This ECCV 2018 paper, provided here by the Computer Vision Foundation, is the author-created version.
The content of this paper is identical to the content of the officially published ECCV 2018
LNCS version of the paper as available on SpringerLink: https://link.springer.com/conference/eccy

License Plate Detection and Recognition in
Unconstrained Scenarios

Sérgio Montazzolli Silva[0000—0003—2444=3175] 41\ q Clgudio Rosito
Jungl0000—0002—4711-5783]

Institute of Informatics - Federal University of Rio Grande do Sul
Porto Alegre, Brazil
{smsilva,crjung}@inf.ufrgs.br

Abstract. Despite the large number of both commercial and academic
methods for Automatic License Plate Recognition (ALPR), most existing
approaches are focused on a specific license plate (LP) region (e.g. Eu-
ropean, US, Brazilian, Taiwanese, etc.), and frequently explore datasets
containing approximately frontal images. This work proposes a complete
ALPR system focusing on unconstrained capture scenarios, where the LP
might be considerably distorted due to oblique views. Our main contribu-
tion is the introduction of a novel Convolutional Neural Network (CNN)
capable of detecting and rectifying multiple distorted license plates in a
single image, which are fed to an Optical Character Recognition (OCR)
method to obtain the final result. As an additional contribution, we also
present manual annotations for a challenging set of LP images from differ-
ent regions and acquisition conditions. Our experimental results indicate
that the proposed method, without any parameter adaptation or fine
tuning for a specific scenario, performs similarly to state-of-the-art com-
mercial systems in traditional scenarios, and outperforms both academic
and commercial approaches in challenging ones.
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1 Introduction

Several traffic-related applications, such as detection of stolen vehicles, toll con-
trol and parking lot access validation involve vehicle identification, which is
performed by Automatic License Plate Recognition (ALPR) systems. The re-
cent advances in Parallel Processing and Deep Learning (DL) have contributed
to improve many computer vision tasks, such as Object Detection/Recognition
and Optical Character Recognition (OCR), which clearly benefit ALPR, sys-
tems. In fact, deep Convolutional Neural Networks (CNNs) have been the lead-
ing machine learning technique applied for vehicle and license plate (LP) de-
tection [18,28,19,3,2,9,31,17]. Along with academic papers, several commercial
ALPR systems have been also exploring DL methods. They are usually allocated
in huge data-centers and work through web-services, being able to process thou-
sands to millions of images per day and be constantly improved. As examples
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of these systems, we can mention Sighthound (https://www.sighthound.com/),
the commercial version of OpenALPR (http://www.openalpr.com/) and Ama-
zon Rekognition (https://aws.amazon.com/rekognition/).

Fig.1: Examples of challenging oblique license plates present in the proposed
evaluation dataset.

Despite the advances in the state-of-the-art, most ALPR systems assume
a mostly frontal view of the vehicle and LP, which is common in applications
such as toll monitoring and parking lot validation, for instance. However, more
relaxed image acquisition scenarios (e.g. a law enforcement agent walking with
a mobile camera or smartphone) might lead to oblique views in which the LP
might be highly distorted yet still readable, as illustrated in Fig. 1, and for which
even state-of-the-art commercial systems struggle.

In this work we propose a complete ALPR system that performs well over a
variety of scenarios and camera setups. Our main contribution is the introduction
of a novel network capable of detecting the LP in many different camera poses
and estimate its distortion, allowing a rectification process before OCR. An
additional contribution is the massive use of synthetically warped versions of
real images for augmenting the training dataset, allowing the network to be
trained from scratch using less than 200 manually labeled images. The proposed
network and data augmentation scheme also led to a flexible ALPR system that
was able to successfully detect and recognize LPs in independent test datasets
using the same system parametrization.

We also generalized an existing OCR approach develpoed for Brazilian LPs [28].
Basically, we re-trained their OCR network using a new training set composed
by a mixture of real and artificially generated data using font-types similar to
the target regions. As a result, the re-trained network became much more robust
for detection and classification of real characters in the original Brazilian sce-
nario, but also for European and Taiwanese LPs, achieving very high precision
and recall rates. All the annotated data used for this work is publicly available?,
and the reference images can be obtained by downloading the Cars Dataset [16],
the SSIG Database [6], and the AOLP dataset [10].

! Available at http://www.inf.ufrgs.br/~crjung/alpr-datasets.


https://www.sighthound.com/
http://www.openalpr.com/
https://aws.amazon.com/rekognition/
http://www.inf.ufrgs.br/~crjung/alpr-datasets.

License Plate Detection and Recognition in Unconstrained Scenarios 3

The remainder of this work is organized as follows. In Section 2 we briefly
review related approaches toward ALPR. Details of the proposed method are
given in Section 3, where we describe the LP detection and unwarping network,
as well as the data augmentation process used to train our models. The over-
all evaluation and final results are presented in Section 4. Finally, Section 5
summarizes our conclusions and gives perspectives for some future work.

2 Related Work

ALPR is the task of finding and recognizing license plates in images. It is com-
monly broken into four subtasks that form a sequential pipeline: vehicle detec-
tion, license plate detection, character segmentation and character recognition.
For simplicity, we refer to the combination of the last two subtasks as OCR.

Many different ALPR systems or related subtasks have been proposed in the
past, typically using image binarization or gray-scale analysis to find candidate
proposals (e.g. LPs and characters), followed by handcrafted feature extraction
methods and classical machine learning classifiers [1,4]. With the rise of DL,
the state-of-the-art started moving to another direction, and nowadays many
works employ CNNs due to its high accuracy for generic object detection and
recognition [23,24,21,25,8,11].

Related to ALPR are Scene Text Spotting (STS) and number reading in the
wild (e.g. from Google Street View images [22]) problems, which goals are to
find and read text/numbers in natural scenes. Although ALPR could be seen as
a particular case of STS, the two problems present particular characteristics: in
ALPR, we need to learn characters and numbers (without much font variabil-
ity) with no semantic information, while STS is focused on textual information
containing high font variability, and possibly exploring lexical and semantic in-
formation, as in [30]. Number reading does not present semantic information,
but dealing only with digits is simpler than the ALPR context, since it avoids
common digit/letter confusions such as B-8, D-0, 1-I, 5-S, for instance.

As the main contribution of this work is a novel LP detection network, we
start this section by reviewing DL-based approaches for this specific subtask, as
well as a few STS methods that can handle distorted text and could be used for
LP detection. Next, we move to complete ALPR DIL-based systems.

2.1 License Plate Detection

The success of YOLO networks [23,24] inspired many recent works, targeting
real-time performance for LP detection [28,9,31,17]. A slightly modified version
of the YOLO [23] and YOLOv2 [24] networks were used by Hsu et al. [9], where
the authors enlarged the networks output granularity to improve the number of
detections, and set the probabilities for two classes (LP and background). Their
network achieved a good compromise between precision and recall, but the paper
lacks a detailed evaluation over the bounding boxes extracted. Moreover, it is
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known that YOLO networks struggle to detect small sized objects, thus further
evaluations over scenarios where the car is far from the camera is needed.

In [31], a setup of two YOLO-based networks was trained with the goal of
detecting rotated LPs. The first network is used to find a region containing
the LP, called “attention model”, and the second network captures a rotated
rectangular bounding-box of the LP. Nonetheless, they considered only on-plane
rotations, and not more complex deformations caused by oblique camera views,
such as the ones illustrated in Fig. 1. Also, as they do not present a complete
ALPR system, it is difficult to evaluate how well an OCR method would perform
on the detected regions.

License plate detectors using sliding window approaches or candidate filtering
coupled with CNNs can also be found in the literature [3,2,27]. However, they
tend to be computationally inefficient as a result of not sharing calculations like
in modern meta-architectures for object detection such as YOLO, SSD [21] and
Faster R-CNN [25].

Although Scene Text Spotting (STS) methods focus mostly on large font
variations and lexical/semantic information, but it is worth mentioning a few
approaches that deal with rotated/distorted text and could be explored for LP
detection in oblique views. Jaderberg and colleagues [13] presented a CNN-based
approach for text recognition in natural scenes using an entirely synthetic dataset
to train the model. Despite the good results, they strongly rely on N-grams,
which are not applicable to ALPR. Gupta et al. [7] also explored synthetic
dataset by realistically pasting text into real images, focusing mostly on text
localization. The output is a rotated bounding box with around the text, which
finds limitations for off-plane rotations common in ALPR scenarios.

More recently, Wang et al. [29] presented an approach to detect text in a
variety of geometric positions, called Instance Transformation Network (ITN).
It is basically a composition of three CNNs: a backbone network to compute
features, a transformation network to infer affine parameters where supposedly
exists text in the feature map, and a final classification network whose input
is built by sampling features according to the affine parameters. Although this
approach can (in theory) handle off-plane rotations, it is not able to correctly
infer the transformation that actually maps the text region to a rectangle, since
there is no physical (or clear psychological) bounding region around the text
that should map to a rectangle in an undistorted view. In ALPR, the LP is rect-
angular and planar by construction, and we explore this information to regress
the transformation parameters, as detailed in Section 3.2.

2.2 Complete ALPR Methods

The works of Silva and Jung [28] and Laroca et al. [17] presented complete ALPR
systems based on a series of modified YOLO networks. Two distinct networks
were used in [28], one to jointly detect cars and LPs, and another to perform
OCR. A total of five networks were used in [17], basically one for each ALPR
subtask, being two for character recognition. Both reported real-time systems,
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but they are focused only on Brazilian license plates and were not trained to
capture distortion, only frontal and nearly rectangular LPs.

Selmi et al. [27] used a series of pre-processing approaches based on mor-
phological operators, Gaussian filtering, edge detection and geometry analysis
to find LP candidates and characters. Then, two distinct CNNs were used to
(i) classify a set of LP candidates per image into one single positive sample;
and (ii) to recognize the segmented characters. The method handles a single LP
per image, and according to the authors, distorted LPs and poor illumination
conditions can compromise the performance.

Li et al. [19] presented a network based on Faster R-CNN [25]. Shortly, a
Region Proposal Network is assigned to find candidate LP regions, whose corre-
sponding feature maps are cropped by a Rol Pooling layer. Then, these candi-
dates are fed into the final part of the network, which computes the probability
of being/not being an LP, and performs OCR through a Recurrent Neural Net-
work. Despite promising, the evaluation presented by the authors shows a lack
of performance in most challenging scenarios containing oblique LPs.

Commercial systems are good reference points to the state-of-the-art. Al-
though they usually provide only partial (or none) information about their ar-
chitecture, we still can use them as black boxes to evaluate the final output.
As mentioned in Section 1, examples are Sighthound, OpenALPR, (which is an
official NVIDIA partner in the Metropolis platform?) and Amazon Rekognition
(a general-purpose Al engine including a text detection and recognition module
that can be used for LP recognition, as informed by the company).

3 The Proposed Method

The proposed approach is composed by three main steps: vehicle detection, LP
detection and OCR, as illustrated in Fig. 2. Given an input image, the first
module detects vehicles in the scene. Within each detection region, the proposed
Warped Planar Object Detection Network (WPOD-NET) searches for LPs and
regresses one affine transformation per detection, allowing a rectification of the
LP area to a rectangle resembling a frontal view. These positive and rectified
detections are fed to an OCR Network for final character recognition.

3.1 Vehicle Detection

Since vehicles are one of the underlying objects present in many classical de-
tection and recognition datasets, such as PASCAL-VOC [5], ImageNet [26], and
COCO [20], we decided to not train a detector from scratch, and instead chose
a known model to perform vehicle detection considering a few criteria. On one
hand, a high recall rate is desired, since any miss detected vehicle having a visi-
ble LP leads directly to an overall LP miss detection. On the other hand, high

2 NVIDIA platform for video analysis in smart cities (https://www.nvidia.com/en-us/
autonomous-machines/intelligent-video-analytics-platform/).
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Fig. 2: Illustration of the proposed pipeline.

precision is also desirable to keep running times low, as each falsely detected
vehicle must be verified by WPOD-NET. Based on these considerations, we de-
cided to use the YOLOv2 network due to its fast execution (around 70 FPS)
and good precision and recall compromise (76.8% mAP over the PASCAL-VOC
dataset). We did not perform any change or refinement to YOLOv2, just used
the network as a black box, merging the outputs related to vehicles (i.e. cars and
buses), and ignoring the other classes.

The positive detections are then resized before being fed to WPOD-NET.
As a rule of thumb, larger input images allow the detection of smaller objects
but increase the computational cost [12]. In roughly frontal/rear views, the ratio
between the LP size and the vehicle bounding box (BB) is high. However, this
ratio tends to be much smaller for oblique/lateral views, since the vehicle BB
tends to be larger and more elongated. Hence, oblique views should be resized
to a larger dimension than frontal ones to keep the LP region still recognizable.

Although 3D pose estimation methods such as [32] might be used to deter-
mine the resize scale, this work presents a simple and fast procedure based on the
aspect ratio of the vehicle BB. When it is close to one, a smaller dimension can
be used, and it must be increased as the aspect ratio gets larger. More precisely,
the resizing factor fs. is given by

1 ) max(W,, Hy)
- D, 22X\ W, ) p 1
Jse min{Wv,Hv}mm{ (W, Hy) ' | (1)

where W, and H, are the width and height of the vehicle BB, respectively.
Note that Dy < fsemin(W,, Hy) < Diae, s0 that Dy, and Dypg, delimit
the range for the smallest dimension of the resized BB. Based on experiments
and trying to keep a good compromise between accuracy and running times, we
selected D,,;n = 288 and D, 4, = 608.

3.2 License Plate Detection and Unwarping

License plates are intrinsically rectangular and planar objects, which are at-
tached to vehicles for identification purposes. To take advantage of its shape, we
proposed a novel CNN called Warped Planar Object Detection Network. This
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network learns to detect LPs in a variety of different distortions, and regresses
coefficients of an affine transformation that “unwarps” the distorted LP into a
rectangular shape resembling a frontal view. Although a planar perspective pro-
jection could be learned instead of the affine transform, the division involved in
the perspective transformation might generate small values in the denominator,
and hence leading to numerical instabilities.

The WPOD-NET was developed using insights from YOLO, SSD and Spatial
Transformer Networks (STN) [14]. YOLO and SSD perform fast multiple object
detection and recognition at once, but they do not take spatial transformations
into account, generating only rectangular bounding boxes for every detection. On
the opposite, STN can be used for detecting non-rectangular regions, however
it cannot handle multiple transformations at the same time, performing only a
single spatial transformation over the entire input.

=T,.3

WPOD
Network
Input  Output Object high Square to object
Feedforward feature map probability cell transformation

Fig.3: Fully convolutional detection of planar objects (cropped for better visu-
alization).

The detection process using WPOD-NET is illustrated in Fig. 3. Initially, the
network is fed by the resized output of the vehicle detection module. The feed-
forwarding results in an 8-channel feature map that encodes object/non-object
probabilities and affine transformation parameters. To extract the warped LP,
let us first consider an imaginary square of fixed size around the center of a cell
(m,n). If the object probability for this cell is above a given detection threshold,
part of the regressed parameters is used to build an affine matrix that transforms
the fictional square into an LP region. Thus, we can easily unwarp the LP into
a horizontally and vertically aligned object.

Network Architecture The proposed architecture has a total of 21 convolu-
tional layers, where 14 are inside residual blocks [8]. The size of all convolutional
filters is fixed in 3 x 3. ReLU activations are used throughout the entire net-
work, except in the detection block. There are 4 max pooling layers of size 2 x 2
and stride 2 that reduces the input dimensionality by a factor of 16. Finally,
the detection block has two parallel convolutional layers: (i) one for inferring
the probability, activated by a softmax function, and (ii) another for regressing
the affine parameters, without activation (or, equivalently, using the identity
F(x) = x as the activation function).
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Fig. 4: Detailed WPOD-NET architecture.

Loss Function Let p; = [z;,1;]7, for i = 1,---,4, denote the four corners of
an annotated LP, clockwise starting from top-left. Also, let q; = [—0.5, —0.5]T,
g2 = [0.5,—0.5]T, g3 = [0.5,0.5]7, g4 = [-0.5,0.5]T denote the corresponding
vertices of a canonical unit square centered at the origin.

For an input image with height H and width W, and network stride given
by N, = 2* (four max pooling layers), the network output feature map consists
of an M x N x 8 volume, where M = H/N, and N = W/N,. For each point
cell (m,n) in the feature map, there are eight values to be estimated: the first
two values (v and vq) are the object/non-object probabilities, and the last six
values (vs to vg) are used to build the local affine transformation T,,,, given by:

max(vs,0) vy ] - [ﬂ |

U5 max(vs, 0) vg

Tinn(q) = [ (2)
where the max function used for vs and vg was adopted to ensure that the
diagonal is positive (avoiding undesired mirroring or excessive rotations).

To match the network output resolution, the points p; are re-scaled by the
inverse of the network stride, and re-centered according to each point (m,n) in
the feature map. This is accomplished by applying a normalization function

Amn(p) = é (;sp - {ZLD : (3)

where « is a scaling constant that represents the side of the fictional square. We
set a = 7.75, which is the mean point between the maximum and minimum LP
dimensions in the augmented training data divided by the network stride.

Assuming that there is an object (LP) at cell (m,n), the first part of the loss
function considers the error between a warped version of the canonical square
and the normalized annotated points of the LP, given by

4
fajﬁne(mvn) = Z 1 Tn(@i) — Amn(Pi)]]1- (4)
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The second part of the loss function handles the probability of having/not
having an object at (m;n). It is similar to the SSD con dence loss [21], and
basically is the sum of two log-loss functions

f probs (M; N) = logloss(lopj; V1) +10gloss(l oy ; Vo), )]

where o is the object indicator function that returns 1 if there is an object at
point (m;n) or 0 otherwise, and loglossy; p) = ylog(p). An object is considered
inside a point (m; n) if its rectangular bounding box presents an loU larger than
a threshold o (set empirically to 0:3) w.r.t. another bounding box of the same
size and centered at (; n).

The nal loss function is given by a combination of the terms de ned in
Egs. (4) and (5):

loss= [Iobjfane (m;n)+ fprobs (m; n)]: (6)
m=1 n=1

Training Details  For training the proposed WPOD-NET, we created a dataset
with 196 images, being 105 from the Cars Dataset, 40 from the SSIG Dataset
(training subset), and 51 from the AOLP dataset (LE subset). For each image we
manually annotated the 4 corners of the LP in the picture (sometimes morghan
one). The selected images from the Cars Dataset include mostly EuropedrPs,
but there are many from the USA as well as other LP types. Images from SSIG
and AOLP contain Brazilian and Taiwanese LPs, respectively. A few annotatel
samples are shown in Fig. 5.
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Fig. 5: Examples of the annotated LPs in the training dataset.

Given the reduced number of annotated images in the training dataset, he
use of data augmentation is crucial. The following augmentation transformsare
used:

{ Recti cation: the entire image is recti ed based on the LP annotation, as-
suming that the LP lies on a plane;

{ Aspect-ratio: the LP aspect-ratio is randomly set in the interval [2;4] to
accommodate sizes from di erent regions;



























