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Abstract. In this paper, we address the task of multi-view novel view
synthesis, where we are interested in synthesizing a target image with
an arbitrary camera pose from given source images. We propose an end-
to-end trainable framework that learns to exploit multiple viewpoints
to synthesize a novel view without any 3D supervision. Specifically, our
model consists of a flow prediction module and a pixel generation mod-
ule to directly leverage information presented in source views as well as
hallucinate missing pixels from statistical priors. To merge the predic-
tions produced by the two modules given multi-view source images, we
introduce a self-learned confidence aggregation mechanism. We evaluate
our model on images rendered from 3D object models as well as real and
synthesized scenes. We demonstrate that our model is able to achieve
state-of-the-art results as well as progressively improve its predictions
when more source images are available.

Keywords: Novel view synthesis, multi-view novel view synthesis

1 Introduction

With countless encounters of scenes and objects , humans learn to build a mental
understanding of 3D objects and scenes just from 2D cross-sections, which in
turn, allows us to imagine an unseen view with little effort. This is only possible
because humans can integrate their statistical understanding of the world with
the presented information. With more and more concrete prior information (e.g
more viewpoints, shape understanding etc.), humans learn to consolidate all the
information to predict with more confidence. This ability allows humans to make
an amodal completion from just the presented data. In computer vision, these
approaches are isolated and tackled separately, and the fusion of data is less well
understood. Hence, we would like to develop an approach that not only learns
to utilize what is given but also incorporate its 3D statistical understanding.

The task of synthesizing a novel view given an image or a set of images
is known as novel view synthesis. The practical applications of it range from

Code is available on our website https://shaohua0116.github.io/Multiview2Novelview
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Fig. 1: Overview of our proposed network architecture. Given a set of N source images
with different viewpoints and a target pose (on the left), Flow Predictor learns to
predict a dense flow field to move the pixels presented in a source image to produce
a target image for each source image. Recurrent Pixel Generator is trained to directly
synthesize a target image given a set of source images. The two modules are trained to
predict per-pixel confidence maps associated to their predictions. The final prediction
is obtained by aggregating the N + 1 predictions with self-learned confidence maps.

but not limited to: computer vision, computer graphics, and virtual reality. Sys-
tems that perform on cross-view image inputs, such as action recognition [1–3]
and 3D reconstruction [4–7], can leverage synthesized scenes to boost existing
performance when the number of available views is limited. Furthermore, novel
view synthesis can be used jointly on 3D Editing of 2D Photos [8–10] as well as
rendering virtual reality environments using a history of frames [11,12].

In this paper, we are interested in the task of novel view synthesis when
multiple source images are given. Given a target camera pose and an arbitrary
number of source images and their camera poses, our goal is to develop a model
that can synthesize a target image and progressively improve its predictions. To
address this task, a great amount of effort have been expended in geometry-
based methods [13–17] aiming to directly estimate the underlying 3D structures
by exploiting the knowledge of geometry. These methods, while successful with
abundant source data, are unable to recover the desired target viewpoint with
only a handful of images due to the inherent ambiguity of 3D structures.

With the emergence of neural networks, learning-based approaches have been
applied to tackle this issue of data sparsity. A great part of this research was
fueled by the introduction of a large-scale synthetic 3D model datasets such
as [18]. The previous line of work that uses learning can be vaguely divided
into two categories: pixel generation [19–21] and flow prediction [22, 23]. While
directly regressing pixels can generate structurally consistent results, it is suscep-
tible to generating blurry results largely in part of the inherent multi-modality of
this task. Flow prediction, on the other hand, can generate realistic texture but
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is unable to generate regions that are not present in the source image(s). Fur-
thermore, most of novel view synthesis frameworks focuses on synthesizing views
from a single source image due to the difficulty of aggregating the understanding
from multiple source images.

To step towards developing a framework that is able to address the task of
multi-view novel view synthesis, we propose an end-to-end trainable framework
(shown in Fig. 1) composed of two modules. The flow predictor estimates flow
fields to move the pixels from a source view to a target view; the recurrent pixel
generator, augmented with an internal memory, iteratively synthesizes and re-
fines a target view when a new source view is given. We propose a self-confidence
aggregation mechanism to integrate multiple intermediate predictions produced
by the two modules to yield results that are both realistic and structurally con-
sistent.

We compare our model against state-of-the-art methods on a variety of
datasets such as 3D-object models as well as real and synthetic scenes. Our main
contributions are as follows: we propose a hybrid framework which combines
the strengths of two main lines of novel view synthesis methods and achieves
significant improvement compared to existing work. We then demonstrate the
flexibility of our method; we show that our model is able to synthesize views
from a single source image as well as improve its predictions when additional
source views are available. Furthermore, our model can be adapted to scenes
rather than synthetic object data as it does not require 3D supervision.

2 Related Works

Geometry-based View Synthesis. A great amount of efforts have been ded-
icated to explicitly modeling the underlying 3D structure of both scenes and
objects [13–16]. While appealing and accurate results are guaranteed when mul-
tiple source images are available, this line of work is fundamentally not able to
deal with sparse inputs. Aiming to address this issue, a deep learning approach
is proposed in [24] focusing on the multi-view stereo problem by regressing di-
rectly to output pixel values. On the other hand, [25] explicitly utilizes learned
dense correspondences to predict the image in the middle view of a pair of source
images. The above-mentioned methods are limited to synthesizing a middle view
among source images and the number of source images is fixed; in contrast, our
proposed framework focuses on arbitrary target views and is able to learn from
source images vary in length.
Learning Dense Visual Correspondence.Discovering dense correspondences
among images has been studied in [26–29] with a wide range of applications
including depth estimation, optical flow prediction, image alignment, image re-
trieval, etc. Fundamentally differing from this task, novel view synthesis requires
the ability to hallucinate pixels of the target image which are missing from source
images.
Image Generation. A tremendous success in conditional image generation has
been made with deep generative models. Given the style, viewpoint, and color
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of an object, the method proposed in [30] is able to render realistic results. How-
ever, their method is not able to generalize to novel objects or poses which are
tackled in our proposed framework. Huang et al. [31] addressed the problem of
synthesizing a frontal view face from a single side-view face image. The pro-
posed model is specifically designed for face images. In contrast, our proposed
framework is able to synthesize both scenes and objects.
Image-to-image Translation. The task of translating an image from a domain
to another domain, known as image-to-image translation has recently received
a significant amount of attention [32–35]. One can consider the task of novel
view synthesis as an image-to-image translation problem where the target and
source domains are defined by the camera poses. Not only are the view synthesis
systems required to understand the representation of domain specifications e.g.
camera poses, but also the numbers of source and target domains are possibly
infinitely many due to the continuous representations of camera poses. Moreover,
novel view synthesis requires the understanding of geometry while the task of
image-to-image translation often only focuses on texture transfer.
3D Voxel/Point Cloud Prediction. Explicitly reconstructing 3D geome-
try has been intensively addressed in a multi-view setting, such as SfM and
SLAM [13–16], in which we are interested in the case where plenty of images
captured from different viewing angles are available. Recently, empowered by
large-scale repositories of 3D CAD models such as ShapeNet [18], predicting 3D
representations such as voxels and 3D point clouds from 2D views has achieved
encouraging results [6,7]. By contrast, we are interested in synthesizing views in-
stead of 3D representations of objects. Our approach requires no 3D supervision
nor explicit 3D model.
Novel View Synthesis. [19,20] propose to directly generate pixels of a target
view, while [22] re-casts the task of novel view synthesis as predicting dense flow
fields that map the pixels in the source view to the target view, but it is not
able to hallucinate the pixels which are missing from source view. [23] predicts a
flow to move the pixels from the source to the target view, followed by an image
completion network. There are three key differences between our work and [23].
First, [23] requires 3D supervision which limits the method to only objects; on
the other hand, our model requires no 3D supervision and therefore is able to
synthesize scenes. Second, we address the task where the source images vary in
length while [23] focuses on a single source image. Third, we design our model to
predict a flow and hallucinate pixels independently, which enables our framework
to take advantage of both modules to produce structural consistent shape and
sharper appearance. This design also makes our model end-to-end trainable.
Instead, [23] considers it as a sequential process where the pixel generation
network is only considered as a refinement network.

3 Approach

When synthesizing a novel view from multi-view input, we want our model to (1)
directly reuse information from the source as well as hallucinate missing informa-
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tion; (2) progressively improve its prediction as more information is available. To
put this idea into practice, we design a flexible neural network framework that
progressively improves its prediction as more input information is presented. To
put (1) into practice, we design our framework to be a two-stream model that
consists of a flow predictor and a pixel generator (shown in Figure 1). The flow
predictor learns to reuse the pixels presented in source images, while the pixel
generator learns to hallucinate pixels. To take advantage of the strengths of both
the modules as well as achieve (2), we aggregate intermediate predictions using
a self-learned confidence aggregation mechanism.

3.1 Overview and Notations

Our goal is to synthesize a target image Itarget given a target camera pose
ptarget and N (image, camera-pose) pairs (I1s , p

1
s), (I

2
s , p

2
s)..., (I

N
s , pNs ). We either

use a one-hot vector to represent discrete camera-pose, or a 6DoF vector for
continuous camera pose. We denote the flow predictor as F(·), and denote the
pixel generator as P(·). We put a subscript f and p for predictions made by F(·)
and P(·), respectively. Given t-th source image Its and its corresponding pose
pts, the flow predictor generates a prediction Itf , c

t
f = F(ptarget, I

t
s, p

t
s), where

Itf is a predicted target image and ctf is the corresponding confidence map.
The flow predictor independently produces N predictions from N source images
since it learns to estimate the relative pixel movements from source viewpoint
to the target viewpoint. The pixel generator, on the other hand, is designed as a
recurrent model, which outputs a prediction Itp, c

t
p = P(ptarget, I

1
s , p

1
s, ..., I

t
s, p

t
s)

given t source images. Itp is the predicted target image and ctp is the corresponding

confidence map. The final prediction Îtarget is generated by aggregating the N+1
predictions (N from the flow module and 1 from the pixel module).

3.2 Flow Predictor

Inspired by [22], we design a flow module that learns to predict dense flow fields.
The output indicates the pixel displacement from the source image to the target
image. Given t-th source image Its, the model first predicts 2D dense flow fields
from the original image in x and y-axis by (xt, yt) = G(Its, p

t
s, ptarget). This flow

field is then used to sample from the original image by Itf = T (xt, yt, I
t
s), where

Itf denotes the predicted target image given Its. Here G(·) predicts the flow,
and T (·) bilinearly samples from the source image. This differentiable bilinear
sampling layer was originally proposed by [36]. We optimize the flow predictor
by minimizing the following equation:

LF =
1

N

N∑

t=0

||Itarget − Itf ||1, (1)

We use an encoder-decoder architecture with residual blocks and skip con-
nections. The architecture details are left in the supplementary section. The
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encoder of this model takes a source image as well as its associated pose, where
a pose vector is spatially tiled and concatenated to the source image channel-
wise. The decoder upsamples the features to match the dimension of the input
image. We empirically find that this architecture outperforms the architecture
originally proposed in [22]. This comparisons can be found in Section 4.3.

3.3 Pixel Generator

The flow predictor is able to yield a visually appealing result when the source
pose and the target pose are close – i.e. when the target is well represented by
the source. Yet, it is not capable of generating pixels beyond the source pixels.
Therefore, it is only natural to rely on the prior understanding of the underlying
3D structure.

The architecture of this module is very similar to our flow module. It is
an encoder-decoder style network with an internal memory using Convolutional
Long-Short Term Memory (ConvLSTM) [37], which is able to progressively im-
prove its prediction with varying input lengths. Note that the ConvLSTMs are
used only in the bottleneck layers and the mathematical formulation is left in the
supplementary section. The pixel generator is trained to minimize the following
equation:

LP =
1

N

N∑

t=0

||Itarget − Itp||1, (2)

where Itp denotes a predicted target image by Itp, c
t
p = P(ptarget, I

1
s , p

1
s, ..., I

t
s, p

t
s).

To enforce our model to generate sharp images, we also incorporate an adver-
sarial loss into our objective. We utilize the formulation proposed in [38], where
an additional discriminator is trained to optimize:

LD = E[(1−D(Itarget))
2] + E[

1

N

N∑

t=0

(D(Itp))
2]. (3)

With the pixel generator minimizing the following additional loss:

LG = E[
1

N

N∑

t=0

(1−D(Itp))
2]. (4)

The final objective for the pixel module can be compactly represented as:
LP +λLG, where λ denotes the weight of the adversarial loss. The details of the
discriminator architecture and GAN training can be found in the supplementary
section.

3.4 Self-learned Confidence Aggregation

The flow module is able to produce visually realistic images by reusing the pixels
from source images; however, synthesized images are often incomplete due to
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possible occlusions or pixels missing from source images. On the other hand, the
pixel module is trained to directly hallucinate the target image and is able to
produce structurally consistent results, their appearance is usually blurry due
to the inherent ambiguity of minimizing a regression loss. Our key insight is to
alleviate the disadvantages of the two modules by aggregating the advantages
of both information. Inspired by the recent flourish of Bayesian deep learning

[39,40], where we are interested in modeling uncertainty of neural networks, we
propose to train networks to predict confidence.

Specifically, we want an algorithm that is able to produce a per-pixel confi-
dence map associated with its predictions. We formulate this confidence predic-
tion objective as:

LC =
1

HW

∑

x,y

||Itarget − Î||◦2 ◦
c

∑

x,y ||c||2
, (5)

where Î is the predicted target image (either from flow or pixel module), and c

is the estimated confidence map with a size of H by W . || · ||◦2 is an element-wise
square operator, ◦ is the Hadamard product. To minimize this objective, the
models have to learn to put more weight on pixels where they are confident and
less on regions it is not. Each module is augmented with an additional output
layer to predict the confidence map. The confidence maps are optimized via the
objective described in Equation 5.

We normalize the predicted confidences maps by applying a Softmax across
N +1 confidence maps. The normalized confidence maps, denoted as ĉ, can then
be used to aggregate the predictions: Îtarget = INp ⊙ ĉNp +

∑N

i=0
Iif ⊙ ĉif . To

iterate, Îtarget denotes the final aggregated image, INp denotes the last output

of the recurrent pixel generator, and Iif denotes the output of the flow predictor
given the i-th source image. The reconstruction loss on the aggregated prediction
is LA = ||Itarget − Îtarget||1. The final objective of the full model is:

min βLA +

Flow Prediction
︷ ︸︸ ︷

LF + αfLC +

Pixel Prediction
︷ ︸︸ ︷

LP + λLG + αpLC (6)

where αf , αp, are weights for confidence map predictions and β is the weight
for the global confidence scale. The effectiveness and the gradual improvement
of using confidence maps are demonstrated in Section 4. The architecture and
training details can be found in Supplemental Material.

4 Experiments

We evaluate our model in multi-view and single-view settings on ShapeNet [18]
objects, real-world scenes (KITTI Visual Odometry Dataset [41]), and synthe-
sized scenes (Synthia dataset [42]). We benchmark against a pixel generation
method [19], a flow prediction approach [22], and a state-of-the-art novel view
synthesis framework [23]. We use L1, and structural similarity measure (SSIM)
as quantitative reconstruction metrics. Furthermore, to investigate whether our
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Fig. 2: Results on ShapeNet [18]. The proposed framework typically synthesized cars
and chairs with correct shapes and realistic appearance. [19] generates structurally co-
herent but blurry images. [22] produces realistic results but suffers from distortions and
missing pixels. [23] outperforms both [19] and [22] while sometimes produces unrealistic
results.
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c4pc4fc3fc2fc1f
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Fig. 3: Results and confidence maps generated from our proposed model. The first
N intermediate predictions are produced by the flow predictor, and the last one is
obtained by the pixel generator. Confidence maps are plotted with Jet colormap, where
red means higher confidence and blue means lower confidence. This demonstrates that
our model is able to adaptively exploit the information from different source poses with
confidence maps.

model can synthesize semantically realistic images, we quantify our results using
a segmentation score predicted by FCN [43] trained on Synthia dataset [42].

4.1 Novel view synthesis for objects

We train and test the proposed model on ShapeNet [18], where ground truth
views of arbitrary camera poses are available.

Data setup We render images of 3D models from the car category and the chair
category. For each model, we render images with the dimension of 256× 256 for
a total of 54 viewpoints, which corresponds to 18 azimuth angles (sampled in
the range [0, 340] with 20-degree increments) and the elevations of 0, 10, and 20.
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Fig. 4: Visualization of the predicted confidence maps for car and chair model. Each en-
try represents a predicted confidence map for a given source image and target pose. The
confidence is represented using the jet-colormap, where red indicates highly confident,
and blue indicating the otherwise.

The pose of each image is represented as a concatenation of two one-hot
vectors: an 18 element vector indicating the azimuth angle and a 3 element vec-
tor indicating the elevation. We use the same training and testing splits used
in [22,23] (80% of models for training and the rest 20% for testing). Each train-
ing/testing tuple is constructed by sampling a target pose as well as N source
poses and their corresponding images 〈Itarget, pt, I

1
s , p

1
s, .., I

N
s , pNs 〉. We randomly

sample 20,000 tuples to create the testing split. N is set to 4 for this experiment.

Results The quantitative results are shown in Table 1 while the qualitative re-
sults can be found in Figure 2. The results demonstrate that our proposed model
is able to reliably synthesize target images when single or multiple source images
are available. Our model outperforms the three methods on both L1 distance and
SSIM. The pixel generation method [19] is capable of producing well-structured
shapes but not appealing texture, while the flow prediction method [22] preserves
realistic texture but is not able to hallucinate pixels missing from source. While
the results produced by [23] are mostly satisfactory, when the flow module fails,
the synthesized images generated by the refinement network usually either do
not stay true to the source image – likely due to the adversarial loss – and is
hugely distorted. Typically, our proposed framework is able to synthesize struc-
turally consistent and realistic results by aggregating intermediate predictions
with confidence maps.

We observe that the quality of the synthesized images of both cars and chairs
improve as the number of source images increases. However, the marginal gain
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Views Methods Car Chair

L1 SSIM L1 SSIM

[19] .139 .875 .223 .882
1 [22] .148 .877 .229 .871

[23] .119 .913 .202 .889
Ours .098 .923 .181 .895

[19] .124 .883 .209 .890
2 [22] .107 .901 .207 .881

Ours .078 .935 .141 .911

[19] .116 .887 .197 .898
3 [22] .089 .915 .188 .887

Ours .068 .941 .122 .919

[19] .112 .890 .192 .900
4 [22] .081 .924 .165 .891

Ours .062 .946 .111 .925

Table 1: ShapeNet objects: we compare
our framework to [19], [22], and [23].

Views Methods Car Chair

L1 SSIM L1 SSIM

Pixel .111 .911 .187 .892
1 Flow .119 .916 .208 .883

Ours .098 .923 .181 .895

Pixel .095 .919 .148 .907
2 Flow .097 .927 .180 .890

Ours .078 .935 .141 .911

Pixel .087 .923 .130 .915
3 Flow .086 .933 .164 .895

Ours .068 .941 .122 .919

Pixel .082 .925 .119 .919
4 Flow .079 .938 .152 .900

Oracle .070 .941 .112 .923
Ours .062 .946 .111 .925

Table 2: Ablation study. We compare the
performance of our full model to each
module. Flow denotes the flow predictor
and Pixel denotes the pixel generator.

decreases as the number of source images increases. This aligns with our in-
tuition that each additional view contributes less new information since two
random views are very likely to overlap with each other. Confidence maps and
intermediate predictions shown in Figure 3 demonstrate that our model learns
to adaptively exploit predictions produced by both of the two modules from
multiple source images.

Learn to predict visibility maps without 3D supervision [23] trains the
model to predict visibility maps, indicating which parts in a target image are
visible from the source view. This requires prior 3D knowledge as it needs 3D
coordinate and surface normal to produce ground truth visibility maps as super-
vision. With the predicted visibility maps, one is able to re-cast the remaining
synthesis problem as image completion problem. On the other hand, as demon-
strated in Figure 4, our model learns to predict confidence maps which share a
similar concept of visibility maps without any 3D supervision. Specifically, our
model is implicitly forced to comprehend which target pixels are presented in
source images by learning to optimize the losses introduced in the proposed self-
learned confidence aggregation mechanism. This is especially important in real
life application where 3D supervision is most likely not available – allowing our
model to be trained on not only objects but also scenes.

4.2 Novel view synthesis for scenes

While most of the existing novel view synthesis approaches only focus on ShapeNet,
we are also interested in generalizing our proposed model to scenes, where 3D
supervision is not available and training category-dependent models is not triv-
ial. To this end, we train and test our framework on both real (KITTI Visual
Odometry Dataset [41]) and synthetic (Synthia Dataset [42]) scenes.
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Fig. 5: Synthesized scenes on KITTI [41] and Synthia [42] datasets. Our framework
typically produces structurally consistent and realistic results. Note that [22] struggles
with distortions and missing pixels, and [19] is unable to generate sharp results.

KITTI The dataset [41] was originally proposed for SLAM evaluation. It con-
tains frame sequences captured by a car traveling through urban city scenes
with their camera poses. We use 11 sequences extracted from the dataset, whose
ground truth camera poses are available, On average each sequence contains
around two thousand frames. We use 80% frames for training and the rest of
20% for testing. We center-crop each frame to form an image with a dimension
of 256× 256. We convert each transformation matrix to its 6DoF representation
(a translation vector and Euler angles) as a pose representation. We follow [22]
to construct the training and testing set. We restrict the source frame and the
target frame to be separated by at most 10 frames. To create the testing split,
we randomly sample 20, 000 tuples. N is set to 2 for scene experiments.

Synthia The data was originally proposed for semantic segmentation in urban
scenarios. Similar to [41], it contains realistic synthetic frame sequences captured
by a driving car in a virtual world with their camera poses. We use sequences
from all four seasons to train our model. We follow the same preprocessing
procedures as KITTI to create the training and testing tuples.

Results As shown in Table 3, our proposed framework outperforms the two
methods. Qualitative comparisons are shown in Fig. 5. Both [19] and [22] learn to
infer the relative camera movements and synthesized scene accordingly. However,
[19] hugely suffers from blurriness due to the uncertainty, while [22] is not able to
produce satisfactory results when a camera pose changes drastically. Typically,
our proposed framework is able to synthesize structurally consistent and realistic
results. Also, the proposed framework does not suffer from the missing pixels by
utilizing the scenes rendered by our proposed pixel generator. The two modules
learn to leverage each others strength, as shown in Figure 3. We observed that
none of the models perform well when some uncertainties are not able to be
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Views Methods KITTI Synthia

L1 SSIM L1 SSIM

[19] .295 .505 .175 .612
1 [22] .418 .504 .221 .636

Ours .203 .626 .141 .697

[19] .283 .511 .172 .615
2 [22] .259 .626 .154 .702

Ours .163 .691 .118 .737

Table 3: Scenes: we compare our frame-
work to [19] and [22] on KITTI and Syn-
thia.

Views Methods KITTI Synthia

L1 SSIM L1 SSIM

Pixel .259 .505 .183 .622
1 Flow .397 .539 .211 .652

Ours .203 .626 .141 .697

Pixel .234 .525 .168 .628
2 Flow .249 .656 .149 .720

Oracle .199 .658 .140 .718
Ours .163 .691 .118 .737

Table 4: Ablation study. We compare the
performance of our full model to each
module. Flow denotes the flow predictor
and Pixel denotes the pixel generator.

resolved purely based on source images and their pose. For instance, they include
the speed of other driving cars, the lighting condition change, etc.

Semantic evaluation metrics Although the L1 distance and SSIM are good
metrics to measure the distance between a pair of images in the pixel domain,
they often fail to capture the semantics of the generated images. Isola et al. [32]
proposed to utilize a metric, similar to inception score [44], to measure the
semantic quality of the synthesized images. Inspired by this, we evaluate our
synthesized results using semantic segmentation score produced by a FCN [43]
model trained on image semantic segmentation. We obtained the pretrained
segmentation model trained on PASCAL VOC dataset [45] and then fine-tuned
it on the sequences extracted from Synthia dataset [42] with the same training
and testing split used in our view synthesis task. The FCN scores are shown in
Table. 5 and the qualitative results are shown in Fig. 6.

4.3 Ablation Study

To investigate how different blocks of the framework affect the final outcomes, we
conduct ablation studies on all the datasets. The qualitative results including
intermediate predictions by the two modules can be found in Figure 3. The
quantitative results can be found in Table 2 and Table 4, where Flow denotes
aggregated predictions made by the flow predictor with its predicted confidence
maps e.g.

∑N

i=0
Iif ⊙ ĉif , where ĉ is softmaxed across only c1f , ..., c

N
f . Note that

this does not use the image synthesized by the pixel generator. Pixel denotes
the last results produced by the pixel generator, e.g. INp .

One could argue that our model just learns to pick the best intermediate
prediction. Hence, to investigate whether our model actually learns a mean-
ingful self-confidence aggregation by comparing against an oracle. We quan-
tify the best intermediate result from all 2N intermediate predictions produced
by both modules. We denote this as the Oracle intermediate performance, e.g.
min ||Itarget − Î||1 ∀Î ∈ {I1f , I

1
p , ..., I

N
f , INp }.

We observed that our full model outperforms each module and the oracle.
Also, our flow module with a fully convolutional architecture and residual blocks
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Target [19] [22] Ours

Fig. 6: Synthia FCN-results for the scenes
synthesized by [19], [22], and our frame-
work. The results produced by our frame-
work yield better segmentation maps.

Methods Per-pixel acc. Per-class acc. IOU

[19] 0.630 0.469 0.211
[22] 0.789 0.69 0.427
Ours 0.803 0.695 0.441

Ground Truth 0.868 0.783 0.586

Table 5: FCN-scores for different meth-
ods. The scores are evaluated by FCN-
32 pretrained on PASCAL VOC and fine-
tuned on Synthia dataset. The scores are
estimated on synthesized scenes produced
by [19], [22], and our proposed framework
with one input view.

outperforms [22]. Our method is able to alleviate the issue of severe distortions
reported in [22]. Our proposed recurrent pixel generator not only outperforms
[19] but also show greater improvement (car: 26%, chair: 36%, KITTI: 10%,
Synthia: 8%) when more source images are available compared to [19] (car: 19%,
chair: 14%, KITTI: 4%, Synthia: 2%), which demonstrates the effectiveness of
the recurrent pixel generator.

5 Conclusion

In this paper, we present an end-to-end trainable framework that is capable of
synthesizing a novel view from multiple source views without utilizing 3D super-
vision. Specifically, we propose a two-stream model that integrates the strengths
of the two main lines of existing view synthesis techniques: pixel generation
and flow prediction. To adaptively merge the predictions produced by the two
modules given multiple source images, we introduce a self-learned confidence
aggregation mechanism. We evaluate our model on images rendered from 3D
object models as well as real and synthesized scenes. We demonstrate that our
model is able to achieve state-of-the-art results as well as progressively improve
its predictions when more source images are available.
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