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Abstract. 3D human pose estimation from a single image is a challenging prob-

lem, especially for in-the-wild settings due to the lack of 3D annotated data. We

propose two anatomically inspired loss functions and use them with a weakly-

supervised learning framework to jointly learn from large-scale in-the-wild 2D

and indoor/synthetic 3D data. We also present a simple temporal network that

exploits temporal and structural cues present in predicted pose sequences to tem-

porally harmonize the pose estimations. We carefully analyze the proposed con-

tributions through loss surface visualizations and sensitivity analysis to facilitate

deeper understanding of their working mechanism. Jointly, the two networks cap-

ture the anatomical constraints in static and kinetic states of the human body.

Our complete pipeline improves the state-of-the-art by 11.8% and 12% on Hu-

man3.6M and MPI-INF-3DHP, respectively, and runs at 30 FPS on a commodity

graphics card.

1 Introduction

Accurate 3D human pose estimation from monocular images and videos is the key to

unlock several applications in robotics, human computer interaction, surveillance, an-

imation and virtual reality. These applications require accurate and real-time 3D pose

estimation from monocular image or video under challenging variations of clothing,

lighting, view-point, self-occlusions, activities, background clutter etc. [33,32]. With

the advent of recent advances in deep learning, compute hardwares and, most impor-

tantly, large-scale real-world datasets (ImageNet [31], MS COCO [20], CityScapes [10]

etc.), computer vision systems have witnessed dramatic improvements in performance.

Human-pose estimation has also benefited from synthetic and real-world datasets such

as MS COCO [20], MPII Pose [3], Human3.6M [14,6], MPI-INF-3DHP [22], and SUR-

REAL [37]. Especially, 2D pose prediction has witnessed tremendous improvement due

to large-scale in-the-wild datasets [20,3]. However, 3D pose estimation still remains

challenging due to severely under-constrained nature of the problem and absence of

any real-world 3D annotated dataset.

A large body of prior art either directly regresses for 3D joint coordinates [17,18,34]

or infers 3D from 2D joint-locations in a two-stage approach [22,24,19,43,41]. These

approaches perform well on synthetic 3D benchmark datasets, but lack generalization
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to the real-world setting due to the lack of 3D annotated in-the-wild datasets. To mit-

igate this issue, some approaches use synthetic datasets [9,37], green-screen composi-

tion [22,23], domain adaptation [9], transfer learning from intermediate 2D pose esti-

mation tasks [22,17], and joint learning from 2D and 3D data [41,34]. Notably, joint

learning with 2D and 3D data has shown promising performance in-the-wild owing

to large-scale real-world 2D datasets. We seek motivation from the recently published

joint learning framework of Zhou et al. [41] and present a novel structure-aware loss

function to facilitate training of Deep ConvNet architectures using both 2D and 3D data

to accurately predict the 3D pose from a single RGB image. The proposed loss func-

tion is applicable to 2D images during training and ensures that the predicted 3D pose

does not violate anatomical constraints, namely joint-angle limits and left-right sym-

metry of the human body. We also present a simple learnable temporal pose model for

pose-estimation from videos. The resulting system is capable of jointly exploiting the

structural cues evident in the static and kinetic states of human body.

Our proposed structure-aware loss is inspired by anatomical constraints that gov-

ern the human body structure and motion. We exploit the fact that certain body-joints

cannot bend beyond an angular range; e.g. the knee(elbow) joints cannot bend for-

ward(backward). We also make use of left-right symmetry of human body and penalize

unequal corresponding pairs of left-right bone lengths. Lastly, we also use the bone-

length ratio priors from [41] that enforce certain pairs of bone-lengths to be constant. It

is important to note that the illegal-angle and left-right symmetry constraints are com-

plementary to the bone-length ratio prior, and we show that they perform better too.

We present the visualization of the loss surfaces of the proposed losses to facilitate a

deeper understanding of their workings. The three aforementioned structure losses are

used to train our Structure-Aware PoseNet. Joint-angle limits and left-right symmetry

have been used previously in the form of optimization functions [1,13,4]. To the best of

our knowledge we are the first ones to exploit these two constraints, in the form of dif-

ferentiable and tractable loss functions, to train ConvNets directly. Our structure-aware

loss function outperforms the published state-of-the-art in terms of Mean-Per-Joint-

Position-Error (MPJPE) by 7% and 2% on Human3.6M and MPI-INF-3DHP, respec-

tively.

We further propose to learn a temporal motion model to exploit cues from sequential

frames of a video to obtain anatomically coherent and smoothly varying poses, while

preserving the realism across different activities. We show that a moving-window fully-

connected network that takes previous N poses performs extremely well at capturing

temporal as well as anatomical cues from pose sequences. With the help of carefully

designed controlled experiments we show the temporal and anatomical cues learned by

the model to facilitate better understanding. We report an additional 7% improvement

on Human3.6M with the use of our temporal model and demonstrate real-time perfor-

mance of the full pipeline at 30fps. Our final model improves the published state-of-

the-art on Human3.6M [14] and MPI-INF-3DHP [22] by 11.8% and 12%, respectively.

2 Related Work

This section presents a brief summary of the past work related to human pose estimation

from three viewpoints: (1) ConvNet architectures and training strategies, (2) Utilizing
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structural constraints of human bodies, and (3) 3D pose estimation from video. The

reader is referred to [32] for a detailed review of the literature.

ConvNet architectures: Most existing ConvNet based approaches either directly

regress 3D poses from the input image [34,17,42,43] or infer 3D from 2D pose in a two-

stage approach [35,41,23,24,19]. Some approaches make use of volumetric-heatmaps [27],

some define a pose using bones instead of joints [34], while the approach in [23] di-

rectly regresses for 3D location maps. The use of 2D-to-3D pipeline enables training

with large-scale in-the-wild 2D pose datasets [3,20]. A few approaches use statistical

priors [43,1] to lift 2D poses to 3D. Chen et al. [7] and Yasin et al. [40] use a pose library

to retrieve the nearest 3D pose given the corresponding 2D pose prediction. Recent Con-

vNet based approaches [23,30,41,34,43,27] have reported substantial improvements in

real-world setting by pre-training or joint training of their 2D prediction modules, but it

still remains an open problem.

Utilizing structural information: The structure of the human skeleton is con-

strained by fixed bone lengths, joint angle limits, and limb interpenetration constraints.

Some approaches use these constraints to infer 3D from 2D joint locations. Akhter

and Black [1] learn pose-dependent joint angle limits for lifting 2D poses to 3D via

an optimization problem. Ramakrishna et al. [28] solve for anthropometric constraints

in an activity-dependent manner. Recently, Moreno [24] proposed to estimate the 3D

inter-joint distance matrix from 2D inter-joint distance matrix using a simple neural

network architecture. These approaches do not make use of rich visual cues present

in images and rely on the predicted 2D pose that leads to sub-optimal results. Sun et

al. [34] re-parameterize the pose presentation to use bones instead of joints and pro-

pose a structure-aware loss. But, they do not explicitly seek to penalize the feasibility

of inferred 3D pose in the absence of 3D ground-truth data. Zhou et al. [41] introduce

a weakly-supervised framework for joint training with 2D and 3D data with the help

of a geometric loss function to exploit the consistency of bone-length ratios in human

body. We further strengthen this weakly-supervised setup with the help of joint-angle

limits and left-right symmetry based loss functions for better training. Lastly, there are

methods that recover both shape and pose from a 2D image via a mesh-fitting strat-

egy. Bogo et al. [4] penalize body-part interpenetration and illegal joint angles in their

objective function for finding SMPL [21] based shape and pose parameters. These ap-

proaches are mostly offline in nature due to their computational requirements, while our

approach runs at 30fps.

Utilizing temporal information: Direct estimation of 3D pose from disjointed im-

ages leads to temporally incoherent output with visible jitters and varying bone lengths.

3D pose estimates from a video can be improved by using simple filters or temporal

priors. Mehta et al. [23] propose a real-time approach which penalizes acceleration and

depth velocity in an optimization step after generating 3D pose proposals using a Con-

vNet. They also smooth the output poses with the use of a tunable low-pass filter [5]

optimized for interactive systems. Zhou et al. [43] introduce a first order smoothing

prior in their temporal optimization step. Alldieck et al. [2] exploit 2D optical flow fea-

tures to predict 3D poses from videos. Wei et al. [38] exploit physics-based constraints

to realistically interpolate 3D motion between video keyframes. There have also been

attempts to learn motion models. Urtasun et al. [36] learn activity specific motion pri-
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ors using linear models while Park et al. [26] use a motion library to find the nearest

motion given a set of 2D pose predictions followed by iterative fine-tuning. The motion

models are activity-specific whereas our approach is generic. Recently, Lin et al. [19]

used recurrent neural networks to learn temporal dependencies from the intermediate

features of their ConvNet based architecture. In a similar attempt, Coskun et al. [11]

use LSTMs to design a Kalman filter that learns human motion model. In contrast with

the aforementioned approaches, our temporal model is simple yet effectively captures

short-term interplay of past poses and predicts the pose of the current frame in a tempo-

rally and anatomically consistent manner. It is generic and does not need to be trained

for activity-specific settings. We show that it learns complex, non-linear inter-joint de-

pendencies over time; e.g. it learns to refine wrist position, for which the tracking is

least accurate, based on the past motion of elbow and shoulder joints.

3 Background and Notations

This section introduces the notations used in this article and also provides the required

details about the weakly-supervised framework of Zhou et al. [41] for joint learning

from 2D and 3D data.

A 3D human pose P = {p1, p2, . . . , pk} is defined by the positions of k = 16 body

joints in Euclidean space. These joint positions are defined relative to a root joint, which

is fixed as the pelvis. The input to the pose estimation system could be a single RGB

image or a continuous stream of RGB images I = {. . . , Ii−1, Ii}. The ith joint pi is

the coordinate of the joint in a 3D Euclidean space i.e. pi = (pxi , p
y
i , p

z
i ). Throughout

this article inferred variables are denoted with a ∗̃ and ground-truth is denoted with

a ∗̂, therefore, an inferred joint will be denoted as p̃ and ground-truth as p̂. The 2D

pose can be expressed with only the x,y-coordinates and denoted as pxy = (px, py);
the depth-only joint location is denoted as pz = (pz). The ith training data from a

3D annotated dataset consists of an image Ii and corresponding joint locations in 3D,

P̂i. On the other hand, the 2D data has only the 2D joint locations, P̂ xy
i . Armed with

these notations, below we describe the weakly-supervised framework for joint learning

from [41].

Due to the absence of in-the-wild 3D data, the pose estimation systems learned us-

ing the controlled or synthetic 3D data fail to generalize well to in-the-wild settings.

Therefore, Zhou et al. [41] proposed a weakly-supervised framework for joint learning

from both 2D and 3D annotated data. Joint learning exploits the 3D data for depth pre-

diction and the in-the-wild 2D data for better generalization to real-world scenario. The

overall schematic of this framework is shown in Fig. 1. It builds upon the stacked hour-

glass architecture [25] for 2D pose estimation and adds a depth-regression sub-network

on top of it. The stacked hourglass is trained to output the 2D joint locations, P̃ xy in

the image coordinate with the use of standard Euclidean loss between the predicted

and the ground-truth joint-location heatmaps, please refer to [25] for more details. The

depth-regression sub-network, a series of four residual modules [12] followed by a fully

connected layer, takes a combination of different feature maps from stacked hourglass

and outputs the depth of each joint i.e. P̃ z . Standard Euclidean loss Le(P̃
z, P̂ z) is used

for the 3D annotated data-sample. On the other hand, a weak-supervision in the form
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Fig. 1. A schematic of the network architecture. The stacked hourglass module is trained using

the standard Euclidean loss LHM against ground truth heatmaps. Whereas, the depth regressor

module is trained on either Lz
3D or Lz

2D depending on whether the ground truth depth P̂
z is

available or not.

of a geometric loss function, Lg(P̃
z, P̂ xy), is used to train with a 2D-only annotated

data-sample. The geometric loss acts as a regularizer and penalizes the pose config-

urations that violate the consistency of bone-length ratio priors. Please note that the

ground-truth xy-coordinates, P̂ xy , with inferred depth, P̃ z are used in Lg to make the

training simple.

The geometric loss acts as an effective regularizer for the joint training and improves

the accuracy of 3D pose estimation under controlled and in-the-wild test conditions,

but it ignores certain other strong anatomical constraints of the human body. In the

next section, we build upon the discussed weakly-supervised framework and propose

a novel structure-aware loss that captures richer anatomical constraints and provides

stronger weakly-supervised regularization than the geometric loss.

4 Proposed Approach

This section introduces two novel anatomical loss functions and shows how to use them

in the weakly-supervised setting to train with 2D annotated data-samples. Next, the

motivation and derivation of the proposed losses and the analyses of the loss surfaces

is presented to facilitate a deeper understanding and highlight the differences from the

previous approaches. Lastly, a learnable temporal motion model is proposed with its

detailed analysis through carefully designed controlled experiments.

Fig. 2 shows our complete pipeline for 3D pose estimation. It consists of

1. Structure-Aware PoseNet or SAP-Net: A single-frame based 3D pose-estimation

system that takes a single RGB image Ii and outputs the inferred 3D pose P̃i.

2. Temporal PoseNet or TP-Net: A learned temporal motion model that can take a

continuous sequence of inferred 3D poses {. . . , P̃i−2, P̃i−1} and outputs a tempo-

rally harmonized 3D pose P̄i.

3. Skeleton fitting: Optionally, if the actual skeleton information of the subject is

also available, we can carry out a simple skeleton fitting step which preserves the

directions of the bone vectors.
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Fig. 2. Overall pipeline of our method: We sequentially pass the video frames to a ConvNet that

produces 3D pose outputs (one at a time). Next, the prediction is temporally refined by passing

a context of past N frames along with the current frame to a temporal model. Finally, skeleton

fitting may be performed as an optional step depending upon the application requirement.

4.1 Structure-Aware PoseNet or SAP-Net

SAP-Net uses the network architecture shown in Fig. 2, which is taken from [41]. This

network choice allows joint learning with both 2D and 3D data in weakly-supervised

fashion as described in Section 3. A 3D annotated data-sample provides strong supervi-

sion signal and drives the inferred depth towards a unique solution. On the other hand,

weak-supervision, in the form of anatomical constraints, imposes penalty on invalid

solutions, therefore, restricts the set of solutions. Hence, the stronger and more com-

prehensive the set of constraints, the smaller and better the set of solutions. We seek

motivation from the discussion above and propose to use loss functions derived from

joint-angle limits and left-right symmetry of human body in addition to bone-length ra-

tio priors [41] for weak-supervision. Together, these three constraints are stronger than

the bone-length ratio prior only and lead to better 3D pose configurations. For example,

bone-length ratio prior will consider an elbow bent backwards as valid, if the bone ra-

tios are not violated, but the joint-angle limits will invalidate it. Similarly, the symmetry

loss eliminates the configurations with asymmetric left-right halves in the inferred pose.

Next we describe and derive differentiable loss functions for the proposed constraints.

Illegal Angle Loss (La): Most body joints are constrained to move within a certain

angular limits only. Our illegal angle loss, La, encapsulates this constraint for the knee

and elbow joints and restricts their bending beyond 180◦. For a given 2D pose P xy ,

there exist multiple possible 3D poses and La penalizes the 3D poses that violate the

knee or elbow joint-angle limits. To exploit such constraints, some methods [13,1,8]

use non-differentiable functions to infer the legality of a pose. Unfortunately, the non-

differentiability restricts their direct use in training a neural network. Other methods

resort to representing a pose in terms of rotation matrices or quarternions for imposing

joint-angle limits [1,38] that affords differentiability, but, makes it difficult to use in-

the-wild 2D data (MPII). Therefore, this formulation is non-trivial when representing

poses in terms of joint-positions, which are a more natural representation for ConvNets.
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Fig. 3. Illustration of Illegal Angle loss: For the elbow joint angle to be legal, the lower-arm must

project a positive component along n
r

s
(normal to collarbone-upperarm plane) , i.e. nr

s
·vwe ≥ 0.

Note that we only need 2D annotated data to train our model using this formulation.

Our novel formulation of illegal-angle discovery resolves the ambiguity involved in

differentiating between the internal and external angle of a joint for a 3D joint-location

based pose representation. Using our formulation and keeping in mind our the require-

ment of differentiability, we formulate La to be used directly as a loss function. We

illustrate our formulation with the help of Fig. 3, and explain its derivation for the right

elbow joint. Subscripts n, s, e, w, k denote neck, shoulder, elbow, wrist and knee joints

in that order, and superscripts l and r represent left and right body side, respectively.

We define v
r
sn = P r

s − Pn, vr
es = P r

e − P r
s and v

r
we = P r

w − P r
e as the collar-bone,

upper-arm and the lower-arm, respectively (See Fig. 3). Now, nr
s = v

r
sn × v

r
es is the

normal to the plane defined by the collar-bone and the upper-arm. For the elbow joint

to be legal, vr
we must have a positive component in the direction of nr

s, i.e. nr
s · v

r
we

must be positive. We do not incur any penalty when the joint angle is legal and define

Er
e = min(nr

s · v
r
we, 0) as a measure of implausibility. Note that this case is opposite

for the right knee and left elbow joints (as shown by the right hand rule) and requires

Er
k and El

e to be positive for the illegal case. We exponentiate E to strongly penalize

large deviations beyond legality. La can now be defined as:

La = −Er
ee

−Er

e + El
ee

El

e + Er
ke

Er

k − El
ke

−El

k (1)

All the terms in the loss are functions of bone vectors which are, in turn, defined in

terms of the inferred pose. Therefore, La is differentiable. Please refer to the supple-

mentary material for more details.

Symmetry Loss (Ls): It is simple yet heavily constrains the joint depths, especially

when the inferred depth is ambiguous due to occlusions. Ls is defined as the difference

in lengths of left/right bone pairs. Let B be the set of all the bones on right half of the

body except torso and head bones. Also, let BLb represent the bone-length of bone b.
We define Ls as

Ls =
∑

b∈B

||BLb −BLC(b)||2 (2)

where C(.) indicates the corresponding left side bone.
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Finally, our structure-aware loss Lz
SA is defined as weighted sum of illegal-angle

loss Lz
a, symmetry-loss Lz

s and geometric loss Lz
g from [41] -

Lz
SA(P̃

z, P̂ xy) = λaLa(P̃
z, P̂ xy) + λsLs(P̃

z, P̂ xy) + λgLg(P̃
z, P̂ xy) (3)

Loss Surface Visualization: Here we take help of local loss surface visualization to

appreciate how the proposed losses are pushing invalid configurations towards their

valid counterparts. In order to obtain the loss surfaces we take a random pose P and

vary the (xle, zle) coordinates of left elbow over an XZ grid while keeping all other

joint locations fixed. Then, we evaluate Lz
SA at different (x, z) locations in the XZ

grid to obtain the loss, which is plotted as surfaces in Fig. 4. We plot loss surfaces with

only 2D-location loss, 2D-location+symmetry loss, 2D-location+symmetry+illegal an-

gle loss and 3D-annotation based Euclidean loss to show the evolution of the loss sur-

faces under different anatomical constraints. From the figure it is clear that both the

symmetry loss and illegal angle loss morph the loss surface to facilitate moving away

from illegal joint configurations.

Fig. 4. Loss Surface Evolution Plots (a) to (d) show the local loss surfaces for (a) 2D-location

loss. (b) 2D-location+symmetry loss (c) 2D-location+symmetry+illegal angle loss and (d) full

3D-annotation Euclidean loss. The points (1), (2) and (3) highlighted on the plots are the corre-

sponding 3D poses shown in (f), (g) and (h), with (3) being the ground-truth depth. The illegal

angle penalty increases the loss for pose (1), which has the elbow bent backwards. Pose (2) has a

legal joint angle, but the symmetry is lost. Pose (3) is correct. We can see that without the angle

loss, the loss at (1) and (3) are equal and we cannot discern between the two points.

4.2 Temporal PoseNet or TP-Net

In this section we propose to learn a temporal pose model, referred as Temporal PoseNet,

to exploit the temporal consistency and motion cues present in video sequences. Given

independent pose estimates from SAP-Net, we seek to exploit the information from a

set of adjacent pose-estimates Padj to improve the inference for the required pose P .
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Fig. 5. (a) The variation of sensitivity in output pose w.r.t to the perturbations in input poses of

TP-Net for from t=0 to t=-19. (b) Strong structural correlations are learned from the pose input

at t=0 frame. (c) Past frames show smaller but more complex structural correlations. The self

correlations (diagonal elements) are an order of magnitude larger and the colormap range has

been capped to better display.

We propose to use a simple two-layer, 4096 hidden neurons, fully-connected network

with ReLU non-linearity that takes a fixed number, N = 20, of adjacent poses as in-

puts and outputs the required pose P̄ . The adjacent pose vectors are simply flattened

and concatenated in order to make a single vector that goes into the TP-Net and it is

trained using standard L2 loss from the ground-truth pose. Despite being extremely

simple in nature, we show that it outperforms a more complex variant such as RNNs,

see Table 4. Why? We believe it happens because intricate human motion has increas-

ing variations possible with increasing time window, which perhaps makes additional

information from too far in the time useless or at least difficult to utilize. Therefore, a

dense network with a limited context can effectively capture the useful consistency and

motion cues.

In order to visualize the temporal and structural information exploited by TP-Net

we carried out a simple sensitivity analysis in which we randomly perturbed the joint

locations of Pt that is t time-steps away from the output of TP-Net P̄ and plot the

sensitivity for time-steps t = −1 to t = −19 for all joints in Fig. 5(a). We can observe

that poses beyond 5 time-steps ( or 200ms time-window ) does not have much impact

on the predicted pose. Similarly, Fig. 5am(b) shows the structural correlations the model

has learned just within the current frame. TP-Net learns to rely on the locations of hips

and shoulders to refine almost all the other joints. We can also observe that the child

joints are correlated with parent joints, for eg. the wrists are strongly correlated with

elbows, and the shoulders are strongly correlated with the neck. Fig. 5(c) shows the

sensitivity to the input pose at t = -1. Here, the correlations learned from the past are

weak, but exhibit a richer pattern. The sensitivity of the child joints extends further

upwards into the kinematic chain, eg. the wrist shows higher correlations with elbow,

shoulder and neck, for the t = -1 frame. Therefore, we can safely conclude that TP-Net

learns complex structural and motion cues despite being so simple in nature. We hope

this finding would be useful for future research in this direction.

Since TP-Net takes as input a fixed number of adjacent poses, we can choose to take

all the adjacent poses before the required pose, referred to as online setting, or we can

choose to have N/2 = 10 adjacent poses on either side of required pose, referred to

as semi-online setting. Since our entire pipeline runs at 30fps, even semi-online setting
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will run at a lag of 10fps only. From Fig. 5 we observe that TP-Net can learn complex,

non-linear inter-joint dependencies over time - for e.g. it learns to refine wrist position,

for which the tracking is least accurate, based on the past motion of elbow and shoulder

joints.

4.3 Training and Implementation details

While training the SAP-Net, both 2D samples, from MPII2D, and 3D samples, from

either of the 3D datasets, were consumed in equal proportion in each iteration with a

minibatch size of 6. In the first stage we obtain a strong 2D pose estimation network by

pre-training the hourglass modules of SAP-Net on MPII and Human3.6 using SGD as

in [25]. Training with weakly-supervised losses require a warm start [44], therefore, in

the second stage we train the 3D depth module with only 3D annotated data-samples for

240k iterations so that it learns to output reasonable poses before switching on weak-

supervision. In the third stage we train SAP-Net with Lg and La for 160k iterations

with λa = 0.03, λg = 0.03 with a learning-rate of 2.5e− 4. Finally, in the fourth stage

we introduce the symmetry loss, L∫ with λs = 0.05 and learning-rate 2.5e− 5.

TP-Net was trained using Adam optimizer [16] for 30 epochs using the pose predic-

tions generated by fully-trained SAP-Net. In our experiments, we found that a context

of N = 20 frames yields the best improvement on MPJPE (Fig. 5) and we use that in

all our experiments. It took approximately two days to train SAP-Net and one hour to

train TP-Net using one NVIDIA 1080 Ti GPU. SAP-Net runs at an average testing time

of 20ms per image while TP-Net adds negligible delay (<1ms).

5 Experiments

In this section, we present ablation studies, quantitative results on Human3.6M and

MPI-INF-3DHP datasets and comparisons with previous art, and qualitative results on

MPII 2D and MS COCO datasets. We start by describing the datasets used in our ex-

periments.

Human3.6M has 11 subjects performing different indoor actions with ground-truth

annotations captured using a marker-based MoCap system. We follow [35] and eval-

uate our results under 1) Protocol 1 that uses Mean Per Joint Position Error (MPJPE)

as the evaluation metric w.r.t. root relative poses and 2) Protocol 2 that uses Procrustes

Aligned MPJPE (PAMPJPE) which is MPJPE calculated after rigid alignment of pre-

dicted pose with the ground truth. As is common, we evaluate the results on every fifth

frame.

MPI-INF-3DHP (test) dataset is a recently released dataset of 6 test subjects with

different indoor settings ( green screen and normal background) and 2 subjects per-

forming in-the-wild that makes it more challenging than Human3.6M, which only has

a single indoor setting. We follow the evaluation metric proposed in [22] and report

Percentage of Correct Keypoints (PCK) within 150mm range and Area Under Curve

(AUC). Like [41], we assume that the global scale is known and perform skeleton re-

targeting while training to account for the difference of joint definitions between Hu-

man3.6M and MPI-INF-3DHP datasets. Finally, skeleton fitting is done as an optional

step to fit the pose into a skeleton of known bone lengths.
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Table 1. Comparative evaluation of our model on Human 3.6 following Protocol 1. The evalua-

tions were performed on subjects 9 and 11 using ground truth bounding box crops and the models

were trained only on Human3.6 and MPII 2D pose datsets.

Method Direction Discuss Eat Greet Phone Pose Purchase Sit

Zhou [43] 68.7 74.8 67.8 76.4 76.3 84.0 70.2 88.0

Jahangiri [15] 74.4 66.7 67.9 75.2 77.3 70.6 64.5 95.6

Lin [19] 58.0 68.2 63.2 65.8 75.3 61.2 65.7 98.6

Mehta [22] 57.5 68.6 59.6 67.3 78.1 56.9 69.1 98.0

Pavlakos [27] 58.6 64.6 63.7 62.4 66.9 57.7 62.5 76.8

Zhou [41] 54.8 60.7 58.2 71.4 62.0 53.8 55.6 75.2

Sun [34] 52.8 54.8 54.2 54.3 61.8 53.1 53.6 71.7

Ours(SAP-Net) 46.9 53.8 47.0 52.8 56.9 45.2 48.2 68.0

Ours(TP-Net) 44.8 50.4 44.7 49.0 52.9 43.5 45.5 63.1

Method SitDown Smoke Photo Wait Walk WalkDog WalkPair Avg

Zhou [43] 113.8 78.0 78.4 89.1 62.6 75.1 73.6 79.9

Jahangiri [15] 127.3 79.6 79.1 73.4 67.4 71.8 72.8 77.6

Lin [19] 127.7 70.4 93.0 68.2 50.6 72.9 57.7 73.1

Mehta [22] 117.5 69.5 82.4 68.0 55.3 76.5 61.4 72.9

Pavlakos [27] 103.5 65.7 70.7 61.6 56.4 69.0 59.5 66.9

Zhou [41] 111.6 64.1 65.5 66.0 51.4 63.2 55.3 64.9

Sun [34] 86.7 61.5 67.2 53.4 47.1 61.6 53.4 59.1

Ours(SAP-Net) 94.0 55.7 63.6 51.6 40.3 55.4 44.3 55.5

Ours(TP-Net) 87.3 51.7 61.4 48.5 37.6 52.2 41.9 52.1

Table 2. Comparative evaluation of our model on Human 3.6M using Protocol 2. The models

were trained only on Human3.6M and MPII 2D datasets.

Method Direct. Discuss Eat Greet Phone Pose Purch. Sit
Sit

Down Smoke Photo Wait Walk
Walk
Dog

Walk
Pair Avg

Yasin [40] 88.4 72.5 108.5 110.2 97.1 91.6 107.2 119.0 170.8 108.2 142.5 86.9 92.1 165.7 102.0 108.3

Rogez [29] - - - - - - - - - - - - - - - 88.1

Chen [7] 71.6 66.6 74.7 79.1 70.1 67.6 89.3 90.7 195.6 83.5 93.3 71.2 55.7 85.9 62.5 82.7

Nie [39] 62.8 69.2 79.6 78.8 80.8 72.5 73.9 96.1 106.9 88.0 86.9 70.7 71.9 76.5 73.2 79.5

Moreno [24] 67.4 63.8 87.2 73.9 71.5 69.9 65.1 71.7 98.6 81.3 93.3 74.6 76.5 77.7 74.6 76.5

Zhou [43] 47.9 48.8 52.7 55.0 56.8 49.0 45.5 60.8 81.1 53.7 65.5 51.6 50.4 54.8 55.9 55.3

Sun [34] 42.1 44.3 45.0 45.4 51.5 43.2 41.3 59.3 73.3 51.0 53.0 44.0 38.3 48.0 44.8 48.3

Ours(SAP-Net) 32.8 36.8 42.5 38.5 42.4 35.4 34.3 53.6 66.2 46.5 49.0 34.1 30.0 42.3 39.7 42.2

Ours (TP-Net) 28.0 30.7 39.1 34.4 37.1 28.9 31.2 39.3 60.6 39.3 44.8 31.1 25.3 37.8 28.4 36.3

2D datasets: MS-COCO and MPII are in-the-wild 2D pose datasets with no 3D

ground truth annotations. Therefore, we show qualitative results for both of them in

Fig. 6. Despite lack of depth annotation, our approach generalizes well and predicts

valid 3D poses under background clutter and significant occlusion.

5.1 Quantitative Evaluations

We evaluate the outputs of the three stages of our pipeline and show improvements at

each stage.

1. Baseline: We train the same network architecture as SAP-Net but with only the

fully supervised losses i.e. 2D heatmap supervision and Le for 3D data only.
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Table 3. Ablation of different loss terms on Hu-

man3.6M using Protocol 1.

Method MPJE

Zhou w/o Lg [41] 65.69

+ Geometry loss 64.90

Baseline 58.50

Baseline + Ls 58.30

Baseline + La 57.70

Baseline + Lg 58.30

Baseline + Lg + La 56.20

Baseline + Lg + La + Ls 55.51

Baseline + Lg + La + Ls + TP-Net 52.10

Baseline + Lg + La + Ls + Bi-TP-Net 51.10

Table 4. Comparison of different tem-

poral models considered with varying

context sizes. LSTM nets model the

entire past context till time t. Bidi-

rectional networks take half contextual

frames from the future and half from

the past.

Model Number of input frames

4 10 20

LSTM - - 54.05

Bi-LSTM 53.86 53.72 53.65

TP-Net 53.0 52.24 52.1

Bi-TP-Net 52.4 51.36 51.1

2. SAP-Net: Trained with the proposed structure-aware loss following Section 4.3.

3. TP-Net: Trained on the outputs of SAP-Net from video sequences ( see Section 4.3).

4. Skeleton Fitting (optional): We fit a skeleton based on the subject’s bone lengths

while preserving the bone vector directions obtained from the 3D pose estimates.

Below, we conduct ablation study on SAP-Net and report results on the two datasets.

SAP-Net Ablation Study: In order to understand the effect of individual anatomical

losses, we train SAP-Net with successive addition of geometry Lz
g , illegal-angle Lz

a and

symmetry Lz
s losses and report their performance on Human3.6M under Protocol 1 in

Table 3. We can observe that the incorporation of illegal-angle and symmetry losses

to geometry loss significantly improves the performance while geometry loss does not

offer much improvement even over the baseline. Similarly, TP-Net offers significant

improvements over SAP-Net and the semi-online variant of TP-Net (Bi-TP-Net) does

even better than TP-Net.

Evaluations on Human3.6M: We show significant improvement over the state-of-

the-art and achieve an MPJPE of 55.5mm with SAP-Net which is further improved

by TP-Net to 52.1mm. Table 1 and Table 2 present a comparative analysis of our re-

sults under Protocol 1 and Protocol 2, respectively. We outperform other competitive

approaches by significant margins leading to an improvement of 12%.

Evaluations on MPI-INF-3DHP: The results from Table 5 show that we achieve

slightly worse performance in terms of PCK and AUC but much better performance

in terms of MPJPE, improvement of 12%, as compared to the current state-of-the-art.

It is despite the lack of data augmentation through green-screen compositing during

training.

5.2 Structural Validity Analysis

This section analyzes the validity of the predicted 3D poses in terms of the anatomical

constraints, namely left-right symmetry and joint-angle limits. Ideally, the correspond-

ing left-right bone pairs should be of similar length; therefore, we compute the mean

L1 distance in mm between the corresponding left-right bone pairs on MPI-INF-3DHP
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Fig. 6. (a) Comparison of our temporal model TP-Net with SAP-Net on a video. The highlighted

poses demonstrate the ability of TP-Net to learn temporal correlations, and smoothen and refine

pose estimates from SAP-Net. (b) Qualitative results of SAP-Net on some images from MPII and

MS-COCO datasets, from multiple viewpoints.

dataset and present the results in the upper half of Table 6. For fairness of comparison,

we evaluate on model trained only on Human3.6M. We can see that SAP-Net, trained

with symmetry loss, significantly improves the symmetry as compared to the system

in [41] which uses bone-length ratio priors and TP-Net offers further improvements

by exploiting the temporal cues from adjacent frames. It shows the importance of ex-

plicit enforcement of symmetry. Moreover, it clearly demonstrates the effectiveness of

TP-Net in implicitly learning the symmetry constraint. The joint-angle validity of the

predicted poses is evaluated using [1] and we observe only 0.8% illegal non-torso joint

angles as compared to 1.4% for [41].

The lower-half of Table 6 tabulates the standard deviation of bone lengths in mm

across frames for SAP-Net and TP-Net. We can observe that TP-Net reduces the stan-

dard deviation of bone-length across the frames by 28.7%. It is also worth noting that

we do not use any additional filter (moving average, 1 Euro, etc.) which introduces
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Table 5. Results on MPI-INF-

3DHP dataset. Higher PCK and

AUC are desired while a lower

MPJPE is better. Note that unlike

[22,23], the MPI-INF-3DHP train-

ing dataset was not augmented.

Method PCK AUC MPJPE

Mehta [22] 75.7 39.3 117.6

Mehta [23] 76.6 40.4 124.7

Ours 76.7 39.1 103.8

Table 6. Evaluating our models on (i) symmetry -

mean L1 distance in mm between left/right bone pairs

(upper half), and (ii) the standard deviation (in mm)

of bone lengths across all video frames (lower half)

on MPI-INF-3DHP dataset.

Bone Zhou [41] SAP-Net TP-Net

Upper arm 37.8 25.8↓31.7% 23.9↓36.7%

Lower arm 50.7 32.1↓36.7% 33.9↓33.1%

Upper leg 43.4 27.8↓35.9% 24.8↓42.8%

Lower leg 47.8 38.2↓20.1% 29.2↓38.9%

Upper arm – 49.6 39.8

Lower arm – 66.0 48.3

Upper leg – 61.3 48.8

Lower leg – 68.8 48.3

lag and makes the motion look uncanny. Finally, we present some qualitative results in

Fig. 6 and in the supplementary material to show that TP-Net effectively corrects the

jerks in the poses predicted by SAP-Net.

6 Conclusion

We proposed two anatomically inspired loss functions, namely illegal-angle and sym-

metry loss. We showed them to be highly effective for training weakly-supervised Con-

vNet architectures for predicting valid 3D pose configurations from a single RGB image

in-the-wild setting. We analyzed the evolution of local loss surfaces to clearly demon-

strate the benefits of the proposed losses. We also proposed a simple, yet surprisingly

effective, sliding-window fully-connected network for temporal pose modelling from

a sequence of adjacent poses. We showed that it is capable of learning semantically

meaningful short-term temporal and structure correlations. Temporal model was shown

to significantly reduce jitters and noise from pose prediction for video sequences while

taking < 1ms per inference. Our complete pipeline improved the publised state-of-the-

art by 11.8% and 12% on Human3.6M and MPI-INF-3DHP, respectively while running

at 30fps on NVIDIA Titan 1080Ti GPU.
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