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Abstract. Videos recorded from first person (egocentric) perspective have little

visual appearance in common with those from third person perspective, espe-

cially with videos captured by top-view surveillance cameras. In this paper, we

aim to relate these two sources of information from a surveillance standpoint,

namely in terms of identification and temporal alignment. Given an egocentric

video and a top-view video, our goals are to: a) identify the egocentric camera

holder in the top-view video (self-identification), b) identify the humans visible

in the content of the egocentric video, within the content of the top-view video

(re-identification), and c) temporally align the two videos. The main challenge is

that each of these tasks is highly dependent on the other two. We propose a uni-

fied framework to jointly solve all three problems. We evaluate the efficacy of the

proposed approach on a publicly available dataset containing a variety of videos

recorded in different scenarios.

1 Introduction

The widespread use of wearable devices such as GoPro cameras and smart glasses has

created the opportunity to collect first person (egocentric) videos easily and in large

scale. People tend to collect large amounts of visual data using their cell phones and

wearable devices from the first person perspective. These videos are drastically different

from traditional third person videos captured by static surveillance cameras, especially

if the third person camera is recording top-down, as there could be very little overlap in

the captured frames by the two cameras. Even though a lot of research has been done

studying these two domains independently, relating the two views systematically has

yet to be fully explored. From a surveillance standpoint, being able to relate these two

sources of information and establishing correspondences between them could lead to

additional beneficial information for law enforcement. In this work, we take a step to-

wards this goal, by addressing three following problems:

Self-identification: The goal here is to identify the camera holder of an egocentric

video in another reference video (here a top-view video). The main challenge is that the

egocentric camera holder is not visible in his/her egocentric video. Thus, there is often

no information about the visual appearance of the camera holder (example in Fig. 1).

Human re-identification: The goal here is to identify the humans seen in one video

(here an egocentric video) in another reference video (here a top-view video). This

problem has been studied extensively in the past. It is considered a challenging prob-

lem due to variability in lighting, view-point, and occlusion. Yet, existing approaches
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Fig. 1: A pair of top- (left) and egocentric (right) views. Self identification is to identify the

egocentric camera holder (shown in red). Human re-identification is to identify people visible in

the egocentric video, in the content of the top-view video (orange and purple).

assume a high structural similarity between captured frames by the two cameras, as

they usually capture humans from oblique or side views. This allows a rough spatial

reasoning regarding parts (e.g., relating locations of head, torso and legs in the bound-

ing boxes). In contrast, when performing human re-identification across egocentric and

top-view videos, such reasoning is not possible (examples are shown in Figs. 1 and 2).

Temporal alignment: Performing temporal alignment between the two videos directly

is non-trivial as the top-view video contains a lot of content that is not visible in the ego-

centric video. We leverage the other two tasks (self identification and re-identification)

to reason about temporal alignment and estimate the time-delay between them.

The interdependency of the three tasks mentioned above encourages designing a

unified framework to address all simultaneously. To be able to determine the camera

holder’s identity within the content of the top-view video (task 1), it is necessary to

know the temporal correspondence between the two videos (task 3). Identifying the

people visible in the egocentric video in the content of the top-view video (task 2),

would be easier if we already knew where the camera holder is in the top-view video

at the corresponding time (tasks 1 and 3), since we can reason about who the camera

holder is expected to see at any given moment. Further, knowing the correspondence

between the people in ego and top views, and temporal alignment between two videos

(tasks 2 and 3), could hint towards the identity of the camera holder (task 1). Finally,

knowing who the camera holder is (task 1) and who he is seeing at each moment (task 2)

can be an important cue to perform temporal alignment (task 3). The chicken-and-egg

nature of these problems, encourage us to address them jointly. Thus, we formulate the

problem as jointly minimizing the total cost Ctot(ls, Lr, τ), where ls is the identity of

the camera holder (task 1), Lr is the set of identities of people visible in the egocentric

video (task 2), and τ is the time offset between the two videos (task 3).

Assumptions: In this work, we hold assumptions similar to [1]. We assume that bound-

ing boxes and trajectories in top-view are given (provided by the dataset). Therefore,

an identity in top-view refers to a set of bounding boxes belonging to one person over

time. We further assume that the top-view video contains all the people in the scene

(including the ego-camera holder and other people visible in the ego video).
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Fig. 2: Sample ego- and top-view bounding boxes. Unlike conventional re-identification in-

stances, rough spatial alignment assumptions do not hold.

2 Related Work

Self-identification and self-localization of egocentric camera holder have been studied

during the last few years. [2] uses the head motion of an egocentric viewer as a bio-

metric signature to determine which videos have been captured by the same person. In

[3], egocentric observers are identified in other egocentric videos by correlating their

head motion with the egomotion of the query video. Authors in [4] localize the field

of view of egocentric videos by matching them against Google street view. Landmarks

and map symbols have been used in [5] to perform self localization on a map, and [6,

7] use the geometric structure between different semantic entities (objects and semantic

segments) for the problem of self-localization, by relating them to GIS databases. The

closest works to ours are [8] and [1, 9]. Please note that the mentioned works [8, 1] do

not address the other two problems of re-identification and temporal alignment. Our

self-identification problem differs from [8] in three main aspects:

1. [8] self identifies the egocentric camera holder in a third person video using a fully su-

pervised method. Please note that even though we perform unsupervised and supervised

re-identification and use that as a prior, there is no supervision in the self-identification

task. 2. In [8]’s dataset, each egocentric video contains the majority of other identi-

ties, which could hold in settings such as sitting and having a conversation. As a result,

cropping one person out from the third person video will have a lot in common with the

content of that person’s egocentric video. In our dataset, however, this is not the case, as

many egocentric viewers do not observe each other at all. 3. In [8]’s dataset, third person

videos have a generic ground level viewpoints, which makes them have similar proper-

ties to the egocentric videos in terms of spatial reasoning. The difference between first

and third person videos are more severe when the third person video is top-view like

ours. Nonetheless, we evaluate [8] on our dataset as a baseline. [1, 9] approached the

problem of egocentric self-identification in top-view videos for the first time, leverag-

ing the relationship among different egocentric videos. However, this method is highly

dependent on the completeness of the egocentric set and performs poorly when there is

only one egocentric video. We use this method as another baseline in our experiments.

Human Re-identification This problem has been studied heavily in the past (e.g., [10–

14, 14–16]). Deep learning methods have recently been applied to person re-identification

[17–19]. Yi [20] uses a Siamese network for learning appearance similarities. Similarly

Ahmed [21] uses a two stream deep neural network to determine visual similarity be-

tween two bounding boxes. Cheng et al. [22] uses a multi-channel CNN in a metric

learning based approach. Cho et al. [23] proposes using pose priors to perform compar-
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Fig. 3: The block diagram of our proposed method. We use three main cues: visual, geometrical,

and spatiotemporal. Visual reasoning is used for initializing re-identification correspondences.

Combining geometric and visual reasoning, we generate a set of candidate (ls, τ) pairs. Finally,

we evaluate the candidates using graph cuts while enforcing spatiotemporal consistency and find

the optimum combination of labels and values.

ison between different candidates, and Matsukawa et al. [24] uses a region descriptor

based on hierarchical Gaussian distribution of pixel features for this task. In the egocen-

tric domain, the study reported in [25] performs person re-identification in a network of

wearable devices, and [26] addresses re-identification across time-synchronized wear-

able cameras. To the best of our knowledge, our work is the first attempt in address-

ing this problem across egocentric and top-view domains. Visual appearance is often

the main cue for human re-identification. This cue can change from one camera to

another due to occlusion, viewpoint, and lighting. However, the variation is often rel-

atively low across different static surveillance cameras as the nature of the data is the

same (both cameras being ground level or oblique viewpoints). In contrast, in situations

where a set of surveillance and egocentric cameras are used, appearance variation is

more severe due to egocentric camera motion, more drastic difference in field of views,

lighting direction, etc. Thus, we propose a network to unify the representation of hu-

man detection bounding boxes across egocentric and top-view videos. In fact our visual

re-identification network could be replaced with any other re-identification framework

capable of measuring the visual similarity between the egocentric and top-view human

detection bounding boxes. We compare and contrast our results with state of the art

human identification methods in the experiments section.

Relating first- and third-person vision: [27, 28] have explored the relationship be-

tween mobile and static cameras for improving object detection. [29] fuses information

from the first and third person static cameras and laser range data to improve depth per-

ception and 3D reconstruction. Park et al. [30] predict gaze behavior in social scenes

using first and third-person cameras. Soran et al. [31] have addressed action recogni-

tion in presence of one egocentric and multiple static videos and [32] explores transfer

learning across egocentric and exocentric actions.
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3 Framework

We aim to address three different tasks jointly. To find the optimal values for all of the

variables in a unified framework, we seek to optimize the following objective:

l∗s , L
∗
r , τ

∗ = argmin
ls,Lr,τ

Ctot(ls, Lr, τ) (1)

Assuming a set of identities visible in the top-view video as It = {1, 2, ..., |It|}, our

goal in task 1 is to identify the camera holder (assign a self-identity ls). We assume

that the camera holder is visible in the content of the top-view video, thus ls ∈ It.

In task 2, we aim to perform human re-identification for the visible humans in the

egocentric video. Let De = {de1, d
e
2, ..., d

e
|De|} be the set of all human detection bound-

ing boxes across all the frames of the egocentric video. In task 2, we find labeling

Lr = {le1, l
e
2, ..., l

e
|De|} ∈ |I

t|
|De|

, which is the set of re-identification labels for human

detection bounding boxes. Finally, τ is the time offset between the egocentric and top-

view video, meaning that frame τ0 in the top-view video corresponds to frame τ0 + τ

in the egocentric video. We estimate τ in task 3. In our notation, we use superscripts to

encode the view (t: top, e: ego).

The block diagram of our proposed method is shown in Fig. 3. Our method is based

on three types of reasonings across the two views. First, we perform visual reasoning

across the two videos by comparing the visual appearance of the people visible in the

top video to the people visible in the egocentric video. This reasoning will provide us

some initial probabilities for assigning the human detection bounding boxes in the ego-

view to the identities in the top-view video. It gives an initial re-identification prior

based on the likelihood of the human detections matching to top-view identities (Sec

3.1). The second cue is designed to geometrically reason about the presence of differ-

ent identities in each other’s field of view in top-view over time (Sec 3.2), providing us

cues for re-identification based on self-identification. We then define two spatiotempo-

ral constraints to enforce consistency among our re-identification labels (Section 3.3) in

ego view. In the fusion step (Sec 3.4), we combine visual and geometrical reasoning to

narrow down the search space and generate a set of candidate (ls, τ) pairs. Finally, we

enforce spatiotemporal constraints and evaluate the candidates using graph cuts [33].

3.1 Visual Reasoning

The first clue for performing re-identification across the two views is to compare appear-

ances of the bounding-boxes. Since in traditional re-identification works both cameras

are static, and they have similar poses (oblique or ground level), there is an assumption

of rough spatial correspondence between two human detection bounding boxes (i.e.

the rough alignment in location of head-torso-leg between two bounding boxes). Since

the viewpoints are drastically different in our problem, the rough spatial alignment as-

sumption does not hold. A few examples are shown in Fig. 2. We perform this task

in unsupervised and supervised settings. In the unsupervised setting, we extract some

generic features from the two views and directly compare their features. In the super-

vised setting, we design a two stream network capable of measuring similarity across

the two views.
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Unsupervised Baseline For each bounding box dei in the ego-view, we extract VGG-

19 deep neural network features [34] fe
i (last fully connected layer, 4096 dimensional

features). We perform L2 normalization on the features. As mentioned before, top-

view bounding boxes are tracked and identities have been assigned to each track (set

of bounding boxes belonging to each person). Therefore, for identity j in the top-view

video, we extract VGG features from all of its bounding-boxes and represent identity j

with the average of its feature vectors f t
j .

To enforce the notion of probability, we measure the probability of ego-view bound-

ing box dei being assigned to label j in top-view (lei = j) as:

P (lei = j) =
e−||fe

i −ft
j ||

∑|It|
m=1 e

−||fe
i
−ft

m||
. (2)

Supervised Approach: Training: We train a two stream convolutional neural network

to match humans across the two views. As illustrated in Fig. 4, each stream consists of

convolution and pooling layers, ending in fully connected layers. The output is defined

as the Euclidean distance of the output of the last fully connected layers of each stream

passed through a sigmoid activation. If the two bounding boxes belong to the same

identity, the output is set to zero (and one, otherwise). This forces the network to find a

distance measure across the two views.

Testing: We feed bounding box dei to the ego stream of the network and extract fe
i (We

perform L2 normalization). In top-view, for identity j we feed all of its bounding-boxes

to the top-view stream and represent identity j with the average of its feature vectors f t
j .

Similar to the unsupervised approach, we measure the probability of ego-view bounding

box dei being assigned to label j in top-view (lei = j) according to Eqn. 2.

Implementation details of the CNN: We resize each of the top-view bounding boxes to

40×40, and each ego-view bounding box to 300×100 in the RGB format (3 channels).

Each stream consists of 3 convolutional blocks, each having two convolutional layers

and a pooling layer with 2 × 2 pooling. The number of filters for the convolutional

layers in order are 16, 16, 32, 32, 64, and 64. Finally, each stream projects to two fully

connected layers (top stream: 512, 128; ego-stream: 1024, 128). The euclidean distance

of the output of the two streams is then passed through a sigmoid activation in order to

enforce the notion of probability. We use Adam optimizer with learning rate of 0.001

and binary cross entropy loss, and train the network end-to-end. The hyper-parameters

were fine-tuned on the validation set using grid search in logarithmic scale.

3.2 Geometric reasoning

Here, we leverage the geometric arrangement of people with respect to each other in

top-view and reason about their presence in each other’s field of view. We iterate over

different identities in top-view, and perform geometric reasoning assuming the identity

is the camera-holder. In Fig.5, we illustrate reasoning about the presence of the identi-

ties highlighted with blue and orange bounding boxes, assuming the person highlighted

in the red bounding box is the camera holder.
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Fig. 4: The architecture of our two stream convolutional neural network trained on pairs of

bounding boxes. The Euclidean distance between the output of the last fully connected layers

(i.e., top and ego) passed through sigmoid activation is set to 0 when the pair belongs to the same

person and 1, otherwise.

Given the identity of the camera holder (ls), we compute how likely it is for each

person i to be present in ls’s field of view (FOV) at any given time. Following [1],

we perform multiple object tracking [35] on the provided top-view bounding boxes

(provided by the dataset). Knowing the direction of motion of each trajectory at each

moment, we employ the same assumptions used in [1]. We estimate the head direction

of each of the top-view camera holders by assuming that people often tend to look

straight ahead while walking. Since the intrinsic parameters of the egocentric camera

(e.g., focal length and sensor size) are unknown, we consider a lower and upper bound

for the angle of the camera holder’s FOV (θ1 and θ2 in Fig.5) to estimate boundaries on

ls’s field of view. As a result, we can determine the probability of each identity being

present in the field of view of ls (i.e., camera holder) at any given time ζ (Fig. 5, right

side). We define the probability of identity i being present in the field of view of the

camera holder (ls) at time ζ as:

Pgζ (i|ls) =











1, θi < θ1
(θ2−θi)
(θ2−θ1)

, θ1 < θi < θ2

0, θ2 < θi

(3)

Intuitively, if the bounding box is within the lower bound of the FOV, we assign its

presence probability to 1. If its orientation with respect to ls is outside the upper-bound

of the FOV range, we assign its presence probability to 0. For values in between the

two bounds (e.g., the person at the bottom-left of Fig. 5), we assign its probability

proportional to its orientation with respect to the camera holder. In our experiments, we

empirically set θ1 and θ2 to 30◦ and 60◦, respectively.

3.3 Spatiotemporal Reasoning

The third component of our approach enforces spatiotemporal constraints on the re-

identification labels within the egocentric video. We define a cost for assigning the

same identity label to a pair of human detection bounding boxes. We later incorporate
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θ2θ1

0 1Pg ( l
e
i | ls ) 

θi

Fig. 5: Geometric reasoning in the top-view video. In this example (left), two identities are

present in the field of view of the camera holder (the two red cones showing the lower and upper

bound of field of view). Using their orientation (shown by blue arrows) with respect to the camera

holder’s direction of movement in the top-view (dashed green arrow), we estimate the probability

of their presence in the content of the egocentric video. Right bar graph shows the probability of

each person being present in the FOV of the camera holder.

this cost in our graph cuts formulation. Two constraints are defined as follows:

Constraint 1: Two different bounding boxes present in the same frame cannot belong

to the same person. Note that non-maximum suppression is performed in the human

detection process. Therefore the binary cost between any pair of co-occurring bounding

boxes is set to infinity.

Constraint 2: If two bounding boxes have a high overlap in temporally nearby frames,

their binary cost should be reduced, as they probably belong to the same identity. We

incorporate two constraints in Cst cost as follows:

Cst(d
e
i , d

e
j) =















∞, if ζde
i
= ζde

j

−1, if 0 < |ζde
i
− ζde

j
| < ǫ and

Ade
i
∩Ade

j

Ade
i
∪Ade

j

> σ

0, Otherwise

(4)

where Ade
i

and Ade
j

correspond to the image area covered by human detection bounding

boxes dei and dej , and ζde
i

and ζde
j

encode the time in which bounding boxes dei and dej
are present. If dei and dej have been visible in the same frame, Cst(d

e
i , d

e
j) will be set to

infinity in order to prevent graph-cuts from assigning them to the same label (constraint

1). The negative cost of Cst(i, j) in case of temporal neighborhood (0 < |ζdi
−ζdj

| < ǫ)

and high spatial overlap (
Ade

i
∩Ade

j

Ade
i
∪Ade

j

> σ) will encourage the graph cuts algorithm to

assign them to the same label (constraint 2), as they may correspond to the same identity

if they have a high overlap. Here, we empirically set ǫ to 5 frames and σ to 0.8.

3.4 Fusion

In this section we describe how visual, geometrical, and spatiotemporal reasonings are

combined. First, we combine the visual and geometrical reasoning to find a set of can-

didate (ls, τ) pairs. We then examine each candidate pair using graph cuts to measure

the cost of its resulting (Lr, ls, τ) labeling and select the one with the minimum cost.
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Comparing Visual and Geometrical Priors In section 3.1, we described how an ini-

tial human re-identification prior can be obtained using visual reasoning. In section 3.2,

we described how an independent source of information (geometric reasoning) pro-

vides yet another set of human re-identification priors given each possible self-identity.

In this section, we search over different self-identities and time delays, and choose the

one whose patterns of geometric priors is consistent with his/her visual priors.

Temporal representation: In section 3.1, we described how we can compute Pv(l
e
i =

j) for any given egocentric human detection bounding box dei and top-view identity j.

We can form a T e×|It|matrix Rv , where T e is the number of frames in the egocentric

video and |It| is the number of identities visible in the top-view video. Intuitively,

Rv(ζ, j) captures the probability of visibility of top-view identity j in the field of view

of egocentric camera holder at time ζ. Let De
ζ = {deζ1 , d

e
ζ2
, ..., deζ|De

ζ
|
} be the set of

human detection bounding boxes visible in frame ζ of the egocentric video. We define

Rv(ζ, j) =
∑|De

ζ |

i=1 Pv(l
e
i = j). Since the sum of the probabilities might lead to a value

higher than 1, we truncate the value at 1. In other words Rv(ζ, j) ← min(1, R(ζ, j)).
An example Rv matrix is shown in Fig.6 (center panel).

We can form a similar matrix based on the geometric reasoning for each self-

identity. As described in section 3.2, given the self identity of the camera holder (ls), we

can compute Pg(l
e
i = j|ls). Similar to Rv , we can form T t×|It|matrix Rg where T t is

the number of frames in the top-view video, and Rg(ζ, j)|ls = Pgζ (i|ls), which is com-

puted according to Eqn. 3. Intuitively Rg(ζ, j)|ls is the probability of visibility of iden-

tity j in the field of view of self-identity ls at time ζ of the top-vie video, geometrically

(an example shown in Fig. 6-left). Forming Rv and Rg|ls for different self-identities

(ls), we expect them to have similar patterns for the correct ls. For each top-view iden-

tity ls, we compute the cross correlation of its Rg|ls matrix with Rv across the time

dimension in order to evaluate their similarities across different time delays (τ ). This

cross correlation results in a 1D signal encoding the similarity score of the two matrices

given different time offsets. As shown in Fig. 6, we estimate the time offset between the

two videos (assuming self-identity ls) by finding the maximum of that score. We search

across all self identities and sort them based on their maximum cross correlation score.

l∗s , τ
∗ = argmax

ls,τ

Rv ⊙Rg|ls (5)

where ⊙ denotes element-wise multiplication. Please note that all the videos in our

dataset are captured with the same frame rate. Thus, we can perform all of these com-

putations in a frame-based manner. Otherwise, a pre-processing and quantization on the

temporal domain would be necessary to correlate the two matrices.

Graph Cuts: Given a set of suggested (ls, τ) pairs from the previous section, we eval-

uate the overall labeling cost as the cost of assigning ls to the self identity, τ to the

time delay, and Lr to the re-identification labels. Graph cuts allows the re-identification

labels to adjust to the spatiotemporal constraint.
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Fig. 6: An example of estimating the self-identity and temporal offset. For a certain self-identity

(ls), the geometric reasoning is performed and the suggested re-identification priors are stored

in matrix Rg|ls (values color-coded). The matrix acquired by visual reasoning (in this case the

supervised CNN based method) is shown in the middle (Rv). The similarity between the patterns

in two matrices suggests that the self identity (ls) is a good candidate. By correlating the two

matrices across the time domain (the rightmost panel), we can observe a peak at τ = 58. This

suggests that if the camera holder has in fact identity ls, the time-offset of his egocentric video

with respect to the top-view video is 58 frames. Also, the score of self-identity ls is the maximum

value of the cross correlation which is 1587 in this case. By computing this value for all of the

possible self-identities, we can pick the most likely self identity as the one with the highest score.

We form a graph G(V,E) in which nodes are the human detection bounding boxes

in ego-view V = {de1, d
e
2, d

e
3, ..., d

e
|De|} (See Fig. 7 for an illustration.). The goal is

to assign each node to one of the top-view labels. Edges of the graph encode the spa-

tiotemporal constraints between the nodes (as described in Section 3.3). Given the self

identification label and time delay, we can perform graph cuts with its cost defined as:

Ctot(ls, τ) =

|De|
∑

i=1

[

Cu(l
e
i |τ, ls) +

|De|
∑

j=1,j 6=i

Cst(l
e
i , l

e
j )
]

(6)

The first term in rhs of Eqn. 6 encodes the unary cost for assigning dei to its label lei ,

given self-identity ls and relative temporal offset (τ ) between the two videos. We set

Cu as:

Cu(l
e
i = j|τ, ls) = 1− P v(lei = j)Rg(ζei − τ, j)|ls (7)

where ζei is the time in which human detection bounding box dei appears in the ego-

view. Intuitively Eqn. 7 means that the probability of bounding box dei (appearing at

time ζei in the ego-view) being identity j in top-view, is the probability of the visibility

of identity j at the field of view of ls at time ζei − τ in the top-view, multiplied by
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its likelihood of being identity j visually. The binary terms determine the costs of the

edges and encode the spatiotemporal cost described in section 3.3. The output of this

method provides us with a cost for each (ls, τ) pair, alongside with a set of labellings

for the human detection bounding boxes Lr. The pair with the minimum cost and its

corresponding Lr is the final solution of our method (i.e., l∗s , L
∗
r , τ

∗).

Fig. 7: An illustration of the graph formation. The silver oval contains the graph G(V,E) in which

each node is one of the ego-view human detection bounding boxes. The squared bounding boxes

highlight different top-view labels in different colors. The graph cuts are visualized using the

dashed colored curves. We always consider an extra NULL class for all of the human detection

bounding boxes that do not match any of the classes.

4 Experimental Results

4.1 Dataset

We use the publicly available dataset [1]. It contains sets of videos shot in different

indoor and outdoor environments. Each set contains one top-view and several egocen-

tric videos captured by the people visible in top-view. Each ego-top pair is used as an

input to our method. We used three sets for training our two stream neural network

and the rest for testing. There are 47 ego-top test pairs and therefore 47 cases of self-

identification and temporal alignment. The total number of human detection bounding

boxes, and therefore human re-identification instances is 28,250. We annotated the la-

bels for all the 28,250 human detection bounding boxes and evaluated the accuracy

for re-identification and self-identification. The number of people visible in top-view

videos vary from 3 to 6, and lengths of the videos vary from 1,019 frames (33.9 sec-

onds) up to 3,132 frames (104.4 seconds).

4.2 Evaluation

We evaluate our proposed method in terms of addressing each objective and compare its

performance in different settings. Moreover, we analyze the contribution of each com-

ponent of our approach in the final results.
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(a) (b)

Fig. 8: (a) shows the re-identification performance of different components of our method. (b)

shows the same evaluation given the ground truth self identification labels.

4.2.1. Self-identification: We evaluate our proposed method in terms of identifying the

camera holder in the content of the top-view video. Since we perform self-identification

based on initial re-identification probabilities (visual reasoning), we evaluate self-identification

based on supervised and unsupervised re-identification results, alongside with state-of-

the-art baselines. We also evaluate the performance in each setting before and after the

final graph cuts step to assess the contribution of the spatiotemporal reasoning. Upper-

bounds of the proposed method are also evaluated by providing the ground-truth re-

identification and temporal alignment. The cumulative matching curves are shown in

Fig.?? left. The solid yellow curve is the performance of [1]. As explained before, [1]

highly relies on the relationship among multiple egocentric videos and does not perform

well when it is provided with only one egocentric video. The dashed yellow curve shows

the performance of [8]. The network provided by the authors was used. As explained in

the related work section, this framework is not designed for scenarios such as ours. The

cyan and blue curves show our self-identification accuracy in the unsupervised setting

before and after the graph cuts step, respectively. The magenta and red curves show the

performance in supervised setting, before and after the graph cuts step, respectively. The

dashed black curve shows random ranking (performance of chance). The advantage of

graph cuts and the spatiotemporal constraints can be observed by comparing before and

after graph cuts curves. The contribution of our two stream visual reasoning is evident

by comparing the unsupervised curves with their corresponding supervised settings.

The effect of the geometrical reasoning could be seen by comparing visual reasoning

results, and the before GC curves. The numbers in the figure legend show the area under

each curve for quantitative comparison. The margin between the supervised and unsu-

pervised approaches shows the effect of re-identification quality on self-identification

performance, confirming the interconnectedness of the two tasks. The solid green and

solid black curves show the upper-bounds of the proposed method. We evaluate self-

identification, when providing ground-truth re-identification labels and the time-delay

to the proposed approach.
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Fig. 9: Left shows the cumulative matching curves illustrating the performance in the self-

identification task. Right shows the distribution of time-delay estimation errors using our su-

pervised and unsupervised methods, compared to the baselines and upper-bounds.

4.2.2. Cross-view human re-identification: We compute the human re-identification

performance in supervised and unsupervised settings, before and after graph cuts (shown

in Fig. 8a). In order to better assess the performance, we compute the performance of

our proposed method given the ground truth self identification label (lsgt ), and ground

truth time delay τgt (Fig. 8b), which results in upper-bounds for re-identification per-

formance. In both figures (a and b), the dashed black line shows the chance level per-

formance. The dashed cyan and magenta curves show the performance of direct visual

matching across the two views using our unsupervised and supervised visual reason-

ings, respectively. Solid cyan and magenta curves show the performance of our un-

supervised and supervised visual cues combined with geometric reasoning. Which is

re-identification solely based on unary confidences in Eqn. 7 and before applying graph

cuts. Finally, blue and red curves show performance of the unsupervised and super-

vised methods (in order) after the graph cuts step, which enforces the spatio-temporal

constraints. Black solid curve in Fig 8b shows the performance of the proposed method,

given the ground truth time delay between the two videos in addition to the ground truth

self-identity. Comparing the red curves of Fig. 8a and 8b shows the effect of knowing

the correct self identity on re-identification performance and thus confirming the inter

dependency of the two tasks. Comparing the red and black solid curves in Fig. 8b shows

that once the self-identity is known, correct time-delay does not lead to a high boost in

re-identification performance which is consistent with our results on self-identification

and time delay estimation. Comparing Fig. 8 a and b shows that knowing the correct self

identity improves re-identification. As explained before, any re-identification method

capable of producing a visual similarity measure could be plugged into our visual rea-

soning component. We evaluate the performance of two state of the art re-identification

methods in Table 1. Before Fusion is the performance of each method in terms of Area

under curve of cumulative matching curve (similar to Fig. 8a). After fusion is the over-



14 S. Ardeshir, and A. Borji

all performance after combining the re-identification method with our geometrical and

spatiotemporal reasoning.

Method Before Fusion After Fusion

Ours (Unsupervised) 0.537 0.612

Ahmed [21] 0.563 0.621

Cheng[22] 0.581 0.634

Ours (supervised) 0.668 0.716

Table 1: Performance of different re-identification methods. Before Fusion is the performance

of the re-identification method directly applied to the bounding boxes (only visual reasoning).

After fusion shows the performance of our method if we replace our two stream network with the

methods mentioned above.

4.2.3. Time-delay estimation: Defining τgt as the ground truth time offset between the

egocentric and top-view videos, we compute the time-offset estimation error (|τ∗−τgt|)
and compare its distribution with that of baselines and upper bounds. Fig. ?? shows

the distribution of time-offset estimation error. In order to measure the effectiveness

of our time-delay estimation process, we measure the absolute value of the original

time-offset. In other words, assuming τ∗ = 0 as a baseline, we compute the offset

estimation error (shown in the dark blue histogram). The mean error is also added to

the figure legend for quantitative comparisons. Please note that the time delay error

is measured in terms of the number of frames (all the videos have been recorded at

30fps). The baseline τ = 0 leads to 186.5 frames error (6.21s). Our estimated τ∗ in

the unsupervised setting, reduces this figure to 138.9 frames (4.63s). Adding visual

supervision reduces this number to an average of 120.6 frames (4.02s). To have upper

bounds and evaluate the performance of this task alone, we isolate it from the other

two by providing the ground-truth self identification (lsgt ) and human re-identification

labels (Lrgt ). Providing lsgt will lead to 97.39 frames error (3.24), and providing both

lsgt and Lrgt reduces the mean error to 90.32 (3.01s). Similar to our re-identification

upper-bounds, knowing the self-identity improves performance significantly. Once self-

identity is known, the ground truth re-identification labels will improve the results by a

small margin.

5 Conclusion

We explored three interconnected problems in relating egocentric and top-view videos

namely human re-identification, camera holder self-identification, and temporal align-

ment. We perform visual reasoning across the two domains, geometric reasoning in

top-view domain and spatiotemporal reasoning in egocentric domain. Our experiments

show that solving these problems jointly improves the performance in each individual

task, as the knowledge about each task can assist solving the other two.
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