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Abstract. In complex inferential tasks like question answering, machine
learning models must confront two challenges: the need to implement a
compositional reasoning process, and, in many applications, the need for
this reasoning process to be interpretable to assist users in both develop-
ment and prediction. Existing models designed to produce interpretable
traces of their decision-making process typically require these traces to
be supervised at training time. In this paper, we present a novel neural
modular approach that performs compositional reasoning by automati-
cally inducing a desired sub-task decomposition without relying on strong
supervision. Our model allows linking different reasoning tasks though
shared modules that handle common routines across tasks. Experiments
show that the model is more interpretable to human evaluators compared
to other state-of-the-art models: users can better understand the model’s
underlying reasoning procedure and predict when it will succeed or fail
based on observing its intermediate outputs.

Keywords: neural module networks, visual question answering, inter-
pretable reasoning

1 Introduction

Deep neural networks have achieved impressive results on many vision and lan-
guage tasks. Yet the predictive power of generic deep architectures comes at
a cost of lost interpretability, as these architectures are essentially black boxes
with respect to human understanding of their predictions. This can impair hu-
man users’ trust in learning systems and make them harder to refine [8].

These issues have led to recent efforts in explaining neural models, ranging
from building in attention layers to post-hoc extraction of implicit model atten-
tion, e.g. by gradient propagation [33, 37, 27, 40, 28], post-hoc natural language
explanations [15, 2] and network dissection [7]. Such approaches can highlight
the image regions that are most important for predicting a particular label or
provide a textual interpretation of the network output. However, explainable
models of more complex problems involving multiple sub-tasks, such as Visual
Question Answering (VQA) [6] and Referential Expression Grounding (REF)
[30], are less studied in comparison. Complex problems may require several rea-
soning steps to solve. For example in Figure 1, the question “There is a small
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gray block; are there any spheres to the left of it?” might require solving the
following subtasks: find the “small gray block”, look for “spheres to the left of it”
and decide whether such object exists in the image. Therefore, a single heat-map
highlighting important spatial regions such as [28] may not tell the full story of
how a model performs.

In this paper, we present a new model that makes use of an explicit, mod-
ular reasoning process, but which allows fully differentiable training with back-
propagation and without expert supervision of reasoning steps. Existing modular
networks first analyze the question and then predict a sequence of pre-defined
modules (each implemented as a neural net) that chain together to predict the
answer. However, they need an “expert layout”, or supervised module layouts
for training the layout policy in order to obtain good accuracy. Our proposed
approach, the Stack Neural Module Network or Stack-NMN, can be trained with-
out layout supervision, and replaces the layout graph of [16] with a stack-based
data structure. Instead of making discrete choices on module layout, in this work
we make the layout soft and continuous, so that our model can be optimized in a
fully differentiable way using gradient descent. We show that this improves both
the accuracy and interpretability compared to existing modular approaches. We
also show that this model can be extended to handle both Visual Question An-
swering (VQA) [6] and Referential Expression Grounding (REF) [30] seamlessly
in a single model by sharing knowledge across related tasks through common
routines as in Figure 1.

A variety of different model architectures have been proposed for complex
reasoning and question answering. Our evaluation in this paper focuses on both
the accuracy and interpretability of these models. In particular, we ask: does
explicit modular structure make models more interpretable? We use the CLEVR
dataset [18] as a testbed, as it poses a task of high complexity. State-of-the-art
models for this task vary in the degree to which they provide “explanations”. Re-
lation Networks [31] and FiLM [26] achieve high performance but do not expose
their internal decision process. Other state-of-the-art models on CLEVR use re-
current layers to compute the answer over multiple steps and output different
image and/or text attention at each step. These include modular networks [5,
4, 16, 19, 21], and non-modular recurrent attention models [36, 17]. It has been
suggested by the authors that the attention and/or module layouts inferred by
these methods can be regarded as explanations of the networks’ internal reason-
ing process. Yet, to the best of our knowledge, their meaningfulness to humans
has never been explicitly evaluated; we provide a more rigorous assessment of
the interpretability of multi-step attentional VQA models here.

We categorize existing multi-step models in terms of whether they have a
discrete library of structured modules for each step (e.g., NMN and related ap-
proaches [5, 4, 16, 19, 3, 21]), vs. homogeneous subtask computational elements
(e.g., multi-hop attention networks [36, 35], MAC [17], etc.). We assess these
models below and identify tradeoffs between accuracy and interpretability of
these existing model classes. We find that our proposed Stack-NMN model has
comparable performance to existing modular approaches even without expert su-
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Fig. 1. Our model reveals interpretable subtask structure by inducing a decomposition
of the reasoning procedure into several sub-tasks, each addressed by a neural module.
It can simultaneously answer visual questions and ground referential expressions.

pervision, while achieving the greatest interpretability among evaluated models
with respect to both subjective and objective measures of human understanding.

2 Related work

Visual question answering (VQA). The task of visual question answering
is to infer the answer based on the input question and image. Existing meth-
ods on VQA can be mainly categorized into holistic approaches (e.g., [36, 35, 10,
1, 31, 26, 17]), and neural module approaches [5, 4, 16, 19, 21]. The major differ-
ence between these two lines of work is that neural module approaches explicitly
decompose the reasoning procedure into a sequence of sub-tasks, and have spe-
cialized modules to handle the sub-tasks, while holistic approaches do not have
explicit sub-task structure, and different kinds of reasoning routines are all han-
dled homogeneously.

Some holistic models perform sequential interactions between the image and
the question. For example, SAN [36] uses multi-hop attention to extract infor-
mation from the image. FiLM [26] uses multiple conditional batch normalization
layers to fuse the image representation and question representation. Among these
methods, MAC [17] performs multiple steps of reading and writing operations
to extract information from the image and update its memory. Although these
models have sequential interactions between the input image and the question,
they do not explicitly decompose the reasoning procedure into semantically-
typed sub-tasks. In our model, we adopt a similar textual attention mechanism
as in [17] in Sec. 3.1, while also predicting module weights from the input text.

Neural module networks (NMNs). In NMN [5], N2NMN [16], PG+EE
[19] and TbD [21], the inference procedure is performed by analyzing the question
and decomposing the reasoning procedure into a sequence of sub-tasks. In [16],
[19] and [21], a layout policy is used to turn the question into a module layout.
Then the module layout is executed with a neural module network. Here, given
an input question, the layout policy learns what sub-tasks to perform, and the
neural modules learn how to perform each individual sub-tasks.
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However, it is shown in these previous work that “expert layouts” (i.e. human
annotations of the desired layout) are needed to pretrain or supervise the layout
policy in order to get compositional behavior and good accuracy. Without expert
guidance, existing models suffer from significant performance drops or fail to
converge. This indicates that it is challenging to simultaneously learn “what”
and “how” in these models. In this work, we address this problem with soft and
continuous module layout, making our model fully differentiable and trainable
with using gradient descent without resorting to expert layouts.

Interpretable reasoning and explainable neural networks. Recent
years have seen increased interest in various aspects of interpretability in learned
models [24], particularly in neural networks [23]. This includes work aimed at
both explaining the decision rules implemented by learned models, and the mech-
anisms by which these rules are derived from data [32, 20]. In the present work
we are primarily interested in the former. One line of research in this direction
attempts to generate post-hoc explanations of decisions from generic model ar-
chitectures, either by finding interpretable local surrogates in the form of linear
models [29], logical rules [9, 38] or natural language descriptions [2, 39], or by
visualizing salient features [27, 28].

An alternative line of work investigates the extent to which models can be
explicitly designed from the outset to provide enhanced interpretability, where
main focus of study has been visual attention [22, 25]. While the various modular
approaches described above are sometimes described as “interpretable” [16], we
are not aware of any research evaluating this in practice. In the present work, our
goal is to evaluate whether this kind of explicit modular structure, and not just
iterated attention, improves interpretability in concrete evaluation scenarios.

Multi-task learning. Different from existing multi-task approaches such
as sharing common features (e.g., [13]), our model simultaneously handles both
Visual Question Answering (VQA) [6] and Referential Expression Grounding
(REF) [30] by exploiting the intuition that related tasks should have common
sub-routines, and addressing them with a common set of neural modules.

3 Approach

In this paper, we analyze and design interpretable neural networks for high-
complexity VQA and REF tasks. We evaluate the interpretability of multi-step
VQA networks to humans, and in particular compare modular networks to non-
modular networks in terms of how well humans can understand the internal
computation process. We describe our proposed evaluation strategy and results
in Section 4.2. We also improve modular networks by proposing a new formu-
lation, which we describe in this section. Specifically, we describe Stack Neural
Module Networks (Stack-NMNs) with the following components. 1) A layout
controller that decomposes the reasoning task into a sequence of sub-tasks, and
translates the input question into a soft layout, specified via a soft distribution
over module weights w(t) at each timestep t. The controller also supplies each
module with a textual parameter ct at every time-step using textual attention.
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Fig. 2. Overview of our model. Our model predicts a continuous layout via module
weights w(t) and executes the modules in a soft manner with a memory stack.

2) A set of neural modules M to handle the sub-tasks specified by the controller.
Each neural module is a differentiable parameterized function that performs a
specific sub-task, and can be executed dynamically on-the-fly according to the
soft layout. 3) A differentiable memory stack to store and retrieve intermediate
outputs from each module during execution.

Figure 2 shows an overview of our model. The overall architecture of our
model is conceptually similar to N2NMN [16], where layout controller in our
model resembles the previous layout policy. The major difference between our
model and this prior work lies in whether the layout selection is continuous or
discrete. N2NMN makes discrete choices of module layout in a graph structure
and can only be end-to-end optimized with reinforcement learning approaches.
On the other hand, our model makes soft layout selection with a differentiable
stack structure, by giving each module a continuous-valued weight parameter
and averaging the outputs of all modules according to their weights. This makes
the execution procedure fully differentiable so that our model is trainable with
back-propagation like other neural networks.

3.1 Module layout controller

The layout controller in our model decides what subtask to perform at each
execution time step t by selecting a module mt for that time step, and also
supplying it with a textual parameter ct to give specific instruction to the module
mt ∈ M . For example, the controller may decide to look for red things at t =
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0, by running a Find module with a textual parameter ct that contains the
information for the word “red”.

The structure of our layout controller is similar to the control unit in [17].
Suppose there are S words in the input question. The layout controller first
encodes the input question q into a d-dimensional sequence [h1, · · · , hS ] of length
S using a bi-directional LSTM as [h1, · · · , hS ] = BiLSTM(q; θBiLSTM), where
each hs is the concatenation of the forward LSTM output and the backward
LSTM output at the s-th input word. Next, the controller runs in a recurrent
manner from time-step t = 0 to time-step t = T − 1. At each time-step t, it
applies a time-step dependent linear transform to the question q, and linearly
combines it with the previous d-dimensional textual parameter ct−1 as u =

W2

[

W
(t)
1 q + b1; ct−1

]

+ b2, where W
(t)
1 and W2 are d × d and d × 2d matrices

respectively, and b1 and b2 are d-dimensional vectors. Unlike all other parameters

in the layout controller, W
(t)
1 is not shared across different time steps.

To select the module to execute at the current time-step t, a small multi-
layer perceptron (MLP) is applied to u to predict a |M |-dimensional vector w(t)

as w(t) = softmax(MLP(u; θMLP)). The module weight w(t) contains the weight

distribution over each module m ∈ M and sums up to one (i.e.
∑M

m∈M w
(t)
m = 1),

which resembles a probability distribution or soft attention over the modules. It
is used to select modules in each time-step t in a continuous manner.

Finally, the controller predicts a textual parameter ct with a textual attention
over the encoded question words as cvt,s = softmax(W3(u ⊙ hs)) and ct =
∑S

s=1 cvt,s · hs, where ⊙ is element-wise multiplication, W3 is a 1 × d matrix,
cvt,s is the word attention score (scalar) on the s-th question word. Finally,
ct is the textual parameter supplied to the modules at time-step t, containing
question information needed for a sub-task.

3.2 Neural modules with a memory stack

Module implementation. Following the terminology in N2NMN, a neural
module is a differentiable function with some internal trainable parameters, and
can be used to perform a specific sub-task. For example, the question “how
many objects are right of the blue object?” can be possibly answered by the
layout Answer[‘how many’](Transform[‘right’](Find[‘blue’]())), where
the modules such as Transform are selected with module weight w(t) and the
textual information such as ‘blue’ is contained in the textual parameter ct.

The module implementation basically follows [16]. We also simplify the imple-
mentation in [16] by merging unary answering modules (Count, Exist, Describe)
into a single Answer module, and pairwise comparison (More, Less, Equal,
Compare) into a single Compare module. Finally, we introduce a NoOp mod-
ule that does nothing, which can be used to pad arbitrary module layouts to a
maximum length T . Our module implementation is summarized in Table 1.

Differentiable memory stack. In our model, different modules may take
different numbers of input, and the model sometimes needs to take what it cur-
rently sees and compare it with what it has previously seen before. This is typical
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module input output implementation details
name attention type (x: image feature map, c: textual parameter)

Find (none) attention aout = conv2 (conv1(x)⊙Wc)
Transform a attention aout = conv2 (conv1(x)⊙W1

∑
(a⊙ x)⊙W2c)

And a1, a2 attention aout = minimum(a1, a2)
Or a1, a2 attention aout = maximum(a1, a2)
Filter a attention aout = And(a, Find()), i.e. reusing Find and And

Scene (none) attention aout = conv1(x)
Answer a answer y = WT

1 (W2

∑
(a⊙ x)⊙W3c)

Compare a1, a2 answer y = WT
1 (W2

∑
(a1 ⊙ x)⊙W3

∑
(a2 ⊙ x)⊙W4c)

NoOp (none) (none) (does nothing)

Table 1. Neural modules used in our model. The modules take image attention maps
as inputs, and output either a new image attention aout or a score vector y over all
possible answers (⊙ is elementwise multiplication;

∑
is sum over spatial dimensions).

in tree-structured layouts, such as Compare(Find(), Transform(Find())). To
handle tree-structured layouts, the model needs to have a memory to remember
the outputs from the previous reasoning time-steps. Similar to Memory Networks
[34], we provide a differentiable memory pool to store and retrieve the interme-
diate outputs. However, to encourage compositional behavior, we restrict our
memory pool to be a Last-In-First-Out (LIFO) stack similar to [12]. The LIFO
behavior encourages the neural modules to work like functions in a computer
program, allowing only arguments and returned values to be passed between the
modules, without arbitrary memory modification.

Our memory stack can be used to store vectors with fixed dimensions. It
consists of a length-L memory array A = {Ai}

L
i=1 (where L is the stack length)

and a stack-top pointer p, implemented as a L-dimensional one-hot vector.
The stack (A, p) implements differentiable push and pop operations as follows.
Pushing a new vector z into stack (A, p) is done via pointer increment as
p := 1d conv(p, [0, 0, 1]) followed by value writing as Ai := Ai · (1− pi) + z · pi,
for each i = 1, ..., L. Similarly, popping the current stack-top vector z from stack
(A, p) is done via value reading as z :=

∑L

i=1 Ai · pi followed by pointer decre-
ment as p := 1d conv(p, [1, 0, 0]). Here Ai is the vector at stack depth i in A.
In both push and pop operations, the one-hot stack pointer p is incremented or
decremented using 1-d convolution.

In our model, we use the above memory stack to store the H×W dimensional
image attention maps, where H and W are the height and the width of the image
feature map. Using the memory stack, each module first pops from the stack to
obtain input image attentions, and then pushes its result back to the stack. For
example, in tree-like layouts such as Compare(Find(), Transform(Find())),
the Find module pushes its localization result into the stack, the Transform

module pops one image attention map from the stack and pushes back the trans-
formed attention, and the Compare module pops two image attention maps and
uses them to predict the answer.
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3.3 Soft program execution

Our model performs continuous selection of module layout through the soft
module weights w(t). At each time step t, we execute all the modules in our
module listM (shown in Table 1), and perform a weighted average of their results
with respect to the weights w(t) predicted by the layout controller. Specifically,
the resulting memory stacks from the execution of each module are weighted-

averaged with respect to w
(t)
m to produce a single updated memory stack.

At time step t = 0, we initialize the memory stack (A, p) with uniform image
attention and set stack the pointer p to point at the bottom of the stack (one-
hot vector with 1 in the 1st dimension). Then, at each time step t, for every
module m ∈ M we execute it on the current memory stack (A(t), p(t)). During
execution, each module m may pop from the stack and push back its results, pro-

ducing an updated stack (A
(t)
m , p

(t)
m ) as

(

A
(t)
m , p

(t)
m

)

= run module
(

m,A(t), p(t)
)

,

for each m ∈ M . We average the resulting new stack from each module ac-

cording to its weight w
(t)
m as A(t+1) =

∑

m∈M A
(t)
m · w

(t)
m , and then sharpen the

stack pointer with a softmax operation to keep it as a (nearly) one-hot vector

as p(t+1) = softmax
(

∑

m∈M p
(t)
m · w

(t)
m

)

.

Final output. We apply this model to both the Visual Question Answering
(VQA) task and the Referential Expressions Grounding (REF) task. To obtain
the answer in the VQA task, we collect the output answer logits (i.e. scores)
in all time-steps from those modules that have answer outputs (Answer and
Compare in Table 1), and accumulate them with respect to their module weights

as y =
∑T−1

t=0

∑

m∈Mans

y
(t)
m w

(t)
m where Mans contains Answer and Compare.

To output grounding results in the REF task, we take the image-attention
map at the top of the final stack at t = T , and extract attended image features
from this attention map. Then, a linear layer is applied on the attended image
feature to predict the bounding box offsets from the feature grid location.

3.4 Training

Unlike previous modular approaches N2NMN [16], PG+EE [19] and TbD [21],
our model does not require expert layouts to achieve good performance. When
such expert layout supervision is available, our model can also utilize it by su-
pervising the soft module weights w(t) with a cross-entropy loss to match the
expert’s module choice. But as the entire network is fully differentiable, it can be
trained effectively without reinforcement learning, from task supervision alone,
in the absence of expert layout supervision.

For VQA, we train with softmax cross entropy loss on the final answer scores
y. For REF, we map the center of the ground-truth bounding box to a location
on the feature grid. Then we train with a softmax cross entropy loss on the final
image attention map to put all the attention on the ground-truth feature grid,
and a bounding box regression loss on the bounding box offsets to match the
ground-truth box. We train with the Adam optimizer with 10−4 learning rate.
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trained on expert layout VQA accuracy REF accuracy

VQA yes 96.6 n/a
REF yes n/a 96.0

VQA+REF yes 96.5 96.2

VQA no 93.0 n/a
REF no n/a 93.4

VQA+REF no 93.9 95.4

Table 2. Validation accuracy on the CLEVR dataset (VQA) and the CLEVR-Ref
dataset (REF). Our model simultaneously handles both tasks with high accuracy.

4 Experiments

We evaluate our model on the Visual Question Answering (VQA) task on the
large-scale CLEVR dataest [18]. The dataset consists of 70000, 15000 and 15000
images for training, validation and test, and each image is associated with 10
questions. The images in the dataset are rendered from a graphics engine, and
the questions are synthesized with complex reasoning procedure.

To evaluate our model on the Referential Expression Grounding (REF) task
[30], we build a new CLEVR-Ref dataset with images and referential expres-
sions in CLEVR style using the code base of [18]. Our new CLEVR-Ref dataset
has the same scale as the original CLEVR dataset for VQA, but contains ref-
erential expressions instead of questions. Each referential expression refers to a
unique object in the image, and the model is required to ground (i.e. localize)
the corresponding object with a bounding box. The grounded bounding box is
considered correct if it overlaps with the ground-truth bounding box by at least
0.5 intersection-over-union (IoU). Similar to question answering in the CLEVR
dataset, the referential expressions also involve complex reasoning and relation-
ship handling. See Figure 3 for an example of the CLEVR-Ref dataset.

4.1 Model performance

Our model aims to simultaneously handle both VQA and REF tasks, and to
decompose the reasoning procedure into sub-tasks by inducing a suitable module
layout on each question or referential expression.

We train our model on the CLEVR dataset for the VQA task, and the
CLEVR-Ref dataset for the REF task. We experiment with training only on
the VQA task, training only on the REF task, and joint training on both tasks
(VQA+REF) using the loss from both tasks. To test whether our model can
induce a reasonable sub-task decomposition and module layout, we experiment
with both using expert layout supervision (same as in [16]) and training from
scratch without expert layout. We use a ResNet-101 convnet [14] pretrained on
ImageNet classification to extract visual features from the image.

The results are summarized in Table 2. It can be seen that when training on
each individual task, our model achieves over 90% accuracy on both tasks (which



10 R. Hu, J. Andreas, T. Darrell, K. Saenko

VQA (expert layout) VQA (from scratch) REF (expert layout) REF (from scratch)

Fig. 3. Examples of our model on VQA (left) and REF (right). At each step, we
visualize the module with the highest weight, the words receiving most textual attention
(cvt,s in Sec. 3.1) and the module output.

is reasonably good performance), whether using expert layout supervision or not.
Furthermore, joint training can lead to even higher accuracy on these two tasks
(especially when not using expert layout). Our model can simultaneously handle
these two tasks by exploiting the common sub-tasks in them, such as finding
object and handling relationships.

Sub-task decomposition and layout induction. By comparing the bot-
tom 3 rows (trained without using expert layout) and the top 3 rows (trained
with expert layout supervision), it can be seen that although the models trained
with expert layout still outperforms training from scratch, the gap between the
two scenarios is relatively small. This indicates that our model can still work well
without layout supervision, which is something previous modular approaches
such as N2NMN [16], PG+EE [19] and TbD [21] could not handle.
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We visualize the reasoning procedure our multi-task model on both VQA and
REF task, for both with expert layout and without expert layout supervision.
Figure 3 shows the module layout, the intermediate reasoning outputs and the
most attended words from textual attention (cvt,s in Sec. 3.1). It can be seen
that our model can induce a reasonable decomposition of the inference procedure
into sub-tasks without expert layout supervision, and it learns to share common
sub-tasks such as find (localization) and transform in across the two tasks.

We note that our model learns peaky module weights after convergence.
The average entropy of the learned soft module weights (which can be seen
as a probability distribution) is 0.082 when trained without layout supervision
(corresponds to putting over 98% weights on one module), and 7.5× 10−5 when
trained with layout supervision (corresponds to putting over 99.99% weights on
one module). This shows that even without any strong supervision on module
layout, our model learns to almost discretely select one module through the soft
module weights at test time. Hence, our proposed framework can be regarded as
a novel end-to-end differentiable training approach for modular networks.

We further experiment with test-time layout discretization by replacing the
soft module weights with a one-hot argmax vector. This results in sightly lower
performance on the CLEVR validation set (90.0% when trained without layout
supervision and 94.8% with layout supervision). Considering the discrepancy
between training and test time, the relatively small accuracy drop (< 4%) from
test-time layout discretization indicates that our model works similar to previous
modular networks at test time, rather than acting as a mixture of experts.

Evaluation of accuracy. We first compare the accuracy of our model on
the CLEVR VQA dataset with the previous modular approaches N2NMN [16],
PG+EE [19] and TbD [21]. N2NMN uses a layout policy to predict discrete
layouts and a neural module network to answer the question. PG+EE and TbD
are also modular approachs similar to N2NMN, where the program generator
is similar to the layout policy, and the execution engine is essentially a neural
module network. For fair comparison with previous work, we train our model on
the CLEVR VQA dataset only (without using CLEVR-Ref for joint training).

The results are shown in Table 3. It can be seen from the top 4 rows that
among all the modular approaches (N2NMN, PG+EE, TbD and Ours), when
layout supervision is available, our model outperforms N2NMN by a large mar-
gin, and achieves comparable performance with PG+EE while underperforms
TbD by a small margin. We note that even when using expert layout, our model
still uses less supervision than PG+EE or TbD as they both require fine-grained
module specification (e.g. finding shape and finding color are different modules
in [19, 21] while the same module with different textual attention in our model).

The bottom 4 rows show the results without using expert layout supervision,
where our model significantly outperform N2NMN. In this case, N2NMN has
large performance drop while PG+EE and TbD fails to converge or cannot not
be trained without layout supervision. This can be attributed to the fact that
N2NMN, PG+EE and TbD all use discrete non-differentiable layout, while our
model is fully differentiable and can be trained with back-propagation.
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Method expert layout accuracy on CLEVR

N2NMN [16] yes 83.7
PG+EE [19] yes 96.9
TbD [21] yes 99.1

Ours yes 96.5

N2NMN [16] no 69.0
PG+EE [19] no (does not converge)
TbD [21] no (not supported)
Ours no 93.0

Table 3. Comparison of our model and other modular approaches on the CLEVR
dataset for VQA. Our model achieves the best accuracy when not relying on expert
layout, while N2NMN has significant performance drop in this case. The best non-
modular architectures (e.g., [17]) do achieve higher performance; we compare those
against modular performance on both accuracy and interpretability in Sec. 4.2.

Method expert layout accuracy on VQAv1 accuracy on VQAv2

N2NMN [16] yes 64.9 63.3
ours no 65.5 64.1

ours yes 66.0 64.0

Table 4. Single-model accuracy of our method and N2NMN [16] on both VQAv1 [6]
and VQAv2 [11] datasets, using the same experimental settings (e.g. visual features).

We note that the best non-modular architectures [17] achieve higher per-
formance without using expert layout supervision, and compare those against
modular performance on both accuracy and interpretability in Sec. 4.2.

Results on real-image VQA datasets. We also evaluate our method on
real-image visual question answering datasets and compare with N2NMN [16].
We run our approach on both VQAv1 and VQAv2 datasets [6, 11] following the
same settings (e.g. using ResNet-152 image features and single model at test
time without ensemble) as in [16], where the results are in Table 4. Although
the question answering task in these datasets focuses more on visual recognition
than on compositional reasoning, our method still outperforms [16] even without
expert layout supervision (the expert layouts are obtained by a syntactic parser).

4.2 Model interpretability

Evaluation of interpretability. It is often suggested in existing works [16,
19, 21] that modular networks can be more interpretable to humans compared
to holistic models. However, there is a lack of human studies in these works to
support this claim. In this section, we evaluate how well the user can understand
the internal reasoning process within our model, and compare it with MAC [17].
We compare to MAC because it is a state-of-the-art holistic model that also
performs multi-step sequential reasoning and has image and textual attention at
each time-step, while other models (e.g., FiLM [26] and Relation Net [31]) have
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lower performance and do not have any image or textual attention to visualize.
MAC is a multi-step recurrent structure with a control unit and a reading-writing
unit. Similar to our model, it also attend to text and image in each reasoning
step. But unlike our model, there is not explicit modular structure in MAC.

Here, we investigate two distinct, but related questions: does modular struc-
ture improve humans’ subjective perceptions of model interpretability, and does
this structure allow users to form truthful beliefs about model behavior? To this
end, we present two different sets of experiments (subjective understanding and
forward prediction) with human evaluators. With respect to the taxonomy of
interpretability evaluations presented in [8], these are both “human-grounded”
metrics aimed at testing “general notions of the quality of an explanation”.

In the subjective understanding evaluation, we visualize model’s inter-
mediate outputs such as the image attention and textual attention at each step,
and we also show the model’s final prediction. The visualizations can be seen
in Figure 3. Then the human evaluators are asked to judge how well they can
understand the internal reasoning process, or whether it clear to the user what
the model is doing at each step. Each example is rated on a 4-point Likert scale
(clear, mostly clear, somewhat unclear and unclear) corresponding to numerical
scores of 4, 3, 2 and 1. The averaged scores and the percentage of each choice
are shown in Table 5, where it can be seen that our model has higher subjective
understanding scores than MAC [17] and is much more often rated as “clear” in
both cases (using or not using expert layout supervision). This shows that the
users can more clearly understand the reasoning procedure in our model.

In the forward prediction evaluation, we investigate whether humans can
predict the model’s answer and detect its failure based on these visualizations.
We split the test set into half correct and half incorrect model predictions, and
the final answer output is not shown, so that human baseline performance should
be chance or 50%. Our hypothesis is that if humans can predict whether the
model succeed or fail better than chance, they understand something about the
model’s decision process. In Table 5, we show the human accuracy on this task
along with 95% confidence interval. It can be seen that our model allows them to
predict whether the model will get the correct answer or fail consistently higher
than chance when trained without expert layout supervision. We also notice that
when using supervision from expert layout, our model does worse at human pre-
diction of model’s failure. We suspect it is because predicting the answer requires
human to understand how the model works. When supervising the layout, the
model may overfit to the expert layout, at the expense of predictability. It may
output an “intuitive” layout by mimicking the training data, but that layout
may not actually be how it is solving the problem. On the other hand, the unsu-
pervised model is not being forced to predict any particular layouts to minimize
loss, so its layouts may be more directed at minimizing the answer loss.

Finally, we compare our model with MAC on VQA accuracy in Table 5.
Our model underperforms the state-of-the-art MAC in terms of VQA accuracy.
However, our model is more interpretable to a human user. This is in line with
the intuition that there may be an accuracy-explainability tradeoff, e.g., linear
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clear (4)

mostly clear (3)

somewhat unclear (2)

unclear (1)
ours (w/ expert)
ours (w/o expert)
MAC

percentage of each choice (clear, mostly clear, somewhat unclear and unclear)

expert subjective forward prediction (failure detection) VQA
Method layout understanding accuracy ± 95% confidence interval accuracy

Ours yes 3.47 0.545 ± 0.069 96.5
Ours no 3.33 0.625 ± 0.067 93.0
MAC [17] n/a 2.46 0.565 ± 0.069 98.9

Table 5. Human evaluation of our model and the state-of-the-art non-modular MAC
model [17]. Based on the models’ intermediate outputs, the evaluators are asked to (a)
judge how clearly they can understand the reasoning steps performed by these models
on a 4-point scale (i.e. subjective understanding) and (b) do forward prediction (failure
detection) and decide whether the model fails without seeing the final output answer.
The results show that our model is more interpretable to human users. However, our
model underperforms the non-modular MAC approach in VQA accuracy, which is in
line with the intuition that there may be an accuracy-explainability tradeoff.

models are less accurate but more interpretable than non-linear models. However,
our model greatly reduces the accuracy gap with the top performing models,
without requiring expert layout supervision at training time.

5 Conclusion

In this paper, we have proposed a novel model for visual question answering and
referential expression grounding. We demonstrate that our model simultaneously
addresses both tasks by exploiting the intuition that related tasks should share
common sub-tasks, and sharing a common set of neural modules between tasks.
Compared with previous modular approaches, our model induces a decomposi-
tion of the inference procedure into sub-tasks while not requiring expert layout
supervision. The proposed model can explain its reasoning steps with a sequence
of soft module choices, image attentions, and textual attentions. Experimental
evaluation found that these explanations produced better understanding in hu-
man users with respect to both subjective and objective evaluations, even in the
absence of human-provided explanations at training time.
Acknowledgements. This work was partially supported by US DoD and DARPA
XAI and D3M, and the Berkeley Artificial Intelligence Research (BAIR) Lab.
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