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Abstract. The objective of this paper is a neural network model that
controls the pose and expression of a given face, using another face or
modality (e.g. audio). This model can then be used for lightweight, so-
phisticated video and image editing.
We make the following three contributions. First, we introduce a network,
X2Face, that can control a source face (specified by one or more frames)
using another face in a driving frame to produce a generated frame with
the identity of the source frame but the pose and expression of the face in
the driving frame. Second, we propose a method for training the network
fully self-supervised using a large collection of video data. Third, we show
that the generation process can be driven by other modalities, such as
audio or pose codes, without any further training of the network.
The generation results for driving a face with another face are com-
pared to state-of-the-art self-supervised/supervised methods. We show
that our approach is more robust than other methods, as it makes fewer
assumptions about the input data. We also show examples of using our
framework for video face editing.

1 Introduction

Being able to animate a still image of a face in a controllable, lightweight manner
has many applications in image editing/enhancement and interactive systems
(e.g. animating an on-screen agent with natural human poses/expressions). This
is a challenging task, as it requires representing the face (e.g. modelling in 3D)
in order to control it and a method of mapping the desired form of control
(e.g. expression or pose) back onto the face representation. In this paper we
investigate whether it is possible to forgo an explicit face representation and
instead implicitly learn this in a self-supervised manner from a large collection
of video data. Further, we investigate whether this implicit representation can
then be used directly to control a face with another modality, such as audio or
pose information.
To this end, we introduce X2Face, a novel self-supervised network architecture
that can be used for face puppeteering of a source face given a driving vector.

* Denotes equal contribution.
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Fig. 1: Overview of X2Face: a model for controlling a source face using a driv-
ing frame, audio data, or specifying a pose vector. X2Face is trained without
expression or pose labels.

The source face is instantiated from a single or multiple source frames, which are
extracted from the same face track. The driving vector may come from multiple
modalities: a driving frame from the same or another video face track, pose
information, or audio information; this is illustrated in Fig. 1. The generated
frame resulting from X2Face has the identity, hairstyle, etc. of the source face
but the properties of the driving vector (e.g. the given pose, if pose information
is given; or the driving frame’s expression/pose, if a driving frame is given).
The network is trained in a self-supervised manner using pairs of source and driv-
ing frames. These frames are input to two subnetworks: the embedding network
and the driving network (see Fig. 2). By controlling the information flow in the
network architecture, the model learns to factorise the problem. The embedding
network learns an embedded face representation for the source face – effectively
face frontalisation; the driving network learns how to map from this embedded
face representation to the generated frame via an embedding, named the driving
vector.
The X2Face network architecture is described in Section 3.1, and the self-supervised
training framework in Section 3.2. In addition we make two further contribu-
tions. First, we propose a method for linearly regressing from a set of labels
(e.g. for head pose) or features (e.g. from audio) to the driving vector; this is
described in Section 4. The performance is evaluated in Section 5, where we
show (i) the robustness of the generated results compared to state-of-the-art
self-supervised [45] and supervised [1] methods; and (ii) the controllability of
the network using other modalities, such as audio or pose. The second contribu-
tion, described in Section 6, shows how the embedded face representation can be
used for video face editing, e.g. adding facial decorations in the manner of [31]
using multiple or just a single source frame.

2 Related work

Explicit modelling of faces for image generation. Traditionally facial an-
imation (or puppeteering) given one image was performed by fitting a 3DMM
and then modifying the estimated parameters [3]. Later work has built on the
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fitting of 3DMMs by including high level details [34, 41], taking into account
additional images [33] or 3D scans [4], or by learning 3DMM parameters directly
from RGB data without ground truth labels [2, 39]. Please refer to Zollhöfer et.
al. [46] for a survey.

Given a driving and source video sequence, a 3DMM or 3D mesh can be obtained
and used to model both the driving and source face [10, 40, 43]. The estimated 3D
is used to transform the expression of the source face to match that of the driving
face. However, this requires additional steps to transfer the hidden regions (e.g.
the teeth). As a result, a neural network conditioned on a single driving image
can be used to predict higher level details to fill in these hidden regions [25].

Motivated by the fact that a 3DMM approach is limited by the components
of the corresponding morphable model, which may not model the full range of
required expressions/deformations and the higher level details, [1] propose a 2D
warping method. Given only one source image, [1] use facial landmarks in order
to warp the expression of one face onto another. They additionally allow for fine
scale details to be transferred by monitoring changes in the driving video.

An interesting related set of works consider how to frontalise a face in a still
image using a generic reference face [14], transferring expressions of an actor to
an avatar [35] and swapping one face with another [20, 24].

Learning based approaches for image generation. There is a wealth of lit-
erature on supervised/self-supervised approaches; here we review only the most
relevant work. Supervised approaches for controlling a given face learn to model
factors of variation (e.g. lighting, pose, etc.) by conditioning the generated image
on known ground truth information which may be head pose, expression, or land-
marks [5, 12, 21, 30, 42, 44]. This requires a training dataset with known pose or
expression information which may be expensive to obtain or require subjective
judgement (e.g. in determining the expression). Consequently, self-supervised
and unsupervised approaches attempt to automatically learn the required fac-
tors of variation (e.g. optical flow or pose) without labelling. This can be done
by maximising mutual information [7] or by training the network to synthesise
future video frames [11, 29].

Another relevant self-supervised method is CycleGAN [45] which learns to trans-
form images of one domain into those of another. While not explicitly devised
for this task, as CycleGAN learns to be cycle-consistent, the transformed images
often bear semantic similarities to the original images. For example, a CycleGAN
model trained to transform images of one person’s face (domain A) into those
of another (domain B), will often learn to map the pose/position/expression of
the face in domain A onto the generated face from domain B.

Using multi-modal setups to control image generation. Other modalities,
such as audio, can control image generation by using a neural network that learns
the relationship between audio and correlated parts in corresponding images.
Examples are controlling the mouth with speech [8, 38], controlling a head with
audio and a known emotional state [16], and controlling body movement with
music [36].
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Our method has the benefits of being self-supervised and the ability to control
the generation process from other modalities without requiring explicit modelling
of the face. Thus it is applicable to other domains.

3 Method

This section introduces the network architecture in Section 3.1, followed by the
curriculum strategy used to train the network in Section 3.2.

Fig. 2: An overview of X2Face during the initial training stage. Given multiple
frames of a video (here 4 frames), one frame is designated the source frame and
another the driving frame. The source frame is input to the embedding network,
which learns a sampler to map pixels from the source frame to the embedded face.
The driving frame is input to the driving network, which learns to map pixels
from the embedded face to the generated frame. The generated frame should have
the identity of the source frame and the pose/expression of the driving frame.
In this training stage, as the frames are from the same video, the generated and
driving frames should match. However, at test time the identities of the source
and driving face can differ.

3.1 Architecture

The network takes two inputs: a driving and a source frame. The source frame
is input to the embedding network and the driving frame to the driving net-
work. This is illustrated in Fig. 2. Precise architectural details are given in the
supplementary material.
Embedding network. The embedding network learns a bilinear sampler to de-
termine how to map from the source frame to a face representation, the embedded
face. The architecture is based on U-Net [32] and pix2pix [15]; the output is a
2-channel image (of the same dimensions as the source frame) that encodes the
flow δx, δy for each pixel.
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While the embedding network is not explicitly forced to frontalise the source
frame, we observe that it learns to do so for the following reason. Because the
driving network samples from the embedded face to produce the generated frame
without knowing the pose/expression of the source frame, it needs the embedded
face to have a common representation (e.g. be frontalised) across source frames
with differing poses and expressions.
Driving network. The driving network takes a driving frame as input and
learns a bilinear sampler to transform pixels from the embedded face to produce
the generated frame. It has an encoder-decoder architecture. In order to sample
correctly from the embedded face and produce the generated frame, the latent
embedding (the driving vector) must encode pose/expression/zoom/other factors
of variation.

3.2 Training the network

Fig. 3: The identity loss function when the source and driving frames are of
different identities. This loss enforces that the generated frame has the same
identity as the source frame.

The network is trained with a curriculum strategy using two stages. The first
training stage (I) is fully self-supervised. In the second training stage (II), we
make use of a CNN pre-trained for face identification to add additional con-
straints based on the identity of the faces in the source and driving frames to
finetune the model following training stage (I).
I. The first stage (illustrated in Fig. 2) uses only a pixelwise L1 loss between the
generated and the driving frames. Whilst this is sufficient to train the network
such that the driving frame encodes expression and pose, we observe that some
face shape information is leaked through the driving vector (e.g. the generated
face becomes fatter/longer depending on the face in the driving frame). Conse-
quently, we introduce additional loss functions – called identity loss functions –
in the second stage.
II. In the second stage, the identity loss functions are applied to enforce that the
identity is the same between the generated and the source frames irrespective
of the identity of the driving frame. This loss should mitigate against the face
shape leakage discussed in stage I. In practice, one source frame sA of identity
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A, and two driving frames dA,dR are used as training inputs; dA is of identity A
and dR a random identity. This gives two generated frames gdA

, gdR
respectively,

which should both be of identity A. Two identity loss functions are then imposed:
Lidentity(dA, gdA

) and Lidentity(sA, gdR
). Lidentity is implemented using a network

pre-trained for identity to measure the similarity of the images in feature space
by comparing appropriate layers of the network (i.e. a content loss as in [6, 13]).
The precise layers are chosen based on whether we are considering gdA

or gdR
:

1. Lidentity(dA, gdA
). gdA

should have the same identity, pose and expression as
dA so we use the photometric L1 loss and a L1 content loss on the Conv2-5
and Conv7 layers (i.e. layers that encode both lower/higher level information
such as pose/identity) between gdA

and dA.
2. Lidentity(sA, gdR

) (Fig. 3). gdR
should have the identity of sA but the pose

and expression of dR. Consequently, we cannot use the photometric loss but
only a content loss. We minimise a L1 content loss on the Conv6-7 layers
(i.e. layers encoding higher level identity information) between gdA

and sA.

The pre-trained network used for these losses is the 11-layer VGG network (con-
figuration A) [37] trained on the VGG-Face Dataset [26].

4 Controlling the image generation with other modalities

Given a trained X2Face network, the driving vector can be used to control the
source face with other modalities such as audio or pose.

4.1 Pose

Instead of controlling the generation with a driving frame, we can control the
head pose of the source face using a pose code such that when varying the
code’s pitch/yaw/roll angles, the generated frame varies accordingly. This is done
by learning a forward mapping fp→v from head pose p to the driving vector
v such that fp→v(p) can serve as a modified input to the driving network’s
decoder. However, this is an ill-posed problem; directly using this mapping loses
information, as the driving vector encodes more than just pose.
As a result, we use vector arithmetic. Effectively we drive a source frame with
itself but modify the corresponding driving vector vsourceemb to remove the pose
of the source frame psource and incorporate the new driving pose pdriving. This
gives:

vdrivingemb = vsourceemb + v∆pose
emb = vsourceemb + fp→v(pdriving − psource). (1)

However, VoxCeleb [23] does not contain ground truth head pose, so an addi-
tional mapping fv→p is needed to determine psource = fv→p(v

source
emb ).

fv→p. fv→p is trained to regress p from v. It is implemented using a fully con-
nected layer with bias and trained using an L1 loss. Training pairs (v, p) are
obtained using an annotated dataset with image to pose labels p; v is obtained
by passing the image through the encoder of the driving network.
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fp→v. fp→v is trained to regress v from p. It is implemented using a fully-
connected linear layer with bias followed by batch-norm. When fv→p is known,
this function can be learnt directly on VoxCeleb by passing an image through
X2Face to get the driving vector v and fv→p(v) gives the pose p.

4.2 Audio

Audio data from the videos in the VoxCeleb dataset can be used to drive a
source face in a manner similar to that of pose by driving the source frame with
itself but modifying the driving vector using the audio from another frame. The
forward mapping fa→v from audio features a to the corresponding driving vector
v is trained using pairs of audio features a and driving vectors v. These can be
directly extracted from VoxCeleb (so no backward mapping fv→a is required).
a is obtained by extracting the 256D audio features from the neural network
in [9] and the 128D v by passing the corresponding frame through the driving
network’s encoder. Ordinary least squares linear regression is then used to learn
fa→v after first normalising the audio features to ∼ N(0, 1). No normalisation is
used when employing the mapping to drive the frame generation; this amplifies
the signal, visually improving the generated results.
As learning the function fa→v : R1×256 → R

1×128 is under-constrained, the em-
bedding learns to encode some pose information. Therefore, we additionally use
the mappings fp→v and fv→p described in Section 4.1 to remove this informa-
tion. Given driving audio features adriving and the corresponding, non-modified

driving vector vsourceemb , the new driving vector vdrivingemb is then

vdrivingemb = vsourceemb + fa→v(adriving)− fa→v(asource) + fp→v(paudio − psource),

where psource = fv→p(v
source
emb ) is the head pose of the frame input to the driv-

ing network (i.e. the source frame), paudio = fv→p(fa→v(adriving)) is the pose
information contained in fa→v(adriving), and asource is the audio feature vector
corresponding to the source frame.

5 Experiments

This section evaluates X2Face by first performing an ablation study in Section 5.1
on the architecture and losses used for training, followed by results for controlling
a face with a driving frame in Section 5.2, pose information in Section 5.3, and
audio information in Section 5.4.
Training. X2Face is trained on the VoxCeleb video dataset [23] using dlib [18] to
crop the faces to 256× 256. The identities are randomly split into train/val/test
identities (with a split of 75/15/10) and frames extracted at one fps to give
900,764 frames for training and 125,131 frames for testing.
The model is trained in PyTorch [27] using SGD with momentum 0.9 and batch-
size of 16. First, it is trained just with L1 loss, and a learning rate of 0.001. The
learning rate is decreased by a factor of 10 when the loss plateaus. Once the loss
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converges, the identity losses are incorporated and are weighted as follows: (i)
for same identities to be as strong as the photometric L1 loss at each layer; (ii)
for different identities to be 1/10 the size of the photometric loss at each layer.
This training phase is started with a learning rate of 0.0001.
Testing. The model can be tested using either a single or multiple source frames.
The reasoning for this is that if the embedded face is stable (e.g. different facial
regions always map to the same place on the embedded face), we expect to be
able to combine multiple source frames by averaging over the embedded faces.

5.1 Architecture studies

To quantify the utility of using additional views at test time and the benefit of
the curriculum strategy for training the network (i.e. using the identity losses
explained in Section 3.2), we evaluate the results for these different settings on a
left-out test set of VoxCeleb. We consider 120K source and driving pairs where
the driving frame is from the same video as the source frames; thus, the generated
frame should be the same as the driving frame. The results are given in Table 1.

Table 1: L1 reconstruction error on the test set, comparing the generated frame
to the ground truth frame (in this case the driving frame) for different train-
ing/testing setups. Lower is better for L1 error. Additionally, we give the per-
centage improvement over the L1 error for the model trained with only training
stage I and tested with a single source frame. In this case, higher is better
Training strategy # of source frames at test time L1 error % Improvement

Training stage I 1 0.0632 0%
Training stage II 1 0.0630 0.32%
Training stage I 3 0.0524 17.14%
Training stage II 3 0.0521 17.62%

The results in Table 1 confirm that both training with the curriculum strat-
egy and using additional views at test time improve the reconstructed image.
The supplementary material includes qualitative results and shows that using
additional source frames when testing is especially useful if a face is seen at an
extreme pose in the initial source frame.

5.2 Controlling image generation with a driving frame

The motivation of our architecture is to be able to map the expression and pose
of a driving frame onto a source frame without any annotations on expression or
pose. This section demonstrates that X2Face does indeed achieve this, as a set
of source frames can be controlled with a driving video and generate realistic
results. We compare to two methods: CycleGAN [45] which uses no labels and
[1] which is designed top down and demonstrates impressive results. Additional
qualitative results are given in the supplementary material and video.
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(a)

(b)

(c)

Fig. 4: Comparison of X2Face’s generated frames to those of CycleGAN given
a driving video sequence. Each example shows from bottom to top: the driving
frame, our generated result and CycleGAN’s generated result. To the left, source
frames for X2Face are shown (at test time CycleGAN does not require source
frames, as it is has been trained to map between the given source and driving
identities). These examples demonstrate multiple benefits of our method. First,
X2Face is capable of preserving the face shape of the source identity (top row)
whilst driving the pose and expression according to the driving frame (bottom
row); CycleGAN correctly keeps pose and expression but loses information about
face shape and geometry when given too few training images as in example
(a) (whereas X2Face requires no training samples for new identities). Second,
X2Face has temporal consistency. CycleGAN samples from the latent space, so
it sometimes samples from different videos resulting in jarring changes between
frames (e.g. in example (c)).
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Comparison to CycleGAN [45]. CycleGAN learns a mapping from a given do-
main (in this case a given identity A) to another domain (in this case another
identity B). To compare to their method for a given pair of identities, we take all
images of the given identities (so images may come from different video tracks)
to form two sets of images: one set corresponding to identity A and the other to
B. We then train their model using these sets. To compare, for a given driving
frame of identity A, we visualise their generated frame from identity B which is
compared to that of X2Face.
The results in Fig. 4 illustrate multiple benefits. First, X2Face generalises to
unseen pairs of identities at test time given only a source and driving frame. Cy-
cleGAN is trained on pairs of identities, so if there are too few example images,
it fails to correctly model the shape and geometry of the source face, produc-
ing unrealistic results. Additionally, our results have better temporal coherence
(i.e. consistent background/hair style/etc. across generated frames), as X2Face
transforms a given frame whereas CycleGAN samples from a latent space.

Comparison to Averbuch-Elor et. al. [1]. We compare to [1] in Fig. 5. There are
two significant advantages of our formulation over theirs: first, we can handle
more significant pose changes in the driving video and source frame (Fig. 5b-c).
Second, ours has fewer assumptions: (1)[1] assumes that the first frame of the
driving video is in a frontal pose with a neutral expression and that the source
frame also has a neutral expression (Fig. 5d). (2) X2Face can be used when given
a single driving frame whereas their method requires a video so that the face can
be tracked and the tracking used to expand the number of correspondences and
to obtain high level details.
While this is not the focus of this paper, our method can be augmented with the
ideas from these methods. For example, as inspired by [1], we can perform simple
post-processing to add higher level details (Fig. 5a, X2Face+p.p.) by transferring
hidden regions using Poisson editing [28].

5.3 Controlling the image generation with pose

Before reporting results on controlling the driving vector using pose, we validate
our claim that the driving vector does indeed learn about pose. To do this, we
evaluate how accurately we can predict the three head pose angles – yaw, pitch
and roll – given the 128D driving vector.

Pose predictor. To train the pose predictor which also serves as fv→p (Sec-
tion 4.1), the 25, 993 images in the AFLW dataset [19] are split into train/val
set, leaving out the 1, 000 test images from [22] as test set. The results on the test
set are reported in Table 2 confirming that the driving vector learns about head
pose without having been trained on pose labels, as the results are comparable
to those of a network directly trained for this task.
We then use fv→p to train fp→v (Section 4.1) and present generated frames for
different, unseen test identities using the learnt mappings in Fig. 6. The source
frame corresponds to psource in Section 4.1 while pdriving is used to vary one
head pose angle while keeping the others fixed.
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Fig. 5: Comparison of X2Face to supervised methods. In comparison to [1]:
X2Face matches (b) pitch, and (c) roll and yaw; and X2Face can handle non-
neutral expressions in the source frame (d). As with other methods, post-
processing (X2Face + p.-p.) can be applied to add higher level details (a).

Table 2: MAE in degrees using the driving vector for head pose regression (lower
is better). Note that the linear pose predictor from the driving vector performs
only slightly worse than a supervised method [22], which has been trained for
this task

Method Roll Pitch Yaw MAE

X2Face 5.85 7.59 14.62 9.36
KEPLER [22] (supervised) 8.75 5.85 6.45 7.02

5.4 Controlling the image generation with audio input

This section presents qualitative results for using audio data from videos in the
VoxCeleb dataset to drive the source frames. The VoxCeleb dataset consists of
videos of interviews, suggesting that the audio should be especially correlated
with the movements of the mouth. [9]’s model, trained on the BBC-Oxford ‘Lip
Reading in the Wild’ dataset (LRW), is used to extract audio features. We use
the 256D vector activations of the last fully connected layer of the audio stream
(FC7) for a 0.2s audio signal centred on the driving frame (the frame occurs half
way through the 0.2s audio signal).
A potential source of error is the domain gap between the LRW dataset and
VoxCeleb, as [9]’s model is not fine-tuned on the VoxCeleb dataset which contains
much more background noise than the LRW dataset. Thus, their model has not
necessarily learnt to become indifferent to this noise. However, our model is
relatively robust to this problem; we observe that the mouth movements in the
generated frames are reasonably close to what we would expect from the sounds
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Fig. 6: Controlling image generation with pose code vectors. Results are shown
for a single source frame which is controlled using each of the three head pose
angles for the same identity (top three rows) and for different identities (bottom
three rows). For further results and a video animation, we refer to the supple-
mentary material. Whilst some artefacts are visible, the method allows the head
pose angles to be controlled separately.

of the corresponding audio, as demonstrated in Fig. 7. This is true even if the
person in the video is not speaking and instead the audio is coming from an
interviewer. However, there is some jitter in the generation.

6 Using the embedded face for video editing

We consider how the embedded face can be used for video editing. This idea is
inspired by the concept of an unwrapped mosaic [31]. We expect the embedded
face to be pose and expression invariant, as can be seen qualitatively across the
example embedded faces shown in the paper. Therefore, the embedded face can
be considered as a UV texture map of the face and drawn on directly.
This task is executed as follows. A source frame (or set of source frames) is
extracted and input to the embedding network to obtain the embedded face. The
embedded face can then be drawn on using an image or other interactive tool. A
video is reconstructed using the modified embedded face which is driven by a set
of driving frames. Because the embedded face is stable across different identities,
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Fig. 7: Controlling image generation with audio information. We show how the
same sounds a�ect varioussource frames; if our model is working well then the
generatedmouths should behave similarly. (a) shows thesourceframes. (b) shows
the generatedframes for a given audio sound which is visualised in (d) by the
coloured portion of the word being spoken. As most of the change is expectedto
be in the mouth region, the cropped mouth regions are additionally visualised
in (c). The audio comes from a native British speaker. As can be seen, in all
generated frames, the mouths are more closed at the \ve" and \I" and more open
at the \E" and \U". Another interesting point is that for the \E�ects" frame, the
audio is actually coming from an interviewer, so while the frame corresponding
to the audio has a closed mouth, thegeneratedresults still open the mouth.

a given edit can be applied across di�erent identities. Example edits are shown
in Fig. 8 and in the supplementary material.

7 Conclusion

We have presented a self-supervised framework X2Face for driving face gen-
eration using another face. This framework makes no assumptions about the
pose, expression, or identity of the input images, so it is more robustto un-
constrained settings (e.g. an unseen identity). The framework can also be used
with minimal alteration post training to drive a face using audio or head pose
information. Finally, the trained model can be used as a video editing tool. Our
model has achieved all this without requiring annotations for head pose/facial
landmarks/depth data. Instead, it is trained self-supervised on a large collection
of videos and learns itself to model the di�erent factors of variation.
While our method is robust, versatile, and allows for generation to be condi-
tioned on other modalities, the generation quality is not as high as approaches
speci�cally designed for transforming faces (e.g. [1, 17, 40]). This opensan in-
teresting avenue of research: how can the approach be modi�ed such that the










