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Abstract. We propose a novel attention mechanism to enhance Convo-
lutional Neural Networks for fine-grained recognition. It learns to attend
to lower-level feature activations without requiring part annotations and
uses these activations to update and rectify the output likelihood distri-
bution. In contrast to other approaches, the proposed mechanism is mod-
ular, architecture-independent and efficient both in terms of parameters
and computation required. Experiments show that networks augmented
with our approach systematically improve their classification accuracy
and become more robust to clutter. As a result, Wide Residual Networks
augmented with our proposal surpasses the state of the art classification
accuracies in CIFAR-10, the Adience gender recognition task, Stanford
dogs, and UEC Food-100.
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1 Introduction

Humans and animals process vasts amounts of information with limited com-
putational resources thanks to attention mechanisms which allow them to focus
resources on the most informative chunks of information [1,3,29]

This work is inspired by the advantages of visual and biological attention
mechanisms, for tackling fine-grained visual recognition with Convolutional Neu-
ral Networks (CNN) [17]. This is a particularly difficult task since it involves
looking for details in large amounts of data (images) while remaining robust to
deformation and clutter. In this sense, different attention mechanisms for fine-
grained recognition exist in the literature: (i) iterative methods that process im-
ages using ”glimpses” with recurrent neural networks (RNN) or long short-term
memory (LSTM) [26,38], (ii) feed-forward attention mechanisms that augment
vanilla CNNs, such as the Spatial Transformer Networks (STN) [11], or top-
down feed-forward attention mechanisms (FAM) [23]. Although it is not applied
to fine-grained recognition, the Residual Attention introduced by [32] is another
example of feed-forward attention mechanism that takes advantage of residual
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Fig. 1: The proposed mechanism. The original CNN is augmented with N atten-
tion modules at N different depths. Each attention module applies K attention
heads to the network feature maps to make a class prediction based on local in-
formation. The original network outputnet is then corrected based on the local
features by means of the global attention gates, resulting in the final output.

connections [8] to enhance or dampen certain regions of the feature maps in an
incremental manner.

Thus, most of the existing attention mechanisms are either limited by having
to perform multiple passes through the data [26], by carefully designed archi-
tectures that should be trained from scratch [11], or by considerably increasing
the needed amount of memory and computation, thus introducing computa-
tional bottlenecks [12]. Hence, there is still the need of models with the following
learning properties: (i) Detect and process in detail the most informative parts
of an image for learning models more robust to deformation and clutter [21];
(ii) feed-forward trainable with SGD for achieving faster inference than itera-
tive models [26,38], together with faster convergence rate than Reinforcement
Learning-based (RL) methods [26,19]; (iii) preserve low-level detail for a direct
access to local low-level features before they are modified by residual identity
mappings. This is important for fine-grained recognition, where low-level pat-
terns such as textures can help to distinguish two similar classes. This is not
fulfilled by Residual Attention, where low-level features are subject to noise af-
ter traversing multiple residual connections [32].

In addition, desirable properties for attention mechanisms applied to CNNs
would be: (i) Modular and incremental, since the same structure can be ap-
plied at each layer on any convolutional architecture, and it is easy to adapt
to the task at hand; (ii) Architecture independent, that is, being able to
adapt any pre-trained architecture such as VGG [27] or ResNet [8]; (iii) Low
computational impact implying that it does not result in a significant in-
crease in memory and computation; and (iv) Simple in the sense that it can be
implemented in few lines of code, making it appealing to be used in future work.

Based on all these properties, we propose a novel attention mechanism that
learns to attend low-level features from a standard CNN architecture through
a set of replicable Attention Modules and gating mechanisms (see Section 3).
Concretely, as it can be seen in Figure 1, any existing architecture can be aug-
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mented by applying the proposed model at different depths, and replacing the
original loss by the proposed one. It is remarkable that the modules are inde-
pendent of the original path of the network, so in practice, it can be computed
in parallel to the rest of the network. The proposed attention mechanism has
been included in a strong baseline like Wide Residual Networks (WRN) [35], and
applied on CIFAR-10, CIFAR-100 [15], and five challenging fine-grained recogni-
tion datasets. The resulting network, called Wide Attentional Residual Network
(WARN) systematically enhances the performance of WRNs and surpasses the
state of the art in various classification benchmarks.

2 Related Work

There are different approaches to fine-grained recognition [37]: (i) vanilla deep
CNNs, (ii) CNNs as feature extractors for localizing parts and do alignment,
(iii) ensembles, (iv) attention mechanisms. In this work, we focus on (iv), the
attention mechanisms, which aim to discover the most discriminative parts of
an image to be processed in greater detail, thus ignoring clutter and focusing on
the most distinctive traits. These parts are central for fine-grained recognition,
where the inter-class variance is small and the intra-class variance is high.

Different fine-grained attention mechanisms can be found in the literature.
[33] proposed a two-level attention mechanism for fine-grained classification on
different subsets of the ILSVRC [25] dataset, and the CUB200 2011. In this
model, images are first processed by a bottom-up object proposal network based
on R-CNN [36] and selective search [28]. Then, the softmax scores of another
ILSVRC2012 pre-trained CNN, which they call FilterNet, are thresholded to
prune the patches with the lowest parent class score. These patches are then
classified to fine-grained categories with a DomainNet. Spectral clustering is also
used on the DomainNet filters in order to extract parts (head, neck, body, etc.),
which are classified with an SVM. Finally, the part- and object-based classifier
scores are merged to get the final prediction. The two-level attention obtained
state of the art results on CUB200-2011 with only class-level supervision. How-
ever, the pipeline must be carefully fine-tuned since many stages are involved
with many hyper-parameters.

Differently from two-level attention, which consists of independent processing
and it is not end-to-end, Sermanet et al. proposed to use a deep CNN and a Re-
current Neural Network (RNN) to accumulate high multi-resolution “glimpses”
of an image to make a final prediction [26]. However, reinforcement learning slows
down convergence and the RNN adds extra computation steps and parameters.

A more efficient approach was presented by Liu et al. [19], where a fully-
convolutional network is trained with reinforcement learning to generate confi-
dence maps on the image and use them to extract the parts for the final classifiers
whose scores are averaged. Compared to previous approaches, in the work done
by [19], multiple image regions are proposed in a single timestep thus, speed-
ing up the computation. A greedy reward strategy is also proposed in order to
increase the training speed. The recent approach presented by [5] uses a clas-
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sification network and a recurrent attention proposal network that iteratively
refines the center and scale of the input (RA-CNN). A ranking loss is used to
enforce incremental performance at each iteration.

Zhao et al. proposed to enforce multiple non-overlapped attention regions
[38]. The overall architecture consists of an attention canvas generator, which
extracts patches of different regions and scales from the original image; a VGG-16
[27] CNN is then used to extract features from the patches, which are aggregated
with a long short-term memory [9] that attends to non-overlapping regions of the
patches. Classification is performed with the average prediction in each region.
Similarly, in [39], they proposed the Multi-Attention CNN (MA-CNN) to learn
to localize informative patches from the output of a VGG-19 and use them to
train an ensemble of part classifiers.

In [12], they propose to extract global features from the last layers of a CNN,
just before the classifier and use them to attend relevant regions in lower level
feature activations. The attended activations from each level are then spatially
averaged, channel-wise concatenated, and fed to the final classifier. The main
differences with [12] are: (i) attention maps are computed in parallel to the base
model, while the model in [12] requires output features for computing attention
maps; (ii) WARN uses fewer parameters, so dropout is not needed to obtain
competitive performance (these two factors clearly reflect in gain of speed); and
(iii) gates allow our model to ignore/attend different information to improve
the performance of the original model, while in [12] the full output function is
replaced. As a result, WARN obtains 3.44% error on CIFAR10, outperforming
[12] while being 7 times faster w/o parallelization.

All the previously described methods involve multi-stage pipelines and most
of them are trained using reinforcement learning (which requires sampling and
makes them slow to train). In contrast, STNs, FAM, the model in [12], and
our approach jointly propose the attention regions and classify them in a single
pass. Moreover, different from STNs and FAM our approach only uses one CNN
stream, it can be used on pre-trained models, and it is far more computationally
efficient than STNs, FAM, and [12] as described next.

3 Our approach

Our approach consists of a universal attention module that can be added after
each convolutional layer without altering pre-defined information pathways of
any architecture (see Figure 1). This is helpful since it seamlessly augments any
architecture such as VGG and ResNet with no extra supervision, i.e. no part
labels are necessary. Furthermore, it also allows being plugged into any existing
trained network to quickly perform transfer learning approaches.

The attention module consists of three main submodules depicted in Figure
2 (a): (i) the attention heads H, which define the most relevant regions of a
feature map, (ii) the output heads O, generate an hypothesis given the attended
information, and (iii) the confidence gates G, which output a confidence score for
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Fig. 2: (a) Attention Module: K attention heads Hl
k are applied to a feature

map Zl, and information is aggregated with the layer attention gates. (b) Global
attention: global information from the last feature map ZL is used to compute
the gating scores that produce the final output as the weighted average of the
outputs of the attention modules and the original network outputnet

each attention head. Each of these modules is described in detail in the following
subsections.

3.1 Overview

As it can be seen in Figure 1, a convolution layer is applied to the output of the
augmented layer, producing K attentional heatmaps. These attentional maps
are then used to spatially average the local class probability scores for each of
the feature maps, and produce the final class probability vector. This process
is applied to an arbitrary number N of layers, producing N class probability
vectors. Then, the model learns to correct the initial prediction by attending the
lower-level class predictions. This is the final combined prediction of the network.
In terms of probability, the network corrects the initial likelihood by updating
the prior with local information.

3.2 Attention head

Inspired by [38] and the transformer architecture presented by [30], and following
the notation established by [35], we have identified two main dimensions to define
attentional mechanisms: (i) the number of layers using the attention mechanism,
which we call attention depth (AD), and (ii) the number of attention heads in
each attention module, which we call attention width (AW). Thus, a desirable
property for any universal attention mechanism is to be able to be deployed at
any arbitrary depth and width.

This property is fulfilled by includingK attention headsHk (width), depicted
in Figure 1, into each attention module (depth)3. Then, the attention heads at

3 Notation: H,O,G are the set of attention heads, output heads, and attention gates
respectively. Uppercase letters refer to functions or constants, and lowercase ones to
indices. Bold uppercase letters represent matrices and bold lowercase ones vectors.
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layer l ∈ [1..L], receive the feature activations Zl ∈ R
c×h×w of that layer as

input, and output K attention masks:

Hl = spatial softmax(WH
l ∗ Zl), (1)

where Hl ∈ R
K×h×w is the output matrix of the lth attention module, WH

l :
R

c×h×w → R
K×h×w is a convolution kernel with output dimensionality K used

to compute the attention masks corresponding to the attention heads Hk, and
∗ denotes the convolution operator. The spatial softmax, which performs the
softmax operation channel-wise on the spatial dimensions of the input, is used
to enforce the model to learn the most relevant region of the image. Sigmoid
units could also be used at the risk of degeneration to all-zeros or all-ones. To
prevent the attention heads at the same depth to collapse into the same region,
we apply the regularizer proposed in [38].

3.3 Output head

To obtain the class probability scores, the input feature map Zl
k is convolved

with a kernel:

WO
l
k ∈ R

channels×h×w → R
#labels×h×w,

h, w represent the spatial dimensions, and channels is the number of input
channels to the module. This results on a spatial map of class probability scores:

Ol
k = WO

l
k ∗ Zl. (2)

Note that this operation can be done in a single pass for all the K heads by
setting the number of output channels to #labels · K. Then, class probability
vectors Ol

k are weighted by the spatial attention scores and spatially averaged:

ol
k =

∑

x,y

Hl
k ⊙Ol

k, (3)

where ⊙ is the element-wise product, and x ∈ {1..width}, y ∈ {1..height}.
The attention scores Hl

k are a 2d flat mask and the product with each of the
input channels of Zl is done by broadcasting, i.e. repeating Hl

k for each of the
channels of Zl.

3.4 Layered attention gates

The final output ol of an attention module is obtained by a weighted average
of the K output probability vectors, through the use of head attention gates
gH

l ∈ R
|H|,

∑
k gH

l
k = 1.

ol =
∑

k

gH
l
ko

l
k. (4)
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Where gH is obtained by first convolving Zl with

Wg
l ∈ R

channels×h×w → R
|H|×h×w,

and then performing a spatial weighted average:

gH
l = softmax(tanh(

∑

x,y

(Wg
l ∗ Zl)⊙Hl)). (5)

This way, the model learns to choose the attention head that provides the
most meaningful output for a given attention module.

3.5 Global attention gates

In order to let the model learn to choose the most discriminative features at
each depth to disambiguate the output prediction, a set of relevance scores c
are predicted at the model output, one for each attention module, and one for
the final prediction. This way, through a series of gates, the model can learn
to query information from each level of the network conditioned to the global
context. Note that, unlike in [12], the final predictions do not act as a bottleneck
to compute the output of the attention modules.

The relevance scores are obtained with an inner product between the last
feature activation of the network ZL and the gate weight matrix WG :

c = tanh(WGZ
L). (6)

The gate values gO are then obtained by normalizing the set of scores by
means of a softmax function:

gO
l
k =

ec
l

k

∑|G|
i=1 e

ci
, (7)

where |G| is the total number of gates, and ci is the i
th confidence score from

the set of all confidence scores. The final output of the network is the weighted
sum of the attention modules:

output = gnet · outputnet +
∑

l∈{1..|O|}

glO · ol, (8)

where gnet is the gate value for the original network output (outputnet),
and output is the final output taking the attentional predictions ol into con-
sideration. Note that setting the output of G to 1

|O| , corresponds to averaging

all the outputs. Likewise, setting {G \ Goutput} = 0, Goutput = 1, i.e. the set of
attention gates is set to zero and the output gate to one, corresponds to the
original pre-trained model without attention.

It is worth noting that all the operations that use Zl can be aggregated into
a single convolution operation. Likewise, the fact that the attention mask is
generated by just one convolution operation, and that most masking operations
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(a) (b) (c) (d) (e)

Fig. 3: Samples from the five fine-grained datasets. (a) Adience, (b) CUB200
Birds, (c) Stanford Cars, (d) Stanford Dogs, (e) UEC-Food100

are directly performed in the label space, or can be projected into a smaller
dimensionality space, makes the implementation highly efficient. Additionally,
the direct access to the output gradients makes the module fast to learn, thus
being able to generate foreground masks from the beginning of the training and
refining them during the following epochs.

4 Experiments

We empirically demonstrate the impact on the accuracy and robustness of the
different modules in our model on Cluttered Translated MNIST and then com-
pare it with state-of-the-art models such as DenseNets and ResNeXt. Finally, we
demonstrate the universality of our method for fine-grained recognition through
a set of experiments on five fine-grained recognition datasets, as detailed next.

4.1 Datasets

Cluttered Translated MNIST4 Consists of 40× 40 images containing a ran-
domly placed MNIST [16] digit and a set of D randomly placed distractors, see
Figure 5b. The distractors are random 8× 8 patches from other MNIST digits.

CIFAR5 The CIFAR dataset consists of 60K 32x32 images in 10 classes for
CIFAR-10, and 100 for CIFAR-100. There are 50K training and 10K test images.

Stanford Dogs [13]. The Stanford Dogs dataset consists of 20.5K images of
120 breeds of dogs, see Figure 3d. The dataset splits are fixed and they consist
of 12k training images and 8.5K validation images.

UEC Food 100 [20]. A Japanese food dataset with 14K images of 100 different
dishes, see Figure 3e. In order to follow the standard procedure (e.g. [2,6]),
bounding boxes are used to crop the images before training.

Adience dataset [4]. The adience dataset consists of 26.5 K images distributed
in eight age categories (02, 46, 813, 1520, 2532, 3843, 4853, 60+), and gender

4 https://github.com/deepmind/mnist-cluttered
5 https://www.cs.toronto.edu/∼kriz/cifar.html

https://github.com/deepmind/mnist-cluttered
https://www.cs.toronto.edu/~kriz/cifar.html
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labels. A sample is shown in Figure 3a. The performance on this dataset is
measured using 5-fold cross-validation.

Stanford Cars [14]. The Cars dataset contains 16K images of 196 classes of
cars, see Figure 3c. The data is split into 8K training and 8K testing images.

Caltech-UCSD Birds 200 [31]. The CUB200-2011 birds dataset (see Figure
3b) consists of 6K train and 5.8K test bird images distributed in 200 categories.
Although bounding box, segmentation, and attributes are provided, we perform
raw classification as done by [11].

4.2 Ablation study

We evaluate the submodules of our method on the Cluttered Translated MNIST
following the same procedure as in [21]. The proposed attention mechanism is
used to augment a CNN with five 3 × 3 convolutional layers and two fully-
connected layers in the end. The three first convolution layers are followed by
Batch-normalization and a spatial pooling. Attention modules are placed starting
from the fifth convolution (or pooling instead) backward until AD is reached.
Training is performed with SGD for 200 epochs, and a learning rate of 0.1,
which is divided by 10 after epoch 60. Models are trained on a 200k images
train set, validated on a 100k images validation set, and tested on 100k test
images. Weights are initialized using He et al. [7]. Figure 4 shows the effects of
the different hyperparameters of the proposed model. The performance without
attention is labeled as baseline. Attention models are trained with softmax
attention gates and regularized with [38], unless explicitly specified.

First, we test the importance of AD for our model by increasingly adding
attention layers with AW = 1 after each pooling layer. As it can be seen in Figure
4b, greater AD results in better accuracy, reaching saturation at AD = 4, note
that for this value the receptive field of the attention module is 5 × 5 px, and
thus the performance improvement from such small regions is limited. Figure
4c shows training curves for different values of AW , and AD = 4. As it can be
seen, small performance increments are obtained by increasing the number of
attention heads even with a single object present in the image.

Then, we use the best AD and AW , i.e. AD,AW = 4, to verify the impor-
tance of using softmax on the attention masks instead of sigmoid (1), the effect
of using gates (Eq. 7), and the benefits of regularization [38]. Figure 4d confirms
that ordered by importance: gates, softmax, and regularization result in accu-
racy improvement, reaching 97.8%. In particular, gates play an important role
in discarding the distractors, especially for high AW and high AD

Finally, in order to verify that attention masks are not overfitting on the
data, and thus generalize to any amount of clutter, we run our best model so
far (Figure 4d) on the test set with an increasing number of distractors (from
4 to 64). For the comparison, we included the baseline model before applying
our approach and the same baseline augmented with an STN [11] that reached
comparable performance as our best model in the validation set. All three models
were trained with the same dataset with eight distractors. Remarkably, as it
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Fig. 4: Ablation experiments on Cluttered Translated MNIST. baseline indi-
cates the original model before being augmented with attention. (a) shows a
sample of the cluttered MNIST dataset. (b) the effect of increasing the atten-
tion depth (AD), for attention width AW = 1. (c) effect of increasing AW, for
AD=4. (d) best performing model (AD,AW = 4, softmax attention gates, and
regularization [38]) vs unregularized, sigmoid attention, and without gates. (e)
test error of the baseline, attention (AD,AW = 4), and spatial transformer
networks (stn), when trained with different amounts of distractors.

.

can be seen in Figure 4e, the attention augmented model demonstrates better
generalization than the baseline and the STN.

4.3 Training from scratch

We benchmark the proposed attention mechanism on CIFAR-10 and CIFAR-
100, and compare it with the state of the art. As a base model, we choose
Wide Residual Networks, a strong baseline with a large number of parameters
so that the additional parameters introduced by our model (WARN) could be
considered negligible. The same WRN baseline is used to train an att2 model
[12], we refer to this model as WRN-att2. Models are initialized and optimized
following the same procedure as in [35]. Attention Modules are systematically
placed after each of the three convolutional groups starting by the last one
until the attention depth has been reached in order to capture information at
different levels of abstraction and fine-grained resolution, this same procedure is
followed in [12]. The model is implemented with pytorch [22] and run on a single
workstation with two NVIDIA 1080Ti.6

6 https://github.com/prlz77/attend-and-rectify

https://github.com/prlz77/attend-and-rectify
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Table 1: Error rate on CIFAR-10 and CIFAR-100 (%). Results that surpass all
other methods are in blue, results that surpass the baseline are in black bold font.
Total network depth, attention depth, attention width, the usage of dropout, and
the amount of floating point operations (Flop) are provided in columns 1-5 for
fair comparison

Net Depth AD AW Dropout GFlop CIFAR-10 CIFAR-100

Resnext [34] 29 - - 10.7 3.58 17.31

Densenet [10]
250 - - 5.4 3.62 17.60
190 - - 9.3 3.46 17.18

WRN [35]
28 - - 5.2 4 19.25
28 - - X 5.2 3.89 18.85
40 - - X 8.1 3.8 18.3

WRN-att2 [12]
28 2 - 5.7 4.10 21.20
28 2 - X 5.7 3.60 20.00
40 2 - X 8.6 3.90 19.20

WARN

28 2 4 5.2 3.60 18.72
28 3 4 5.3 3.45 18.61
28 3 4 X 5.3 3.44 18.26
40 3 4 X 8.2 3.46 17.82

First, the same ablation study performed in Section 4.2 is repeated on CI-
FAR100. We consistently reached the same conclusions as in Cluttered-MNIST:
accuracy improves 1.5% by increasing attention depth from 1 to #residual blocks,
and width from 1 to 4. Gating performs 4% better than a simpler linear pro-
jection, and 3% with respect to simply averaging the output vectors. A 0.6%
improvement is also observed when regularization is activated. Interestingly,
we found sigmoid attention to perform similarly to softmax. With this setting,
WARN reaches 17.82% error on CIFAR100. In addition, we perform an experi-
ment blocking the gradients from the proposed attention modules to the original
network to analyze whether the observed improvement is due to the attention
mechanism or an optimization effect due to introducing shortcut paths to the
loss function [18]. Interestingly, we observed a 0.2% drop on CIFAR10, and 0.4%
on CIFAR100, which are still better than the baseline. Note that a performance
drop should be expected, even without taking optimization into account, since
backpropagation makes intermediate layers learn to gather more discriminative
features for the attention layers. It is also worth noting that fine-grained accu-
racy improves even when fine-tuning (gradients are multiplied by 0.1 in the base
model), see Section 4.4. In contrast, the approach in [12] does not converge when
gradients are not sent to the base model since classification is directly performed
on intermediate feature maps (which continuously shift during training).

As seen in Table 1, the proposedWide Attentional Residual Network (WARN)
improves the baseline model for CIFAR-10 and CIFAR-100 even without the use
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Table 2: Number of parameters, floating point operations (Flop), time (s) per
validation epoch, and error rates (%) on CIFAR-10 and CIFAR-100. The ”Time”
column shows the amount of seconds to forward the validation dataset with batch
size 256 on a single GPU

Depth Params GFlop Time CIFAR-10 CIFAR-100

ResNext 29 68M 10.7 5.02s 3.58 17.31
Densenet 190 26M 9.3 6.41s 3.46 17.18

WRN 40 56M 8.1 0.18s 3.80 18.30
WRN-att2 40 64M 8.6 0.24s 3.90 19.20

WARN 28 37M 5.3 0.17s 3.44 18.26
WARN 40 56M 8.2 0.18s 3.46 17.82
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Fig. 5: Comparison of the best performing Resnext, Densenet, WRN, WRN-att2,
and WARN on the CIFAR-10 and CIFAR-100. Validation accuracy is reported
as a function of the number of GFLOPs.

of Dropout and outperforms the rest of the state of the art in CIFAR-10 while
being remarkably faster, as it can be seen in Table 2. Remarkably, the perfor-
mance on CIFAR-100 makes WARN competitive when compared with Densenet
and Resnext, while being up to 36 times faster. We hypothesize that the in-
crease in accuracy of the augmented model is limited by the base network and
even better results could be obtained when applied on the best performing base-
line. Interestingly, WARN shows superior performance even without the use of
dropout; this was not possible with [12], which requires dropout to achieve com-
petitive performances, since they introduce more parameters to the augmented
network. The computing efficiency of the top performing models is shown in
Figure 5. WARN provides the highest accuracy per GFlop on CIFAR-10, and is
more competitive than WRN, and WRN-att2 on CIFAR-100.
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Table 3: Results on six fine-grained recognition tasks. DSP means that the cited
model uses Domain Specific Pre-training. HR means the cited model uses high-
resolution images. Accuracies that improve the baseline model are in black bold
font, and highest accuracies are in blue

Dogs Food Cars Gender Age Birds

SotA RA-CNN [5] Inception [6] MA-CNN [39] FAM [23] DEX [24] MA-CNN [39]
DSP X X

HR X X X

Accuracy 87.3 81.5 92.8 93.0 64.0 86.5

WRN 89.6 84.3 88.5 93.9 57.4 84.3
WARN 92.9 85.5 90.0 94.6 59.7 85.6

4.4 Transfer Learning

We fine-tune an augmented WRN-50-4 pre-trained on Imagenet [25] and re-
port higher accuracy on five different fine-grained datasets: Stanford Dogs, UEC
Food-100, Adience, Stanford Cars, CUB200-2001 compared to the WRN base-
line. All the experiments are trained for 100 epochs, with a batch size of 64.
The learning rate is first set to 10−3 to all layers except the attention modules
and the classifier, for which it ten times higher. The learning rate is reduced by
a factor of 0.1 every 30 iterations and the experiment is automatically stopped
if a plateau is reached. The network is trained with standard data augmenta-
tion, i.e. random 224 × 224 patches are extracted from 256 × 256 images with
random horizontal flips. Since the aim of this work is to demonstrate that the
proposed mechanism universally improves the baseline CNNs for fine-grained
recognition, we follow the same training procedure in all datasets. Thus, we do
not use 512 × 512 images, which are central for state-of-the-art methods such
as RA-CNNs, MA-CNNs, or color jitter [6] for food recognition. The proposed
method is able to obtain state of the art results in Adience Gender, Stanford
dogs and UEC Food-100 even when trained with lower resolution.

As seen in table 3, WRN substantially increase their accuracy on all bench-
marks by just fine-tuning them with the proposed attention mechanism. More-
over, we report the highest accuracy scores on Stanford Dogs, UEC Food, and
Gender recognition, and obtain competitive scores when compared with models
that use high resolution images, or domain-specific pre-training. For instance,
in [24] a domain-specific model pre-trained on millions of faces is used for age
recognition, while our baseline is a general-purpose WRN pre-trained on the Im-
agenet. It is also worth noting that the performance increase on CUB200-2011
(+1.3%) is higher than the one obtained in STNs with 224×224 images (+0.8%)
even though we are augmenting a stronger baseline. This points out that the pro-
posed mechanism might be extracting complementary information that is not
extracted by the main convolutional stream. As seen in table 4, WARN not only
increases the absolute accuracy, but it provides a high efficiency per introduced
parameter. A sample of the attention masks for each dataset is shown on Figure
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Table 4: Increment of accuracy (%) per Million of parameters

Dogs Food Cars Gender Age Birds Average

WRN 1.3 1.2 1.3 1.4 0.8 1.2 1.2
WARN 6.9 2.5 3.1 1.5 4.0 2.5 3.4

(a) (b) (c) (d) (e) (f)

Fig. 6: Attention masks for each dataset: (a) Stanford dogs, (b) Stanford cars,
(c) Adience gender, (d) CUB birds, (e) Adience age, (f) UEC food. As it can
be seen, the masks help to focus on the foreground object. In (c), the attention
mask focuses on ears for gender recognition, possibly looking for earrings

6. As it can be seen, the attention heads learn to ignore the background and to
attend the most discriminative parts of the objects. This matches the conclusions
of Section 4.2.

5 Conclusion

We have presented a novel attention mechanism to improve CNNs. The proposed
model learns to attend the most informative parts of the CNN feature maps at
different depth levels and combines them with a gating function to update the
output distribution.

We suggest that attention helps to discard noisy uninformative regions, avoid-
ing the network to memorize them. Unlike previous work, the proposed mech-
anism is modular, architecture independent, fast, simple, and yet WRN aug-
mented with it obtain state-of-the-art results on highly competitive datasets
while being 37 times faster than DenseNet, 30 times faster than ResNeXt, and
making the augmented model more parameter-efficient. When fine-tuning on a
transfer learning task, the attention augmented model showed superior perfor-
mance in each recognition dataset. Moreover, state of the art performance is
obtained on dogs, gender, and food. Results indicate that the model learns to
extract local discriminative information that is otherwise lost when traversing
the layers of the baseline architecture.

Acknowledgments Authors acknowledge the support of the Spanish project
TIN2015-65464-R (MINECO/FEDER), the 2016FI B 01163 grant of Generali-
tat de Catalunya, and the COST Action IC1307 iV&L Net. We also gratefully
acknowledge the support of NVIDIA Corporation with the donation of a Tesla
K40 GPU and a GTX TITAN GPU, used for this research.



Attend and Rectify 15

References

1. Anderson, J.R.: Cognitive psychology and its implications. New York, NY, US:
WH Freeman/Times Books/Henry Holt and Co (1985)

2. Chen, J., Ngo, C.W.: Deep-based ingredient recognition for cooking recipe retrieval.
In: ACM MM. pp. 32–41. ACM (2016)

3. Desimone, R., Duncan, J.: Neural mechanisms of selective visual attention. Annual
review of neuroscience 18(1), 193–222 (1995)

4. Eidinger, E., Enbar, R., Hassner, T.: Age and gender estimation of unfiltered faces.
TIFS 9(12), 2170–2179 (2014)

5. Fu, J., Zheng, H., Mei, T.: Look closer to see better: recurrent attention convolu-
tional neural network for fine-grained image recognition. In: CVPR (2017)

6. Hassannejad, H., Matrella, G., Ciampolini, P., De Munari, I., Mordonini, M.,
Cagnoni, S.: Food image recognition using very deep convolutional networks. In:
MADIMA Workshop. pp. 41–49. ACM (2016)

7. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In: CVPR. pp. 1026–1034 (2015)

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR. pp. 770–778 (2016)

9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
9(8), 1735–1780 (1997)

10. Huang, G., Liu, Z., Weinberger, K.Q., van der Maaten, L.: Densely connected
convolutional networks. In: CVPR. vol. 1, p. 3 (2017)

11. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks.
In: NIPS. pp. 2017–2025 (2015)

12. Jetley, S., Lord, N.A., Lee, N., Torr, P.: Learn to pay attention. In: ICLR (2018)
13. Khosla, A., Jayadevaprakash, N., Yao, B., Li, F.F.: Novel dataset for fine-grained

image categorization: Stanford dogs. In: FGVC. vol. 2, p. 1 (2011)
14. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3d object representations for fine-

grained categorization. In: CVPR. pp. 554–561 (2013)
15. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images

(2009)
16. LeCun, Y.: The mnist database of handwritten digits. http://yann. lecun.

com/exdb/mnist/ (1998)
17. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to

document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)
18. Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. In:

AISTATS. pp. 562–570 (2015)
19. Liu, X., Xia, T., Wang, J., Lin, Y.: Fully convolutional attention localization net-

works: Efficient attention localization for fine-grained recognition. arXiv preprint
arXiv:1603.06765 (2016)

20. Matsuda, Y., Hoashi, H., Yanai, K.: Recognition of multiple-food images by de-
tecting candidate regions. In: ICME (2012)

21. Mnih, V., Heess, N., Graves, A., et al.: Recurrent models of visual attention. In:
NIPS. pp. 2204–2212 (2014)

22. Paszke, A., Gross, S., Chintala, S., Chanan, G.: Pytorch (2017)
23. Rodriguez, P., Cucurull, G., Gonfaus, J.M., Roca, F.X., Gonzalez, J.: Age and

gender recognition in the wild with deep attention. PR (2017)
24. Rothe, R., Timofte, R., Gool, L.V.: Deep expectation of real and apparent age

from a single image without facial landmarks. IJCV (July 2016)
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