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Abstract. Optical flow estimation in rainy scenes is challenging due to degrada-

tion caused by rain streaks and rain accumulation, where the latter refers to the

poor visibility of remote scenes due to intense rainfall. To resolve the problem,

we introduce a residue channel, a single channel (gray) image that is free from

rain, and its colored version, a colored-residue image. We propose to utilize these

two rain-free images in computing optical flow. To deal with the loss of contrast

and the attendant sensitivity to noise, we decompose each of the input images into

a piecewise-smooth structure layer and a high-frequency fine-detail texture layer.

We combine the colored-residue images and structure layers in a unified objec-

tive function, so that the estimation of optical flow can be more robust. Results

on both synthetic and real images show that our algorithm outperforms existing

methods on different types of rain sequences. To our knowledge, this is the first

optical flow method specifically dealing with rain. We also provide an optical

flow dataset consisting of both synthetic and real rain images.
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Fig. 1: Optical flow estimation from heavy rain images with a static background and

a few moving vehicles. Top: Purple and yellow colors indicate upward and downward

motions, respectively. Bottom: Focusing on the estimated flow of the downward mov-

ing vehicle. Our estimation is more robust to rain than those of existing methods. Note,

the rain streaks and rain accumulation can be observed by zooming in the input images.
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1 Introduction

Optical flow methods have been developed for many decades [16,22][36,33,7,38] and

achieved significant results in terms of accuracy and robustness[40,1,43,32,17,29]. They

are shown to generally work when applied to outdoor scenes in clear daylight, but tend

to be erroneous in bad weather. In particular, of all the bad weather conditions, rain has

the most marked detrimental impact on performance [28]. To our knowledge, no meth-

ods have been proposed to handle optical flow estimation in rainy scenes. Addressing

this problem is important, since more and more vision systems are deployed in outdoor

scenes, and rain is an inevitable natural phenomenon or even an everyday occurrence in

some regions of the world. In this paper, we develop an optical flow algorithm that can

handle heavy rain with apparent rain streaks and a fog-like rain accumulation effect.

The challenge of estimating optical flow in rainy scenes can be categorized into two

problems. One problem refers to rain streaks, which due to their dynamic nature, ap-

pear in different locations from frame to frame, thus causing violation to the brightness

constancy constraint (BCC) and the gradient constancy constraint (GCC). The other

problem refers to rain-streak accumulation, where rain streaks are accumulated along

the line of sight in such a way that we can no longer see the individual streaks (visu-

ally similar to fog). Images affected by the rain accumulation generally suffer from low

contrast and weakened background information. Under torrential downpour, the second

problem is severe enough to warrant a special mechanism to come to grips with the

issue.

A direct solution is to apply a deraining method, either a video based (e.g., [14,3])

or single-image based deraining method (e.g. [19,23,47]), before optical flow compu-

tation. However, most of the video-based deraining methods are designed only for rain

streaks removal and assume static background, whereas the existing single-image based

deraining methods process each frame independently, and therefore consistency across

frames cannot be guaranteed. Moreover, most of the deraining methods introduce arti-

facts, such as blur around rain streak regions, high frequency texture loss, image color

change, etc. These artifacts are also inconsistent in their appearance throughout an im-

age sequence, thus rendering the BCC and GCC invalid.

To achieve our goal, there are several key ideas in our method. First, we introduce a

residue channel, a gray image that is free from both rain streaks and rain accumulation.

This rain free can be generated after ensuring that the rain-streak and rain-accumulation

terms in our model are achromatic (colorless). The residue channel, however, can cause

some color boundaries to disappear, making the optical flow computation deprived of

this important information. To resolve this, we then introduce a colored-residue image,

which is the colored version of the residue channel and thus is also free from rain streak

and accumulation. Yet, there is another problem with both the residue channel and the

colored-residue image, namely, when the background is achromatic or the rain accumu-

lation is considerably thick, then the affected regions become dark due to the subtraction

operation in the residue image formation, depriving the optical flow estimation of any

intensity variation information in the achromatic channel. Generally, images of rainy

scenes already suffer from low contrast; this is further compounded by the residue op-

eration such that the signal-to-noise ratio is further suppressed, reaching the nadir in the

aforementioned dark regions.
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To handle the resultant noise sensitivity, our solution is to perform a structure-

texture decomposition on each of the input images and use the extracted structure layers

to provide a further regularizing influence on the optical flow estimation. The underly-

ing rationales are twofold: (1) The structure-texture decomposition acts as a denoiser,

moving noise, rain streaks, and fine textures in the scene to the texture layer. While the

structure layer necessarily loses out some fine texture information, it provides a stabiliz-

ing influence on the detailed flow information coming from the colored-residue image.

(2) For the regions in the colored-residue image that are dark, the information coming

from the structure layer is all that we have; even though it is admittedly lacking in de-

tails and might be somewhat inaccurate (since in dealing with rain, the structure layer

extraction does not make use of the underlying physics of the rain formation process).

Finally, by combining the colored-residue images and structure layers in one objective

function, we make sure that the structure-texture variational denoising is done in a way

consistent across images (critical for optical flow estimation), and the decomposition

can also benefit from the redundancy coming from the multiple frames. As a result, we

can compute the flow from rain images robustly.

Particularly with respect to optical flow computation in rainy scenes, our contribu-

tions are: (1) Introducing the residue channel and colored-residue image that are both

free from rain streaks and rain accumulation, (2) proposing an objective function and

its optimization mechanism that combine the colored-residue images and piecewise-

smooth structure layers, (3) providing a real rain optical flow benchmark containing

both synthesized motion (660 sequences) and real motion (100 sequences) to the pub-

lic. Note that, in this paper we do not address raindrops attached to the camera lens.

We assume that the camera is well protected from raindrops (e.g. placing the camera

under a shelter, or using a special hardware like Spintec, which can deflect rain from

the camera).

2 Related Work

Optical flow algorithms that are robust to noise and outliers have been studied for a

long time (e.g., [5,4,39,34]). While these techniques may be able to handle a moderate

amount of corruptions such as those brought about by a drizzle [41,21,45,26], they

are unlikely to prevail against the heavy corruptions caused by a torrential downpour.

Compounding these issues is the loss of contrast caused by rain accumulation, it causes

both the BCC and GCC to be highly susceptible to noise.

One of the popular practices in optical flow estimation is to perform structure-

texture decomposition. [37][35] and then use the texture layer for optical flow com-

putation. However, for rainy scenes, rain streaks and significant noise will appear in the

texture layer and compromise the utility of the texture layer for flow estimation. Our

method relies more on the structure rather than the texture layer. Yang et al. [46] pro-

pose a double-layer decomposition framework for estimating optical flow of reflective

surfaces. The method decomposes transmission (foreground) layer and reflection (back-

ground) layer, and then computes the optical flow of each layer, assuming both layers

follow the sparse gradient distribution of natural images. However, this algorithm can-

not be applied to rain images, since the assumption does not hold for rain streaks and
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accumulation. Our proposed colored-residue image belongs to the class of color space

transformation methods such as [25] to render invariance against perturbation. How-

ever, the well-known HSV and rφθ color space approaches do not result in measures

that are invariant under rain, and hence cannot be directly applied to rain images.

It is beyond the scope of this paper to offer a comprehensive review of the immense

optical flow literature, but the emerging deep learning approach certainly deserves a

mention. A few deep learning methods (e.g., [11,10,17,30]) are proposed to estimate

flow, but these methods are meant for optical flow estimation under clear scenes. More-

over, these methods are heavily optimized over a lot of training data with ground truths.

Unfortunately, obtaining the optical flow ground-truths for rainy scenes is considerably

intractable. In contrast, our method leverages on the physics of the image formation

process. Theoretically, our rain streak formation model and the residue channel idea are

applicable to snow and sleet too; our approach thus offers a much more parsimonious

solution to a range of problems posed by different weather phenomena.

3 Residue Channel

3.1 Rain Streak Image Formation

The appearance of rain streaks is the result of raindrop movement during the camera

exposure[12]. If we assume the exposure time is T and the elapsed time while a raindrop

is passing through a pixel x is τ , the intensity captured by the CCD sensor can be

described as a linear combination of the raindrop’s time-average radiance Ērs and the

background radiance Ebg:

E(x) = τĒrs(x) + (T − τ)Ebg(x), (1)

where Ērs = 1

τ

τ∫
0

Ersdt, 0 6 τ 6 T . Ers is the radiance of the raindrop at a

particular time. The value of Ers is determined by the raindrop’s specular and internal

reflections, in addition to the refracted light, where their proportions depends on the

direction of the light rays relative to the raindrop, the camera viewing direction, and the

shape of the raindrop [15].

Most cameras have spectral sensitivities (a.k.a. camera RGB filters) to produce

coloured images. Considering this, we express the colored-image intensity of a rain-

streak image as:

Ĩ(x) = τ

∫
Ω

Ērs(x, λ)qc(λ)dλ+ (T − τ)

∫
Ω

Ebg(x, λ)qc(λ)dλ, (2)

where Ĩ = (Ĩr, Ĩg, Ĩb)
T is the color vector representing the colored intensity, λ is the

light wavelength, qc is the camera-spectral-sensitivity distribution function, with index

c indicates the RGB color channel. Ω is the range of wavelengths that can be captured

by the camera sensitivities. As shown in the appendix, we can express the model as:

Ĩ(x) = τρrs(x)Lσ + (T − τ)Bπ, (3)
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where L = (Lr, Lg, Lb)
T is the color vector of the light brightness, and B = (Br, Bg, Bb)

T

is the color vector of the background reflection. L = Lr+Lb+Lg and B = Br+Bb+
Bg . We define σ = L/L and π = B/B, the chromacities of L and B, respectively. ρrs
is composed of refraction, specular reflection, and internal reflection coefficients of a

raindrop [13]. We assume that ρrs is independent from wavelength, implying a raindrop

is achromatic (colorless). In the model (Eq. (3)), the first term is the rain-streak term,

and the second term is the background term.

3.2 Residue Channel Computation

In our method, to generate the residue channel that is free from rain streaks, we need

to cancel the light chromaticity, σ, in the rain streak term in Eq. (3). For this, we em-

ploy any existing color constancy algorithm (e.g. [9]) to estimate σ, and then apply the

following normalization step to the input image:

I(x) =
Ĩ(x)

σ

= Irs(x)i+ Ibg(x), (4)

where i = (1, 1, 1)T , Irs = τρrsL, and Ibg = (T − τ)B/σ. The vector division is

done element wise. Note, when we normalize the image, we do not only cancel the

light chromaticity, but also the color effect of the spectral sensitivities.

Therefore, based on the last equation, given a rain image I, we define our residue-

channel as:

Ires(x) = IM (x)− Im(x), (5)

where IM (x) = max{Ir(x), Ig(x), Ib(x)}, and Im(x) = min{Ir(x), Ig(x), Ib(x)}.

We call Ires the residue channel of image I, and it is free from rain streaks. Fig. 2

shows some examples of the residue channel. The reason why residue channel can be

free from rain streaks is because the rain-streak term in Eq. (4) is achromatic, whose

values are cancelled when applying Eq. (5).

To generate the residue channel, we theoretically need to apply color constancy

so that the rain-streak term can be achromatic. However, in our experiments, we also

noticed that even without applying color constancy, the residue channel can still work.

This is because in most cases, the appearance of rain streaks is already achromatic,

which is due to the dominant gray atmospheric light generated by a cloudy sky (see the

discussion in the supplementary material).

3.3 Colored Residue Image

Since the residue channel is a single channel map, it has no color information. To obtain

a colored residue image, we need to transform the original rain image into the YCbCr

domain:

Cb = 128− (37.945/256)Ir − (74.494/256)Ig + (112.439/256)Ib, (6)

Cr = 128− (112.439/256)Ir − (94.154/256)Ig − (18.285/256)Ib.

In Cb and Cr, the achromatic value of the rain-streak term is cancelled out, since the

sum of the coefficients in the definition equals to zero, and thus the two are independent
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Fig. 2: Top: Images captured in rain scenes with rain streaks and rain accumulation.

Middle: Residue channels of the corresponding rain images. Bottom: The colored

residue images of the corresponding rain images. The rain streaks are significantly re-

duced in the residue channel and colored-residue images, though some regions become

dark due to achromatic background and rain accumulation. Note, we increase the inten-

sity of the dark regions for visualization purpose.

from rain streaks. For Y channel, however, we do not use it in our computation, since

it is still affected by rain streaks. Instead, we replace it using the residue channel (from

Eq. 5), which is free from rain streaks. Having obtained the values of all image inten-

sities in the IresCbCr domain, we tranform them back to the RGB domain, in order to

obtain the colored residue image as shown in Fig. 2.

One drawback of both the residue channel and colored-residue image is that when

the background is achromatic (i.e., white, gray or black), the generated background

becomes dark. This is because the background term in Eq. (4) becomes achromatic,

instead of a colored vector; and thus, it is cancelled out along with the rain-streak term.

3.4 Residue Image and Rain Accumulation

Rain images typically have severe rain accumulation particularly in the heavy rain. For

each pixel, the intensity contributed by the rain is the accumulation of all the raindrops

along the line of sight from the camera to the background object. Considering that rain

accumulation is so dense that each individual streaks cannot be observed, we thus model

the rain accumulation appearance similar to that of fog:

E(x) = (1− αt(x))L+ αt(x)Ebg(x), (7)

where αt(x) is the transmission, whose value depends on the rain droplet’s attenuation

factor and the distance between the camera and the background along the line of sight.

This model has been successfully used in a few rain removal methods (e.g. [47,19]).

Similar to the discussion in Sec. 3.1, by taking into consideration the camera spec-

tral sensitivities, the colored image intensity of the rain accumulation and background
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can be expressed as: Ĩ(x) = (1− αt(x))L+ αt(x)B(x). Moreover, if we incorporate

the rain streak model into the rain accumulation and background, then we can express

all the terms into one equation:

Ĩ(x) = τρrs(x)L+ (T − τ) [(1− αt(x))L+ αt(x)B(x)] . (8)

By employing a color constancy method (i.e., [9]), we can estimate the light chromatic-

ity, σ, and use it to cancel the light chromaticity in the image:

I(x) = Irs(x)i+ Ira(x)i+ I
′

bg(x), (9)

where Ira = (T − τ)(1− αt)L. I′bg = αt(T − τ)B/σ.

Therefore, in this all-inclusive model, Eq. (9), we have three terms: the rain-streak

term (the first term), rain accumulation term (the second term), and the background term

(the third term). When we see an individual streak in the input image, it is modelled by

the rain streak term; however, for those rain streaks that are accumulated such that

individual streaks are not distinguishable, then they are modelled by the second term.

If we apply the residue channel (Eq. (5)) or the colored-residue image to our rain

model of Eq. (9), both rain streaks and rain accumulation will be removed from the

images, since the rain-streak and rain-accumulation terms are both achromatic. This

implies, our residue channel and colored-residue image are also free from rain accumu-

lation. However, it comes with a price. First, for achromatic background regions, the

residue channel becomes dark, since all the three terms in Eq. (9) are achromatic. Sec-

ond, when rain accumulation is considerably thick, the background term is significantly

suppressed, and as a result, the residue channel and image also become relatively dark,

depending on the thickness of the rain accumulation. Nevertheless, in this paper, our

goal is not to generate visually pleasing rain-free images, but to create an optical flow

algorithm that is robust to rain. Thus, despite the presence of these dark regions, we

shall see that residue channel and colored-residue image are useful tools to achieve our

goal. In the subsequent section, we will discuss how to utilize the residue channel and

colored-residue image to estimate optical flow robustly.

4 Decomposition Framework

In the classic variational framework, the optical flow objective function is expressed as:

L1(u) =
∑
x

{ΦD[I1(x)− I2(x+ u)] + λsΦS(∇u(x))}, (10)

where I1, I2 are the gray versions of I1, I2, respectively. u is the flow vector with λs

as a regularization parameter and ΦD and ΦS are the data and spatial penalty functions.

However, as we have discussed, these I1 and I2 are affected by rain, and thus the BCC

and GCC do not hold. The simplest idea to compute optical flow would be to use the

colored-residue images as input to any modern optical flow algorithm. Unfortunately,

while the colored-residue image is free from rain streaks and rain accumulation, it suf-

fers from low contrast and the dark region effect. Hence, in our objective function, we

incorporate both the colored-residue image and the input image. Our idea is that when
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encountering dark regions in the residue channel, we turn to the input image for com-

puting the flow; otherwise we use the colored-residue image. Based on this, we change

our objective function:

L2(u) =
∑
x

{(1− w(x))ΦD[I1(x)− I2(x+ u)]

+ w(x)ΦD[R1(x)−R2(x+ u)]

+ λsΦS(∇u)},

(11)

where R1, R2 are the gray versions of the two colored-residue images of the two input

rain frames, respectively.

Employing the input images in the objective function, however, adds some com-

plexity. Since, besides affected by rain, raw rain images in fact have a fair amount of

noise, which is not surprising since they are usually taken under dim conditions. Those

who are well-versed with the art of optical flow estimation will know that this situa-

tion of low contrast and substantial noise is a sure recipe for trouble. To address the

problem, our idea is to employ the structure/texture image decomposition [44] to the

input images and use the structure layer extracted to provide a coarse and complemen-

tary source of flow information. While the flow information from the structure layer

may be lacking in details (since the detailed textures are discarded), it is less influenced

by noise. It also serves to fill in the missing information in the dark regions of the

colored-residue image. Formally, the observed rain image I can be modeled as a linear

combination of the piecewise-smooth structure layer J and the fine-detail texture layer

K, namely: I = J+K, where the piecewise-smooth structure layer describes the prin-

cipal regions of the image and the texture layer contains the fine-detailed background

textures, rain streaks, and any other possible noises. The decomposition can be done

by: min
J

‖ I − J ‖2 +λ ‖ ∇J ‖0, where ∇ = (∂x, ∂y)T , and λ is the weighting fac-

tor. We use the L0-norm, since, being a discrete counting metric, it can deliver sharper

edges and has better ability to preserve large gradients [44]. Putting all the above ideas

together, we have the following unified objective function:

LF (u, J1, J2) =
∑
x

{λd{(1− w(x))ΦD[J1(x)− J2(x+ u)]

+ w(x)ΦD[R1(x)−R2(x+ u)]}+ λsΦS(∇u(x))

+ α(||I1(x)− J1(x)||
2 + ||I2(x)− J2(x)||

2)

+ β(||∇J1(x)||0 + ||∇J2(x)||0)},

(12)

where J1, J2 are the gray versions of the structure images of the two frames respec-

tively.

Parameter w is the tunable weighting factor that mediates the relative contribution of

the structure layer and the colored-residue image for flow computation (first and second

lines of Eq. (12) respectively). It weighs more on using the colored-residue image when

the residual channel is not dark. We define w(x) = γIres(x), where γ is a scaling factor

such that there is always some contribution from the structure images. The structure-

texture decomposition (third and fourth lines of Eq. (12)) is carried out jointly with the
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(a) Color Image (b) Residue Channel (c) Colored-Residue Image (d) Gray-Scale Image of (c)

Fig. 3: (a) A color palette and spectrum. (b) The residue channel of (a). (Single channel

map) (c) The colored-residue image of (a). (d) The gray scaled version of colored-

residue image (c)
.

Algorithm 1

1: Input: Image sequence I1, I2, parameters λs, α, β, convergence criteria ǫ

2: Initialization: Assign J
(0)
1 ← I1, J

(0)
2 ← I2, and initial flow u

0 ← J
(0)
1 , J

(0)
2 , R1, R2

3: repeat (Start from i=0)

4: Compute J
(i+1)
1 ← {J

(i)
2 , I1,u

(i)}, J
(i+1)
2 ← {J

(i)
1 , I2,u

(i)} (Subtask 1)

5: Estimate Flow {u(i+1) ← J
(i+1)
1 , J

(i+1)
2 , R1, R2}. (Subtask 2)

6: until ||ui+1 − ui|| < ǫ

7: Output: Estimated flow field u
(M)

optical flow estimation, so that the denoising can be done in a consistent way across

both frames, and that the decomposition can benefit from the redundancy of multiple

frames. λs is the smoothness parameter for the flow u. β is the parameter controlling

the gradient threshold. The higher the β , the fewer boundaries in the piecewise-smooth

background layer. ΦD and ΦS are the ’Charbonnier’ penalty function for the data term

and smoothness term. 3

5 Optimization

First, we generate the residue channel maps (R1, R2) from the input image and then

initialize J1 = I1, J2 = I2, and u by solving Eq. (13) following the method of [7].

To optimize our objective function, we alternatingly solve the following subtasks until

convergence:

Subtask 1: Layer Separation Given the current optical flow u, we compute the

piecewise-smooth background layer J1, and J2 separately:

3 Regarding the colored-residue images in our objective function, one may wonder the purpose

of generating it, if in the end we use the gray version R1, R2 of it. The reason is that when

two objects have different colors, there are some cases where their residue channel values are

identical, and thus when the objects are adjacent to each other, their color boundaries disappear,

and as a result optical flow is deprived of this important information. However, if we use the

gray version of the colored-residue images, we can retain the boundary information. Fig. 3

shows an example of this.
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J∗

1
= argmin

J1

∑
x

{λdΦD[J1(x)− J2(x+ u)] + α|I1(x)− J1(x)|
2 + β|∇J1(x)|0}

J∗

2
= argmin

J2

∑
x

{λdΦD[J1(x)− J2(x+ u)] + α|I2(x)− J2(x)|
2 + β|∇J2(x)|0}

The objective functions are not convex due to the L0-norm terms, unlike the standard

structure-texture decomposition. To resolve this problem, we adopt the alternating op-

timization strategy from [44], by introducing two auxiliary variables to decouple the

unsmooth gradient term and the smooth quadratic terms.

Subtask 2: Optical Flow Computation Given current piecewise-smooth background

layers (J1, J2), we estimate the optical flow vector u following the method of [7]:

u
∗ = argmin

u

∑
x

{λd((1− w(x))ΦD[J1(x)− J2(x+ u)]

+ w(x)ΦD[R1(x)−R2(x+ u)]) + λsΦS(∇u(x))}

(13)

Although there is no guarantee for convergence to this non-convex problem, with

initialization as proposed above, this algorithm performs well in practice. In our ex-

periments, we run our algorithm on hundreds of different rain scenes and it showed

good convergence. A video of is attached in supplementary material to demonstrate the

stability, robustness and the convergence of the proposed method.

6 Experiments

Ablation Study To study how the colored-residue image and structure layer comple-

ment each other, we conduct the following ablation experiments using a dataset [27]

rendered with rain. We compare the performance of our algorithm with a few baseline

methods.

First, we evaluate the performance of the colored-residue image alone by subjecting

it to increasingly dense rain streaks and increasing levels of rain accumulation along

with the additive white Gaussian noise (Fig. 4 the top two rows). The optical flow

results are shown on the top row of Fig. 4 (a)(b). As can be seen, while the colored-

residue image is effective in dealing with rain streaks, it is negatively affected by the

low contrast brought by the rain accumulation. This is where the structure layer (or the

decomposition) comes in. Second, we evaluate the performance of the structure layer

alone similarly by subjecting it to increasingly dense rain streaks and increasing levels

of rain accumulation. From the result in the top row of Fig. 4 (c)., the structure alone

does not achieve good performance, since rain streaks in the original input can have

rather strong gradients and remain in the structure layer. However, when combined

the colored-residue image and structure layer, the performance improves, showing a

graceful degradation of performance as rain increases (also in Fig. 4 (c)). More results of

our ablation study including on real images are available in the supplementary material.

The bottom row of Fig. 4 shows the qualitative results of using the colored-residue only,

the structure layer only, and our combination.
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input Residue Image Ours-residue Ours-decomp Ours Ground Truth

Fig. 4: Ablation study. Top two rows: Input images and the performance graph of the

proposed method on the driving dataset rendered with (a) rain streaks alone, (b) rain

accumulation alone, (c) combining rain streaks and rain accumulation. Bottom row:

Input and optical flow qualitative results using the colored-residue image alone (ours-

residue), structure layer alone (ours-decomp), and combined (ours).

Evaluation Datasets To obtain optical flow ground-truths for real images is consider-

ably difficult, however it is even more difficult for rain scenes. Baker et al. [2] obtain

ground-truth data of only a couple of real image pairs using a controlled experiment

setup, which does not work under outdoor rain. Using a LIDAR system to obtain flow

ground truths is also problematic, since layers of densely accumulated raindrops will

absorb and reflect laser rays, which can lead to missing data points and wrong mea-

surements in the echo-backed results. Hence, in this paper, for quantitative evaluations,

we use a few different strategies. First, we generate synthetic rain by following the rain

model [15] on Middlebury [2], Sintel[8] and KITTI [24] optical flow datasets. Second,

we combine real rain images with synthesized object motions, creating a new hybrid

dataset named FVR-660, which the ground-truths are known. There are in total 660

sequences in this dataset. The top row of Fig. 5 shows some examples. Third, we intro-

duce our NUS-100 dataset containing 100 sequences of real rain and real motion, whose

ground truth is obtained by human annotation. An example is shown in the bottom row

of Fig. 5. The details of FVR-660 and NUS-100 dataset generation are included in the

supplementary material. 4

Synthetic Rain Results Using our synthetic data, we compare our algorithm with a few

conventional methods, i.e. Classic+NL [34], LDOF [6], and SP-MBP [18], EpicFlow

[31], as well as recent deep learning methods such as FlowNet2 [17], DCFlow [42] and

FlowNet [11], specifically the FlowNetS variant. For a fair comparison, we utilize the

4 FVR-600 and NUS-100 datasets are available at : https://liruoteng.github.io/

RobustOpticalFlowProject

https://liruoteng.github.io/RobustOpticalFlowProject
https://liruoteng.github.io/RobustOpticalFlowProject
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Fig. 5: Top: Two examples from the Flying Vehicles with Rain (FVR-660). From left to

right are the generated image pair, and the color coded flow field ground truth. Bottom:

An example of NUS-100 dataset. From left to right are the input image pair, the anno-

tated labels for objects with motion, the horizontal component of the flow, and the flow

ground truth.

First frame EpicFlow DCFlow FlowNet2-rain Ours Ground truth

R

D

R

D

R

D

Fig. 6: Method comparisons on Middlebury, MPI Sintel, and KITTI datasets, which

are all rendered with rain. The first column ”R” and ”D” represent synthesized rain

sequences and the same sequences after [47]’s deraining method. (Best zoomed in on

screen).

recent deraining method [47] as a preprocessing step for these methods. The quanti-

tative results are shown in columns 1 to 3 of Table 1. The qualitative results of these

comparisons are shown in Fig. 6. In the figure, the original synthesized rain image is de-

noted with ’R’, and the image produced by the deraining operation is denoted with ’D’.

FlowNet2 [17] and FlowNetS [11] are not originally trained using rain images, and thus

may not perform well under rain conditions. Hence, we render the Flying Chair dataset

[11] with synthetic rain streaks using the same rain streak model as the test dataset.

We then fine-tune FlowNetS and FlowNet2 end-to-end on this dataset and pick the best

performed model for evaluation. The fine-tuned models are denoted as FlowNetS-rain

and FlowNet2-rain respectively.



Robust Optical Flow in Rainy Scenes 13

Table 1: A comparison of our algorithm with several top-performing methods on syn-

thesized rain datasets. ”De-rain” indicates the results of each method performed on the

sequences after Yang et al.’s [47] de-rain method.

Method Middlebury Sintel KITTI2012 FVR-660 NUS-100

Rain De-rain Clean Rain De-rain Clean Rain De-rain Clean Rain De-rain Rain De-rain

Classic+NL-fast [34] 0.90 0.60 0.22 7.97 6.79 4.94 9.17 9.14 3.84 2.17 2.19 0.49 0.53

LDOF [6] 0.90 0.66 0.45 10.68 6.70 4.29 10.17 9.90 5.05 2.93 2.98 0.68 0.60

SP-MBP [18] 0.93 0.60 1.92 12.32 7.06 3.56 15.71 15.94 6.01 5.37 5.50 0.50 0.55

EpicFlow [31] 1.57 0.48 0.35 14.92 7.03 2.46 6.94 6.78 1.44 4.52 4.44 0.35 0.36

DCFlow [42] 1.62 0.68 0.35 10.68 6.70 2.28 10.17 6.70 1.04 46.71 30.69 0.30 0.30

FlowNetS [11] 2.58 1.54 1.09 7.40 6.85 4.50 17.43 18.73 4.27 2.18 2.55 0.53 0.55

FlowNetS-Rain 1.45 1.42 1.28 6.90 5.82 4.65 6.84 6.91 5.68 2.85 3.79 0.63 0.65

FlowNet2 [17] 0.79 0.58 0.40 7.68 8.56 2.13 7.23 8.64 2.22 5.73 6.07 0.28 0.30

FlowNet2-Rain 1.24 1.11 0.32 7.54 6.30 5.22 8.01 8.13 6.70 2.21 2.18 0.42 0.43

Ours 0.30 0.332 0.32 5.46 5.06 4.71 6.65 6.67 4.05 1.76 1.81 0.22 0.19

I1 I2 EpicFlow DCFlow FlowNet2 FlowNet2-rain

J1 J2 Ours-iter1 Ours-iter2 Ours-iter3 Ours-iter15

Fig. 7: Static Scene Analysis. I1,I2 are captured rainy image pair of a static scene. J1,

J2 are the corresponding piecewise-smooth layers of I1, I2 respectively. Flow map

produced by competing algorithms are shown in top row. Flow map produced by our

method at different optimization stages are shown in bottom row.

Real Rain Results To verify the effectiveness of our algorithm, we perform a sanity

check on the estimated flow for static real-rain image pairs as shown in Fig. 7. Since

this is a static scene under heavy rain, the true optical flow for the background should be

zero everywhere. From the figure (the top row), one can see that the baseline methods

produce erroneous flow due to the motion of the rain. In comparison, the result of our

algorithm shows a significantly cleaner result. The average magnitude of our flow field

is 0.000195 pixel, which is essentially zero flow. Moreover, the plots in the bottom row

also show that during the iteration process, the optical flow estimation improves. This

means that the structure layer does provide complementary information to the colored-

residue image.

We also compare the baseline methods with our algorithm on the FVR-660 dataset

for quantitative evaluation (column 5 of Table 1) and qualitative evaluation (Fig. 8). For

this evaluation, the deraining preprocessing [47] is applied to the existing methods. As

one can see from Fig. 8, the results of the baseline methods contain obvious erroneous

flow due to the presence of rain streaks. The state-of-the-art deraining method does not

generalize well on different rain types, hence rain streaks are not removed clearly and

some deraining artifacts may also be introduced. Finally, we compare our algorithm
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First frame EpicFlow DCFlow FlowNet2 Ours Ground truth

Fig. 8: Method comparison on Flying Vehicle with Rain (FVR-660) dataset. (Best

viewed on screen).

Input Image EpicFlow DCFlow FlowNet2 Ours Ground Truth

Fig. 9: Method comparison on real rainy scenes with different severity level. The last

column is annotated ground truth using [20]. The black region in Ground Truth indicates

invalid region, which is not counted in flow evaluation. (Best zoomed in on screen).

with baseline methods on the manually annotated real rainy sequences in the NUS-100

dataset. The quantitative result is included in column 6 of Table 1 and qualitative results

are shown in Fig. 9.

7 Conclusion

We have introduced a robust algorithm for optical flow in rainy scenes. To our knowl-

edge, it is the first time an optical flow algorithm is specifically designed to deal with

rain. Through this work, we make a few contributions. We introduced the residue chan-

nel and colored-residue image that are both free from rain streaks and rain accumula-

tion. We proposed an integrated framework to deal with rain that combine the residue

channel, colored-residue image, and piecewise-smooth structure layer extraction. We

provide a rain optical flow benchmark containing both synthesized motion and real mo-

tion to the public.
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