce the confidence. Ideally, a perfect system flags
truly unknown data as invalid. Table 2 lists test cases which increasingly divert
from the region of operation of a regular assisted driving system while Figure 4
shows some of the respective input images. With 141 positive and 15 negative
test cases the WildDash benchmarking set wd bench 01 contains a total of 156
test cases.

5 Hazard-Aware Evaluation Metrics

The meta-analysis of the dataset allows for the creation of subsets for each of
the identified hazard clusters. For each group, all frames are divided by severity
into three groups: none, low and high. Performance evaluation can be conducted
for each severity-subset to obtain a coarse measure of the individual hazard’s
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Table 2. Negative test cases from wd bench 01.

Altered valid scenes Abstract/Image noise

wd0141 RGB/BGR channels switched wd0142 White wall close-up
wd0143 Black-and-white image wd0144 Digital image receive noise
wd0148 Upside-down version wd0146 Analog image receive noise
wd0151 Color-inverted image wd0147 Black image with error text
wd0155 Image cut and rearranged wd0154 Black sensor noise

Out-of-scope images

wd0145 Only sky with clouds
wd0149 Macro-shot anthill
wd0150 Indoor group photo
wd0152 Aquarium
wd0153 Abstract road scene with toys

Figure 4. Negative test cases wd0141, wd0142, wd0145, wd0146, and wd0152. See
Table 2 for content descriptions

impact on an algorithm’s performance. The Intersection over Union (IoU) meas-
ure [19] represents the ‘de facto’ established metric for assessing the quality
of semantic segmentation algorithms. For each label the ratio of true posit-
ives (i.e. the intersection of predicted and annotated labels) over the union of
true positives, false positives and false negatives is evaluated. The IoU scores
per label class are averaged to calculate a single performance score per haz-
ard subset called mean IoU (mIoU). The impact of the individual hazard re-
flects its negative effect on the algorithm’s performance. It is calculated as:

rimpact = 1.0−min(mIoUlow,mIoUnone)
max(mIoUlow,mIoUhigh)

. Therefore, a value of 0.0 implies no impact,

while a score of e.g. 0.5 corresponds to a hazard of reducing performance by 50%.
The subset low represents border cases between influential and non-influential
test cases and thus mIoUlow is present at both numerator and denominator.

Occlusions are only relevant for foreground objects with instance annotations.
To mitigate this, the risk cluster occlusions evaluates only labels with instance
annotations (human and vehicle category) and ignores the single label with the
largest area (as this is normally the fully visible occluder).

5.1 Evaluating negative test cases

Evaluation of negative test cases might seem straight forward at first: per defin-
ition we expect an algorithm to fail for negative test cases in a graceful manner,
i.e. mark the output as invalid. This creates a paradox situation: output marked
as invalid is considered to be correct while any other output is counted as in-
correct. This binary form of evaluation is not very appropriate, especially as the
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borderline between positive and negative test cases is ambiguous. Just because a
specific situation/aspect is not clearly stated in the domain/task definition does
not make it a clean negative test case (i.e. ‘algorithm must fail here’). Often, a
test case states a situation that is clearly not part of the system’s task definition;
for example, an upside down image of a street scene. It is still possible to assign
unambiguous legitimate semantic labels for this test image. In these cases, we
treat all algorithm output as correct, that is either equal to such legitimate label,
or marked as invalid.

6 Evaluation

This section provides first valuable insights concerning opportunities and short-
comings of recently published datasets predominantly used in the research field of
semantic segmentation. For this purpose, three baseline models (i.e. cityscapes,
mapillary, mapillary+) varying with regard to the amount and source of train-
ing data, were trained from scratch and thoroughly evaluated on subsets of the
WildDash dataset representing specific visual hazards.

6.1 Experimental Setup

This section describes the setup of the baseline models, which are based on
the pytorch implementation of Dilated Residual Networks (drn) [20]. Employing
dilated convolution for semantic segmentation facilitates an efficient aggregation
of features at multiple scale levels without losses introduced by downsampling.
To ensure comparability between all models, each experiment has been carried
out with the same training configuration. The network architecture drn-d38 was
selected due to the balance between labeling accuracy and training duration it
provides. Moreover, the input batches consist of 8 pairs of input images and cor-
responding annotations each, and are randomly rescaled by a factor between 0.5
and 2 to improve scale invariance, randomly flipped in horizontal direction, and
finally randomly cropped to a size of 896 x 896 pixels. As a pre-processing step,
the Mapillary Vistas dataset has been rescaled and cropped to fit the resolution
of Cityscapes (2048 x 1024 pixels). Since the Cityscapes dataset consists of 3475
pixel-level annotations, subdivided into 2975 training and 500 validation images,
and therefore provides the least amount of training data, a subset of Mapillary

with a similar number of images has been used to train the comparable baseline
method, further referred to as mapillary. During our experiments the 1525 City-

scapes and 5000 Mapillary test images are not included, since they are withheld
for benchmarking purposes and thus not publicly available. The baseline method
mapillary+ uses all publicly available Mapillary data of 18000 training and 2000
validation images. To cope with the increased amount of sampled input data a
faster decay of the learning rate was achieved by lowering the step size from 100
to 17 epochs during the last experiment. Training input has been restricted to
the labels evaluated in the WildDash benchmark without performing any further
label aggregation.
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Table 3. mIoU scores of the conducted experiments on varying target datasets

baseline model/dataset Cityscapes Mapillary
WildDash
(val/bench)

WildDash Negative
Test Cases

cityscapes 63.79 30.31 16.5/15.4 7.2
mapillary 44.81 50.24 29.3/27.4 12.9
mapillary+ 46.34 52.34 30.7/29.8 27.4

6.2 Cross-dataset validation

To quantify shortcomings and the degree of variability inherent to semantic
segmentation datasets, the learned models are validated on three target datasets.
A detailed overview of the corresponding evaluation is given in Table 3.

As expected, the models perform best on the datasets they have been trained
on. The highest mIoU of 63.79 is achieved by the cityscapes model. However, the
validation set of the Cityscapes dataset consists of only three image sequences
captured in Central European cities. The results of this model on datasets like
Mapillary and WildDash show that training solely on Cityscapes images is in-
sufficient to generalize for more challenging ADAS scenarios. The model cannot
cope with visual hazards effectively. The highest score on WildDash is achieved
by the mapillary+ experiment with mIoU scores of 30.7 on validation and 29.8 on
the test set, based on more distinct scene diversity and global coverage present
within the training data of Mapillary. Exemplary results of our baseline experi-
ments on WildDash validation images are shown in Figure 5. As long as input

Figure 5. Qualitative results of our baseline models on WildDash validation images
(left to right: input image, corresponding ground truth, and the inferred labelings of
our baseline models cityscapes, mapillary, and mapillary+)

images bear a high resemblance to the training set of Cityscapes, as shown in
the first row, no significant loss in labeling performance occures. However, mod-
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Table 4. mIoU scores of the baseline model mapillary+ on hazard-related WildDash

subsets, grouped by their severity of the respective hazard. The impact score, which is
introduced in section 5, quantifies the potential negative influence of a specific hazard
on the labeling performance

hazard blur
cover-
age

distor-
tions

hood
occlu-
sion

over-
exp

under-
exp

par-
ticles

wind-
screen

vari-
ations

none 29.0 31.0 31.4 32.9 26.4 32.2 31.5 30.2 31.8 29.0
low 32.2 28.6 28.2 27.8 32.1 23.5 31.0 29.3 28.5 30.7
high 26.6 32.8 26.8 22.4 30.4 17.0 20.8 29.3 27.8 27.9

impact 0.17 0.08 0.15 0.32 0.05 0.47 0.34 0.03 0.12 0.09

Table 5.mIoU scores of the baseline model mapillary+ on domain subsets ofWildDash

domain city
high-
way

off-
road

over-
land

sub-
urban

tun-
nel

curve
inter-
section

round-
about

stra-
ight

mIoU 31.3 24.5 32.7 29.3 31.6 19.6 28.7 31.7 36.6 28.0

els like mapillary and mapillary+ are clearly more robust to the challenging
WildDash scenarios.

6.3 Testing visual hazards

Detailed results on varying subsets of the WildDash test dataset, representing
a diverse range of visual hazards, are reported in Table 41. As expected, the
influence of the individual hazards is clearly reflected in the algorithm perform-
ance. Evaluating hazards causing significant image degradations (e.g. blur, over-
and underexposure) show an high impact, thus leading to lower algorithm per-
formance. On the other hand, effects caused by lens distortions lead to a graceful
decrease of labeling accuracy. Furthermore, mixing environmental effects such as
fog and heavy rain with slight snowfall, leads to high variations in algorithm per-
formance. This will be considered in the future, by partitioning the risk cluster
particles as two disjunct subsets.

6.4 Testing domain-related aspects

As already discussed, another important aspect of test data is a distinctive and
comprehensive coverage of domain aspects, such as differences regarding envir-
onments and varying types of road layouts. The influence of these aspects is
presented in Table 5. As the results show, labeling performance varies strongly

1 See supplementary material for additional results including instance segmentations
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with regard to the domain. Unsurprisingly, tunnel scenes tend to yield inferior
accuracy due to a mixture of low light conditions and homogeneously textured
regions, as well as their relatively rare occurrence within the training data. The
algorithm performs robust in the city, sub-urban, and overland domain, which
can be explained by the high number of learned urban scenes, constituting 90
percent of the Mapillary dataset and the low complexity of overland scenes. As
for variations in road layouts, the best labeling scores are achieved in round-
about scenes, followed by those containing intersections. This could be caused
by the strong uniformity present within these subgroups and lower vehicle speeds
leading to reduced motion blur.

6.5 Negative test cases

Labeling results of negative test cases show typical characteristics dependent
on the specific subgroup. Representative qualitative results are shown in Fig. 6.
If the system is confronted with upside-down images, the trained model par-

Figure 6. Input images, semantic segmentation results and corresponding confidence
of baseline model mapillary+ on WildDash test images (left to right: positive test case,
altered valid image, abstract image and two out-of-scope images).

tially relies on implicitly learned location priors, resulting in a clearly visible
labeling conflict between road and sky in the top region. Labeling performance
on abstract test cases, on the other hand, is strongly influenced by image noise
and high-frequency texture features, leading to a drift towards properties re-
sembling similar labels. The significantly lower confidence scores of altered and
out-of-scope images may be used to suppress the labeling partially or completely,
giving the system the ability to recognize cases where it is operating outside its
specification.

7 Outlook

The benchmark has now started its operation at the website wilddash.cc. It
allows everyone to submit their algorithm results for evaluation. In the future,

wilddash.cc


14 O.Zendel et al.

we want to increase the number of validation and benchmark images, as well as
the number of test cases for each hazard cluster (especially for the high severity
subsets). Also, the number of hazard clusters will most probably increase. All
those improvements and extensions will be adapted according to the results
of upcoming submissions. We are confident, that user feedback will help us to
improve and advance WildDash and the concept of hazard-aware metrics in
general.

8 Conclusions

In this paper we presented a new validation and benchmarking dataset for se-
mantic and instance segmentation in autonomous driving: WildDash. After ana-
lyzing the current state-of-the-art and its shortcomings, we have created Wild-

Dash with the benefits of: (i) less dataset bias by having a large variety of road
scenarios from different countries, roads layouts as well as weather and lighting
conditions; (ii) more difficult scenarios with visual hazards and improved meta-
information, clarifying for each test image which hazard is covered; (iii) inclusion
of negative test cases where we expect the algorithm to fail.

The dataset allows for hazard-aware evaluation of algorithms: The influence
of hazards such as blur, underexposure or lens distortion can directly be meas-
ured. This helps to pinpoint the best areas for improvements and can guide
future algorithm development. Adding negative test cases to the benchmark fur-
ther improves WildDash’s focus on robustness: we look even beyond difficult test
cases and check algorithms outside their comfort zone. The evaluation of three
baseline models using WildDash data shows strong influence of each separate
hazard on output performance and therefore confirms its validity. The bench-
mark is now open and we invite all CV experts dealing with these tasks to
evaluate their algorithms by visiting our new website: wilddash.cc.
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